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PAPER
Remote Sensing Image Dehazing Using Multi-Scale Gated Attention
for Flight Simulator

Qi LIU†, Bo WANG†, Shihan TAN†, Shurong ZOU†a), Nonmembers, and Wenyi GE† ,†† ,†††, Member

SUMMARY For flight simulators, it is crucial to create three-
dimensional terrain using clear remote sensing images. However, due to
haze and other contributing variables, the obtained remote sensing images
typically have low contrast and blurry features. In order to build a flight
simulator visual system, we propose a deep learning-based dehaze model
for remote sensing images dehazing. An encoder-decoder architecture is
proposed that consists of a multiscale fusion module and a gated large kernel
convolutional attention module. This architecture can fuse multi-resolution
global and local semantic features and can adaptively extract image features
under complex terrain. The experimental results demonstrate that, with
good generality and application, the model outperforms existing compar-
ison techniques and achieves high-confidence dehazing in remote sensing
images with a variety of haze concentrations, multi-complex terrains, and
multi-spatial resolutions.
key words: remote sensing images dehazing, multi-scale fusion, gated
attention, flight simulator

1. Introduction

The advancement of computer simulation technology sup-
ports in the advancement of national defense, business, and
other areas, particularly in the sector of aerospace, where
flight simulators are quickly evolving due to their reliance
on simulation technology. A flight simulator is a type of
simulation flight training tool that can simulate an aircraft’s
flying condition in flight and provide pilots the same opera-
tional experience, visual feedback, and audio feedback as a
real aircraft. Flight simulators are frequently used in place
of actual aircraft throughout the pilot training process as
they provide significant benefits over real aircraft in terms of
safetya, economics, and other factors [1]. In addition to the
pilot’s flight training, military and civil aircraft flying tests,
as well as the pilot’s free recovery training, the flight sim-
ulator is indispensable. Flight simulator consists of visual
system, motion system, navigation system and other systems,
of which the visual system is an important part of the flight
simulator, the visual system can provide pilots with the use
of real aircraft training with the same real-time dynamic en-
vironment outside the cockpit and inside the cabin, which
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is an important guarantee of the authenticity of the flight
simulator.

The dynamic scene simulation of the flight simulator
visual system [2] is mainly through the real-time scheduling
of the visual database, which affects the pilot’s judgment of
the external environment. The terrain database is usually
generated with remote sensing images [3], and the quality
of the remote sensing images directly affects the quality
of the terrain database, which in turn affects the quality
of the visual system, and ultimately affects the quality of
the entire flight simulation training. Although more remote
sensing image data has become available in recent years
due to advances in sensor technology and the expansion
of remote sensing platforms, this is despite the fact that
remote sensing images are primarily obtained through the
observation of electromagnetic wave information from the
sun, making them extremely vulnerable to weather and other
factors. For example, more cloudy skies or haze will cause
the edge to be blurred, and the color of the distortion and
other problems. Since it is challenging to directly apply these
haze-affected remote sensing images to the creation of the
terrain database, it is necessary to dehaze the haze images in
order to enhance the terrain database’s overall data quality
and the functionality of the detailed features, to enhance the
quality of the visual system, and ultimately to guarantee the
quality of the pilot’s training.

Most of the image dehazing methods are based on the
atmospheric scattering model starting from the estimation of
the atmospheric transmission map to realize image dehazing:

I = J(x)t(x) + A(1 − t(x))
where I is a haze image, J(x) is a haze-free image, A is
the global atmospheric light, and t(x) is a medium trans-
mission map. The transmission map t(x) can be further
expressed as t(x) = e−βd(x), where β is the atmospheric scat-
tering coefficient and d(x) is the scene depth. Although this
approach is effective for image dehazing, it is less applicable
to remote sensing images due to the fact that the imaging
range of remote sensing images is wide and the distribution
of haze is also inhomogeneous leading to the global atmo-
spheric light A is inhomogeneous, it ought to be a variable,
makes it distinct from natural images [4]. Additionally, the
remote sensing images has a variety of spatial resolutions
and topography, which making it essential to estimate vari-
ous atmospheric transmission maps based on various remote
sensing images when dehazing multiple remote sensing im-
ages. This has a significant impact on efficiency.
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Many image dehazing networks based on deep learning
have emerged in recent years due to the rapid development
of deep learning and neural network technology in the field
of computers. These dehazing networks work to remove
haze from images by estimating the residuals between hazy
and clear images. However, the application of these meth-
ods in the remote sensing image dehazing is less effective.
The reason is the imaging range of remote sensing images is
broad, a remote sensing image contains a lot of information
about the landscape features, presenting a complex and var-
ied topography to the senses; at the same time, the spatial
resolution of remote sensing images is varied, and remote
sensing images with different spatial resolutions of the same
location contain different amounts of information, sensory
presentation of similar in parts but different in whole. These
characteristics make it very easy for underfitting or overfit-
ting to occur when applying deep learning modeling methods
for dehazing. The use of these underfitted or overfitted mod-
eled dehazing images to construct the terrain database will
result in terrain blurring, loss of saturation and contrast lead-
ing to poor realism of the visual system and thus affecting
the quality of pilot training. The paper proposes an end-to-
end remote sensing image dehazing model that may be used
for a variety of spatial resolutions and complicated terrains
based on the aforementioned issues. We propose a Multi-
Scale Fusion(MSF) module to extract image features through
multiple dilation convolutions with different dilation sizes,
which can be applied to different spatial resolutions to obtain
heterogeneous scale correlations, in order to address the is-
sue of multi-spatial resolution of remote sensing images. We
propose the Gated Large Kernel Attention (GLKA) module,
which introduces adaptive attention to improve the feature
extraction capability of the model under multiple landscape
features information and multiple complex terrain, with a
focus on the characteristics of remote sensing images with
many landscape features information and complex terrain.
Additionally, we created a dataset of remote sensing images
with various spatial resolutions and varied terrain attributes.
We employed both qualitative and quantitative evaluation
to assess the effectiveness of various image dehazing net-
works. Peak signal-to-noise ratio (PSNR), structural simi-
larity (SSIM), and learned perceptual image patch similarity
(LPIPS) are used in the quantitative evaluation to measure
the dehazing effectiveness of the computational model. Ex-
periments show that our suggested model produces favorable
outcomes. The following is a summary of the contributions
made by this paper:

• We design a remote sensing image dehazing model
based on encoder-decoder structure suitable for the construc-
tion of flight simulator visual system, which is capable of de-
hazing remote sensing images with multi-complex terrains
and multi-spatial resolutions, and propose the MSF mod-
ule and the GLKA module for feature extraction as well as
feature fusion. Also proposed is a remote sensing images
dataset we refer to as DMRSI.

• The MSF module enables the combination of shallow
semantic information and deep local information, which can

efficiently reduce information loss during the convolution
process and improve the stability of the model. Additionally,
the combination of multi-path convolution can ensure that
the model avoids overfitting and affects the performance of
the dehazing when dehazing remote sensing images with
various spatial resolutions.

• The GLKA module consists of a gating mechanism
and a large kernel of attention. By using a large kernel con-
volution and depth expansion convolution, these two tech-
niques ensure the adaptability of the attention and the es-
tablishment of long-range dependence. Pure convolution,
on the other hand, avoids a significant amount of compu-
tational and memory overhead, improving performance and
efficiency. The gating method makes sure that the model
doesn’t lose local information while creating long-range de-
pendencies, which ensures that the model may be applied to
remote sensing images of numerous complex terrains.

• DMRSI comprises remote sensing images with a
range of spatial resolutions, including from 512 meters to
1 meter, in a halved stepwise distribution. It also includes a
variety of landscape features, such as cities, coasts, deserts,
farmlands, forests, and mountains. A realistic simulation of
haze in nature is provided by DMRSI’s two types of haze
states, mist and hazy.

2. Related Work

The three primary categories of remote sensing images de-
hazing methods now in use are as follows: the first is based
on image enhancement, which does not take into account
the physical model of image deterioration but instead en-
hances image quality by boosting contrast. The most repre-
sentative of these is histogram equalization [5], Retinex algo-
rithm [6] and homomorphic filtering [7] method. However,
these methods are typically used for single image dehazing
and have poor generalizability. The histogram equalization
method, for example, is only applicable to images with heavy
haze, the Retinex algorithm has high complexity, and homo-
morphic filtering is not applicable to images that are too
bright or dark.

The second category is based on physical a priori ap-
proaches, which are often based on the atmospheric scat-
tering model. According to extensive observation and sta-
tistical analysis of outdoor clear images, He et al. [8] dis-
covered that most non-sky patches contain some pixels in
at least one of the color channels that have very low in-
tensities. Image dehazing is accomplished by utilizing this
low pixel intensity for use in the estimation of atmospheric
transmission inputs. Li et al. [9] proposed a simple and ef-
fective single-image dehazing method based on an improved
bright-channel prior and dark-channel prior, which divides
sky and non-sky regions by particle swarm optimization and
estimates the atmospheric transport map by a bright and dark-
channel prior. He et al. [4] proposed an image haze removal
algorithm for visible light based on a non-uniform atmo-
spheric light prior and a side-window filter, which presents a
side-window filter-based transmission estimation algorithm
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Table 1 Studies relating to images dehazing

to suppress the block effect in the transmission map due to
the large window of the smallest filter used in the dark chan-
nel algorithm, and also combines it with a simple estimation
of the non-uniform atmospheric light to achieve image de-
hazing. Li et al. [10] obtained accurate haze transmittance
by introducing Gaussian-weighted image fusion, and also
used an unsharpened mask method to correct the dehazed
image to solve the problem of image color distortion, which
achieved good results in both outdoor and remote sensing
images.

While the above methods (augmented, a priori) have
shown high performance on specific datasets, such methods
are usually only applicable to specific scenarios or specific
datasets and require physical knowledge to back them up,
and thus are not applicable to flight simulators that require a
large number of remote sensing images.

The third category is machine learning based or deep
learning based methods. Cai et al. [11] proposed an image
dehazing method based on CNN architecture, which takes
a hazy image as input and outputs its transmission mapping
for image dehazing. Ren et al. [12] proposed a multi-scale
CNN for image dehazing, the model is mainly divided into
two parts: coarse scale network and fine scale network, the
coarse scale will estimate the transmission map of the in-
put hazy image at the coarse scale and send the result to
the fine scale network, the fine scale network will refine
the transmission map to realize the image dehaze. Li et
al. [13] proposed an end-to-end trainable dehazing model
that can recover clear images directly from hazy images
without relying on any intermediate parameter estimation.
Zhang et al. [14] proposed a Densely Connected Pyramid
Dehazing Model (DCPCN), which directly embeds the at-
mospheric scattering model into the network, and directly
learns the projected map and atmospheric light to realize the
image dehazing through the encoding and decoding network
with edges keeping the pyramids densely connected. Chen
et al. [15] proposed GCANet, which employs smooth dila-
tion convolution instead of the original dilation convolution,
solves the mesh artifacts induced by the dilation convolution,
and utilizes a gated sub-network to fuse high and low dimen-
sional features to improve the dehazing effect. Guo et al. [16]
proposed RSDehazeNet, introducing both local and global
residual learning and using a channel attention module to
achieve fast convergence of the model. Wu et al. [17] pro-
posed AECRNet, a compact image dehazing method based

on contrast learning by mining negative sample informa-
tion. Ge et al. [18] proposed a U-Net based image dehazing
method, which has achieved good results in both natural and
remote sensing image fields. Chen et al. [19] proposed an
end-to-end hybrid high-resolution learning network frame-
work called H2RL-Net utilizing a parallel cross-scale fusion
module to aggregate information from multiple scales and
perform dynamic feature recalibration of channel features
to produce better dehazing results. He [20] et al. proposed
to fuse the features of visible and infrared bands to utilize
the strong penetration ability of infrared band for the de-
hazing of remote sensing images. He et al. [21] proposed
an end-to-end convolutional neural network based on an at-
tention mechanism that contains a residual block structure,
which combines channel and spatial attention mechanisms.
Li et al. [22] proposed M2SCN, an end-to-end image de-
hazing network consisting of a multi-model joint estimation
module with enhanced generalization capability and a self-
correction module with enhanced blurring capability. Wei
et al. [23] proposed a self-supervised remote sensing (RS)
image dehazing network based on zero-sample learning by
combining a priori knowledge with deep learning, where the
self-supervision process is able to reduce the data require-
ments while the learning-based structure is able to refine the
artifacts caused by the complex real-world environment.

Constructing terrain database requires a large number
of remote sensing images, so the dehazing methods based
on image enhancement [5]–[7]and based on physical prior
knowledge [4], [8]–[10]are difficult to satisfy the demand,
and the dehazing methods based on deep learning can quickly
realize the dehazing of large-volume images, so the research
focus of this paper is on the dehazing methods based on
deep learning. Although many remote sensing image de-
hazing methods based on deep learning have been proposed,
there are some problems that are difficult to be applied to
the construction of the flight simulator visual system terrain
database. The reason is that the existing deep learning-
based remote sensing image dehazing methods can not be
directly applied to the construction of the flight simulator
visual system terrain database, Through Table 1 we can
see that there are two main directions of existing meth-
ods, one is generalized dehazing methods [11]–[14], [17],
[18], [22], and the other is model optimization based on
one main problem, such as the use of multi-scale, etc. to
fuse low- and high-dimensional [15], [16], [19] information
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Fig. 1 Overall structure of our proposed dehazing network

or the introduction of attention and residual networks [20],
[21], or self-supervision [23] to reduce the problem of miss-
ing training samples., while the construction of the flight
simulator visual system terrain database requires multiple
spatial resolution, multiple terrain remote sensing images,
and the existing methods can not meet the multiple spatial
resolution, multiple terrain remote sensing image. How-
ever, the construction of the flight simulator visual system
terrain database requires remote sensing images with multi-
ple spatial resolutions and multiple terrains, and the existing
methods are unable to meet the demand for dehazing remote
sensing images with multiple spatial resolutions and multiple
complex terrains. The characteristics of multi-spatial reso-
lution and multi-complex terrain of remote sensing images
in flight simulators challenge the existing dehazing methods,
and enhancement-based methods such as [4], [8]–[10] are
unable to process quickly and in large quantities, and [11]–
[23]are unable to satisfy the requirements of multi-spatial
resolution and multi-complex terrain, and our method is
based on deep learning, which realizes fast dehazing for
multi-spatial resolution and multi-complex terrain.

3. Methodology

In this section, we will present three main parts, one is the
specific details of the proposed model. The basic architecture
of the proposed model is shown in Fig. 1. The second is the
design intent and specific module design details of the Multi-
Scale Fusion module, and the third is the design intent and
module design details of the Gated Large Kernel Attention
module, including the use of Large Kernel Attention and the

gating mechanism.

3.1 Network Architecture

The fundamental design of our proposed model is based on
U-Net [24], which is a very classical and very successful
Encoder-Decoder architecture. As shown in the Fig. 1, the
model proposed in this paper consists of two main modules,
namely the Multi-Scale Fusion (MSF) module and the Gated
Large Kernel Attention (GLKA) module. First, there are
four stages in the encoder stage, each of which includes a
3×3 convolution, an MSF module, and a GLKA module.
The input image I will first go through a 3×3 convolution to
extract the original image features, and then the MSF module
and the GLKA module, which are termed Fmf and Fga, will
further extract the high dimensional feature image. The stage
can be formulated as:

fi(x) = Fga(Fmf (Conv( fi−1))) (1)

where fi(x) represents the feature map at the end of the stage
and f0(x) represents the input image I.

In the Decoder stage, there are 3 stages, each stage
consists of upsampling, MSF module with GLKA module
and will establish residual connections with different stages
of the encoder stage. The upsampling uses PixelShuffle to
restore the feature information to the size of the original im-
age. The last stage additionally includes a 3×3 convolution
to recover the initial size. The stage can be formulated as:

fi(x) = Fga(Fmf (PS( fi−1(x)) ⊕ fN−i+1(x))) (2)

where N represents the number of all stages including En-
coder and Decoder.
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Fig. 2 Details of MSF module

3.2 Multi-Scale Fusion (MSF)

Different spatial resolutions at the same location typically
imply a high degree of similarity of the feature maps for re-
mote sensing images with multiple spatial resolutions. While
it is possible to change the extraction of feature images by
adjusting the size of the convolution kernel according to the
size of the various spatial resolutions, this greatly reduces the
generalizability of the model and runs the risk of overfitting,
which is against our original intention. We think that by in-
corporating dilated convolution, the computational approach
of using various rate convolution kernels to extract and fuse
the local semantic information with the global semantic in-
formation can more effectively reduce the information loss
while also improving the model robustness, and can effec-
tively realize the generalization to remote sensing images
with various spatial resolutions. Therefore we propose to
use the MSF module to extract and fuse the dilation con-
volutions with different dilation rates to process the feature
maps. The MSF module is shown in Fig. 2. The input fea-
ture maps will first be normalized and undergo a pointwise
convolution, after which feature maps with different sizes
will be extracted by 3×3 convolution kernels with rates of
1, 3, and 5 respectively, and will be summed up to perform
pointwise convolution with ReLU activation operation. The
stage can be formulated as:

flp(x) = PWConv(LN( f (x))) (3)
( fd1(x), fd3(x), fd5(x)) = (Conv3,rate=1( flp),

Conv3,rate=3( flp)),Conv3,rate=5( flp))
(4)

fmsf = ReLU(PWConv( fd1(x)+
fd3(x) + fd5(x)))

(5)

where f (x) represents the input feature map, flp(x) repre-
sents the feature map by normalization with pointwise con-
volution, fd1, fd3 and fd5 represents the feature maps after
convolution by dilation with convolution kernel size 3 and
rate 1, 3, 5, respectively. fmsf represents the final output
feature map of the module.

3.3 GLKA (Gated Large Kernel Attention)

The investigation of human vision led to the creation of At-

tention Mechanism (AM). According to cognitive science,
humans selectively focus on a subset of all information while
ignoring other observable information because of informa-
tion processing bottlenecks. Numerous earlier visual tasks
have demonstrated the potent effectiveness of the attention
mechanism. These visual tasks typically include the use of
attention, including self-attention (S-A), channel attention
(CA), spatial attention (SA), and convolutional block atten-
tion (CBA). The global contextual information is easily ig-
nored by CA, SA, and CBA, which usually only focus on local
information. S-A can establish the dependency between two
global pixels while disregarding the local information and re-
quiring a significant amount of processing. It is challenging
to figure out how to combine attention with adaptivity, estab-
lish long-range dependencies, and model local information
in remote sensing images with complex scenes and terrains
where multiple features and landscapes need to focus on dif-
ferent goals. Literature [25] proposes a new convolutional
attention capable of achieving self-attention adaptivity and
long-range correlation while avoiding large computational
and memory overheads, based on which we propose gated
large kernel attention (GLKA) as shown in Fig. 3, which
combines the gating mechanism with the large kernel at-
tention to ensure adaptivity as well as the establishment of
long-range dependencies through the large kernel attention,
and the gating mechanism ensures that no local information
is lost while long-range dependencies are established.

Large Kernel Attention
The large kernel convolutional attention decomposes

the K×K convolution into three parts, which are depth convo-
lution, depth dilation convolution, and channel convolution.
For given feature map X ∈ Rc∗w∗h , following the determi-
nation of the dilation d, a (2d-1)×(2d-1) depth convolution,
a (k/d)×(k/d) depth-wise dilation convolution, and a 1×1
channel convolution are carried out. By breaking down the
convolution, the long-range link between pixel properties is
recorded. The formula representation is:

LK A = PWConv(DWDConv(DWConv(X))) (6)

where DWConv represents depth convolution, DWDConv
represents depth dilation convolution, and PWConv repre-
sents pointwise convolution.
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Fig. 3 Details of GLKA module

Gated Mechanism
We materialize the gating mechanism as a composite of

two parallel paths, one of which introduces the large-kernel
convolutional attention to establish long-range dependen-
cies and the other of which only uses deep convolution to
encode spatially adjacent pixel location information to aid in
learning and recovering local image structure. For the input
feature map f (x), the formalization is expressed as:

X1 = LK A(PWDConv(LN( f (x))))
X2 = DWConv(PWDConv(LN( f (x)))) (7)

fga = PWConv(X1 ⊗ X2) ⊕ f (x) (8)

where X1, X2 represent the feature maps obtained through
different paths, respectively, fga represents the final output
feature map of the module.

4. Experiments

4.1 Datasets

Remote sensing images have a broad imaging range, and
different remote sensing satellites have different spatial res-
olutions, which also results in the same location, different
resolutions of remote sensing images containing different
geographic feature information. And under the premise of
the same visual source, remote sensing images taken by re-
mote sensing satellites with the same spatial resolution and
at different locations are frequently significantly different.
For instance, the Alps, which fall under the category of natu-
ral landscape sources, are constantly covered in glaciers and
snow. Remote sensing images typically show these features
on the east-west oriented main mountain ranges, while the
washed plains, lowlands, and hills are typically covered in
forest vegetation. The intuitive color is typically composed
of white glacier and snow interspersed with green forest

Fig. 4 Comparison of mountain ranges

vegetation. The east-west trending Kunlun Mountains also
have snow, but much less than the Alps, and remote sens-
ing imagery often shows the east-trending main mountain
range scattered with snow, and the rest are granite, clastic
and sand deposits. The intuitive color is usually a scattering
of white snow covered by yellow granite and other rocks. A
comparison of the two is shown in the Fig. 4.

We note that there are fewer existing publicly available
remote sensing imagery datasets. And these datasets typi-
cally suffer from the following problems: 1. The haze is too
evenly distributed. Although haze is isotropic from a human
perspective, meaning that the distribution of haze is uniform,
this is due to the human perspective being too limited and the
information received being restricted to what can be seen.
When the entire spatial territory inside the hazy region is
considered, the distribution of haze within it has a tendency
to be anisotropic, meaning it is not spread evenly in space.
The greater the area that is considered as a whole, the more
apparent the anisotropy is. 2. Remote sensing images with
less spatial resolution and a single scene. Multiple spatial
resolutions, or scales, are typically present in remote sensing
images. As a result, the prominence and detail of the land-
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Table 2 Composition of different areas with the same landscape features

scape vary depending on the spatial resolution. For instance,
a remote sensing image with a 32-meter spatial resolution
and a scale of 1:72220 frequently contains exceptionally rich
landscape information, which is expressed in the variety of
landscape feature information and apparent color variations.
While the remote sensing image with 2 m spatial resolution
and a scale of 1:4510 has significantly less information about
the landscape than the remote sensing image with 32 m spa-
tial resolution, the color change is not immediately apparent,
but the latter contains significantly more comprehensive in-
formation about landscape objects. Starting from the above
problems, this paper constructs a new remote sensing im-
age dataset named DMRSI(Double Multi Remote Sensing
Images).

Composition of the dataset
DMRSI consists of six types of landscape features, such

as forests, deserts, farmlands, cities, coasts, and mountains,
etc. As mentioned before, the information contained in re-
mote sensing images of different regions and resolutions
under the same landscape feature is not the same, so we se-
lected remote sensing images of the same landscape feature,
with different geographic regions and resolutions, to consti-
tute the dataset. The composition of landscape features and
areas is shown in Table 1 and the spatial resolution compo-
sition is shown in Table 2. Examples of the composition
of different landscape features in the dataset are shown in
Fig. 5, and examples of the composition of the same location
at different spatial resolutions are shown in Fig. 6.

Remote sensing images hazing algorithms
This research uses the atmospheric scattering model as

the foundation for adding haze to the clear images that have
been acquired from the various places listed above in order to
make hazy images. The formula states that we already have
a clear image J(x), and that all we need to do is compute t(x)
and A to obtain the hazy image. The Berlin function [26]is
frequently used to mimic natural textures, which closely re-
semble the dispersion of haze. As a result, in this paper,
we mimic the creation of the atmospheric transport map t(x)
using the Berlin function, which we indicate by pl(x), where
pl(x) ∈ (0,1). As for the atmospheric light A, the literature
[Remote Sensing Image Dehazing Using Heterogeneous At-
mospheric Light Prior] considers that the atmospheric light
received at different locations is different due to the influ-
ence of haze and makes some changes to the atmospheric
scattering model with the formula of

I = J(x)t(x) + A(x)(1 − t(x))

and also proposed to use a fixed-size window to separate the
hazy image into non-overlapping patches before identifying
the color of the pixel with the highest intensity in each patch
as the local atmospheric light. We believe that the compo-
sition of local atmospheric light in a haze image should be
affected by two aspects, one is the color of the pixel with
the highest intensity in the haze image that is divided into
window patches of different sizes, and the local atmospheric
light with and without haze is different, here we delimit each
pixel point as a window patch, and the search for the local
atmospheric light of the window patch becomes the search
for the atmospheric light of each pixel point. And the pixel
point with haze should normally be white, and its pixel point
value expressed in RGB is (255,255,255), and the pixel point
without haze is itself, and its pixel point value expressed in
RGB is (r(x), g(x), b(x)). The second is the projection ra-
tio of the atmospheric light, which determines the intensity
performance of the atmospheric light under the influence of
the medium, which we denote by K(x). Now we assume
that the whole remote sensing image is affected by haze,
then the atmospheric light A(x) should be White, but due
to the irregular distribution of haze and therefore the distri-
bution of atmospheric light is also irregular, the formula for
calculating A(x) can be expressed as

A(x) = White ∗ K(x) (9)

We have already mentioned that we generated the atmo-
spheric transmission map pl(x) with the Berlin function,
and we already know that the atmospheric transmission map
is used to measure the ratio between the radiation received
through the atmospheric medium and the initial scene ra-
diance, the higher the ratio, the less it is affected by the
atmospheric medium, i.e., the less it is affected by the haze,
and the closer the atmospheric light at that point is to itself.
Thus K(x) can be fomulated as

K(x) = 1 − pl(x) (10)

According to Formula 9 and Formula 10, the atmospheric
light A(x) can finally be fomulated as

A(x) = White ∗ (1 − pl(x)) (11)

After obtaining the atmospheric transmission map pl(x) and
atmospheric light A(x), the image hazing algorithm formula
can be obtained:

I(x) = J(x)pl(x) +White ∗ (1 − pl(x))2 (12)

Dataset generation
We downloaded 36 multispectral images of urban areas,
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Fig. 5 Examples of different landscape feature compositions

23 coastal areas, 32 desert areas, 29 farmlands, 32 forests,
and 29 mountains with resolutions ranging from 1565×862
to 32938×15220 via Google Earth. Each multispectral im-
age is randomly cropped into 512×512 images 10 (some
areas of multispectral image cropping more), each image to
add five different features of the Berlin function to generate
a 9080 group of mist training set, and the second addition
of haze to generate a 9080 group of hazy training set, a total
of 18,160 pairs of images together to form a model training

set, the contrast of mist and haze as shown in Fig. 7. And
from each of the above multispectral images again randomly
cropped 6 512×512 images, 5/6 applying 1 different features
of the Berlin function to generate 905 pairs of mist test set,
1/6 the second addition of haze to generate 181 pairs of hazy
test set, a total of 1086 pairs of images together to form the
test set of the model test.
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Fig. 6 Examples of different spatial resolution compositions at the same location

Fig. 7 Comparison of mist and hazy

4.2 Experimental Setup and Evaluation Metrics

Experimental setup
The dataset used for the experiments is performed on

our proposed DMRSI, we use Pytroch to implement the
model and train the model on a single NVIDIA RTX A4000
GPU. For training, the input image is 512×512 and is ran-
domly cropped to 256×256. we use AdamW optimizer to
optimize the training results with initial values of 0.9 and
0.999 for β1 and β2 respectively and an initial learning rate
of 1e-4.

Evaluation metrics
We use three quantitative metrics for quantitative eval-

uation, which are peak signal-to-noise ratio (PSNR) [27],
structural similarity (SSIM) [28] and learned perceptual im-
age patch similarity (LPIPS) [29]. PSNR is a reference value
that measures the image quality between the maximum sig-
nal and the background noise, and the larger the value is,
the better the quality of the image is. SSIM is a metric that
quantifies the structural similarity between the two images,
and the closer the value is to 1, the more similar the images
are. SSIM is an index that quantifies the structural similarity
between two images, the closer the value is to 1, the more

Table 3 Composition of different spatial resolutions with the same land-
scape features

similar the images are. LPIPS is standard to learn the inverse
mapping of a generated image to Ground Truth enforces the
generator to learn the inverse mapping of a reconstructed
real image from a fake image and prioritizes the perceived
similarity between them, where a lower value indicates that
the two images are more similar.

4.3 Experimental Result and Discussion

We applied the dehazing model to the proposed DMRSI
dataset and compared our model with AOD-Net, DehazeNet,
DCPDN, GCA and AECR in three scenarios of different spa-
tial resolutions, different terrains, and mixed multi-spatial
resolution-multi-terrain, and the results of quantization for
different spatial resolutions are shown in Table 4, the re-
sults of quantization for different terrains in Table 5, and the
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Table 4 Results of quantization for different spatial resolutions

Table 5 Results of quantization for different terrains

Fig. 8 Comparison of different dehazing methods for mist

results of quantization for mixed multi-spatial resolution-
multi-terrain are shown in Table 6. According to Table 4, as
spatial resolution increases, the metrics of AOD-Net show an
overall decreasing trend, whereas the metrics of DehazeNet

and DCPDN are generally more stable, with the exception of
some spatial resolutions, while the metrics of GCA are gen-
erally more stable. Despite this overall decreasing trend,
our method continues to outperform all previously men-
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Fig. 9 Comparison of different dehazing methods for hazy

Table 6 Results of quantization for mluti-resolution and multi-terrain

Table 7 Comparison of quantitative results of different modules

tioned methods at all spatial resolutions. Table 5 shows that
DCPCN and GCA perform better across most terrains, with
the exception of mountains, while AOD-Net and DehazeNet
have poor overall dehazing metrics. In all terrain, the method
we proposed performs better than every way previously men-
tioned. According to Table 6, our proposed method outper-
forms other methods in all metrics, with PSNR reaching
31.54 dB, SSIM reaching 0.955, and LPIPS dropping to
0.039, Compared to the best resultant network AECR, our
network PSNR performance improves up to 3.44%, SSIM
improves up to 0.5%, and LPIPS improves up to 9.3%.

We also made visual qualitative comparisons between

the proposed method and various dehazing methods, and
the comparison graphs of the mist in different terrains are
shown in Fig. 8, and the comparison graphs of the hazy are
shown in Fig. 9. In the mist scenarios, DehazeNet suffers
from color distortion problems and has poor dehazing ability,
otherwise, most of the methods can achieve good results, but
AOD-Net has a very obvious halo phenomenon and serious
color distortion problems; DCPDN and GCA do not have
serious color distortion problems, but there is a blurring of
detail phenomenon. In hazy scenarios, the dehazing effect
of AOD-Net and DCPCN is poor, and GCA is better than
the first two methods but still suffers from the problems of
incomplete dehazing and poor detail recovery, AECR is still
inferior to our proposed method, although it achieves better
visualization results than the previous methods, whereas our
proposed method outperforms the above mentioned methods
in terms of both dehazing ability and detail recovery, whether
in the conditions of mist or hazy, and exhibits good dehazing
ability, and achieves good results in the aspects of color
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contrast and detail recovery.

4.4 Ablation Experiments

We discuss the influence of two crucial modules in our pro-
posed model, the MSF and GLKA, on the performance of
the network in order to assess the efficacy of various modules
in our suggested model. We add the MSF and GLKA mod-
ules as models 1 and 2, respectively, and replace the MSF
and GLKA modules with regular convolutional blocks as the
baseline. The quantization results are displayed in Table 7.

The results indicate that adding various modules can
improve or worsen network performance to varying degrees.
The PSNR of the model with the addition of the MSF module
alone falls by 2.7 dB or 8.654% compared to BASELINE,
the SSIM falls by 0.019 or 2%, and the LPIPS rises by
0.019 or 43.182%, this is owing to the fact that, although
it can enhance the number of feature maps, the inclusion
of the MSF module alone does not add a logical This is
due to the fact that, despite the fact that adding an MSF
module alone can increase the number of feature maps, it
does not provide a suitable feature map selection process,
which lowers the model’s overall resilience. The model with
the GLKA module alone improves by 0.06dB or 0.192%
compared to the baseline, while SSIM improves by 0.003
or 0.316% and LPIPS decreases by 0.004 or 9.091%. This
improvement in model performance is made possible by the
attention mechanism of the GLKA module.

5. Conclusion

In this paper, a remote sensing images dehazing model with
an encoder-decoder structure is proposed for the construction
of flight simulator visual system, the end-to-end architecture
enables the model to directly achieve image dehazing by
learning the residuals and recovering the image characteris-
tics, which addresses the issue of the lack of stability and
robustness of conventional image dehazing techniques. The
MSF module and GLKA module are designed for feature ex-
traction as well as feature fusion for remote sensing photos
with multi-complex terrain and multi-spatial resolution, im-
proving the stability of the model. In addition, this paper also
collects and constructs a remote sensing image dataset with
different concentrations of inhomogeneous haze to evaluate
the proposed method. The experiment proves that compared
with other methods, the proposed method shows strong per-
formance in image dehazing and image recovery, regardless
of mist or hazy, and verifies the effectiveness of the proposed
model in remote sensing images with multiple spatial resolu-
tions and complex terrains to remove haze, which is suitable
for flight simulator visual system.
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