
DOI:10.1587/transinf.2023EDP7192

Publicized:2024/05/14

This advance publication article will be replaced by
the finalized version after proofreading.

1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

Paper

Large Class Detection using GNNs: A graph based deep learning ap-
proach utilizing three typical GNN model architectures

HanYu Zhang †, Nonmember and Tomoji Kishi††, Nonmember

SUMMARY Software refactoring is an important process in software de-
velopment. During software refactoring, code smell is a popular research
topic that refers to design or implementation flaws in the software. Large
class is one of the most concerning code smells in software refactoring. De-
tecting and refactoring such problem has a profound impact on software
quality. In past years, software metrics and clustering techniques have com-
monly been used for the large class detection. However, deep-learning-
based approaches have also received considerable attention in recent stud-
ies. In this study, we apply graph neural networks (GNNs), an important
division of deep learning, to address the problem of large class detection.
First, to support the extensive data requirements of the deep learning task,
we apply a semiautomatic approach to generate a substantial number of data
samples. Next, we design a new type of directed heterogeneous graph
(DHG) as an input graph using the methods similarity matrix and software
metrics. We construct an input graph for each class sample and make the
graph classification with GNNs to identify the smelly classes. In our exper-
iments, we apply three typical GNN model architectures for large class de-
tection and compare the results with those of previous studies. The results
show that the proposed approach can achieve more accurate and stable de-
tection performance.
key words: Software Refactoring, Code Smell, Large Class, Deep Learning,
Graph neural networks.

1. Introduction

Software Refactoring plays an important role in software de-
velopment and maintenance. It can optimize the internal
code or structure of software without changing its external
behavior [1][2]. Code Smell is one of the most important fo-
cuses of software refactoring, and refers to flaws in software
design or implementation. The term was first mentioned by
Kent Beck and further elaborated in the publication by
Fowler [2] in 1992.

Large Class is one of the most investigated code smells,
which refers to classes with too many fields or methods [2].
The presence of a large class significantly reduces the read-
ability, maintainability, and reusability of the software while
also violating one of the basic design principles of object-
oriented development (OOD): single responsibility principle
(SRP). The large class has also received extensive attention
in the research field, where it is also well-known as the God
Class or Blob [5]. According to a survey conducted by
Sharma [3] and AbuHassan [4], the number of studies on
large classes has always been greater than the number of
studies on other code smells in the past years.

From past studies on large class detection, approaches
based on software metrics have been traditionally and com-
monly used. For instance, Lanza [6] introduced a formula
with three software metrics and set thresholds for each to
identify large classes. Such a metric-based approach could
be useful for many refactoring situations. However, metric-
based approaches rely heavily on metrics and thresholds de-
fined by developers. It is also challenging to find the most
appropriate metrics because different metrics can yield dif-
ferent detection results.

To avoid the manual design by researchers, the approach
based on machine learning techniques has also received
much attention. Fontana et al. [7] applied 16 machine learn-
ing algorithms to large class detection and horizontally com-
pared the results. The approach performed a large experi-
ment by applying machine learning algorithms to each code
smell and proved the effectiveness of machine learning in
large class detection.

Another machine learning-based approach uses clustering
algorithms to identify extracted class opportunities from the
target class. For example, Akash [12], used the hierarchical
agglomerative clustering (HAC) algorithm to identify ex-
tracted class opportunities. Classes identified as having ex-
traction opportunities were marked as large classes.

Previous studies demonstrated the feasibility of machine
learning techniques for large class detection. However, ex-
isting machine-learning-based approaches still have some
limitations, such as feature selection and threshold design.
In recent studies, deep learning methodologies have also
been applied to large class detection.

Compared with the above two types of machine learning-
based approaches, the deep learning approach achieved bet-
ter performance without feature engineering. However, this
always requires a substantial number of training data sam-
ples, and the design of the neural network is also a critical
consideration. Liu et al. [8] first introduced an automatic da-
taset-generation approach called smell introduction refactor-
ing. This approach involves performing unwanted refactor-
ing, which reduces the software quality, to generate a train-
ing dataset with a large number of data samples. Using the
automatically generated dataset, they constructed a compo-
site network by combining LSTM with dense layers. Subse-
quently, a classifier is trained to detect large classes using
metrics and textual information as input data. Although this
approach effectively harnessed deep learning techniques for
large class detection, it had limitations, primarily because of
the simplicity of the network design and the quality of the

 † The author is with Inner Mongolia University of Science &

Technology, Inner Mongolia, Baotou, 014010 China.
 †† The author is with Waseda University, Shinjuku, Tokyo,

169-8555 Japan.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
2

dataset. Further research is needed to improve detection per-
formance.

In this study, we applied an important division of deep
learning: GNNs, to large class detection. We used GNNs be-
cause of two primary factors. First, as also mentioned in the
existing deep learning approach [8], compared with tradi-
tional statistical machine learning techniques, deep learning
techniques could help us select the most useful features and
establish complex correspondences from input to output.
Second, in the existing studies on code smell detection, rep-
resenting the input data as a graph has also been a commonly
used technique [4]. We assume that integrating graph repre-
sentation techniques with deep learning in large class detec-
tion may yield even more favorable outcomes.

To obtain sufficient high-quality data samples for the deep
learning task, we applied a semiautomatic approach to gen-
erate a dataset with a large number of data samples. Next,
we created a new type of DHG as the input graph, based on
the method similarity matrix and 22 types of software met-
rics as the node features. Then, we constructed an input
graph for each data sample and considered the detection pro-
cess as a graph classification task. Finally, we performed
evaluation experiments using a dataset that was manually re-
viewed and compared the results with those of existing stud-
ies. The results show that the proposed approach achieves
more accurate and stable detection performance.

This paper is a further extension of our previous study
[29]. Compared with the previous study, which utilized
GCN for long method detection, we encountered distinct
challenges in the realm of large class detection. Firstly, the
dataset generation approaches used in the previous study
[29] must be reconsidered and redesigned, as the basic con-
cepts (such as: metrics, rules) are no longer suitable for large
class detection. Secondly, it is necessary to design a new
type of class-level input graph for GNN applications. Thus,
in this study, we made the following expansions.
• First, we redesigned the semiautomatic dataset generation

approach from our previous study [29] for large class de-
tection. To achieve this, we first define two types of class
merging opportunities that can be automatically detected
to generate positive class samples. Next, we use three
types of class-level metrics as the basis for categorizing
the class samples and define the corresponding grouping
rules for semiautomatic dataset generation. Furthermore,
to reduce manual labeling costs, we developed a new as-
sistive labeling tool to help developers quickly label large
numbers of sample classes. This tool can be found at
https://github.com/Bankzhy/lclb.

• Second, to apply GNNs to the task of large class detection,
we first built a similarity matrix based on the structural
and conceptual similarities of all methods. Based on the
similarity matrix, a new type of DHG was designed as the
input graph. Furthermore, we reselected 11 metrics as
node features at each level of the method and class.

• Finally, in addition to the basic modeling architecture

GCN, we further applied two other modeling architec-
tures: GraphSage and GAT, to large class detection and
made a horizontal comparison of their detection perfor-
mance with existing approaches [8][12].
The remainder of this paper is organized as follows. In

Section 2, several studies on large class detection are intro-
duced. In Section 3, we elaborate on the proposed approach
including: dataset generation, metric calculations, graph
construction, and the GNN for large class detection. In Sec-
tion 4, we evaluate the performance of the proposed ap-
proach and compare the results with those of existing large
class detection approaches. Finally, the conclusions of our
approach are presented in Section 5.

2. Related Work

Several large class detection approaches have been proposed
over the past few decades. In terms of the techniques used
by developers, metric-based and machine learning-based ap-
proaches are the two main approaches.

The metric-based approach begins by calculating a series
of metrics to capture the software characteristics. Using such
metrics, developers can identify a large class by using pre-
defined calculation formulas and thresholds. In the study
proposed by Lanza [6], they used three metrics: access to
foreign data (ATFD), weighted method count (WMC) and
tight class cohesion (TCC) to identify the large class follow-
ing Eq.1, in which ATFD is a software metric that represents
the number of external classes from which a given class ac-
cesses attributes directly or via accessory methods. The
WMC is the sum of the statistical complexities of all the
methods in a class, and TCC is the relative number of meth-
ods that are directly connected via attribute access.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 > 𝐹𝐹𝐹𝐹𝐹𝐹 ∧𝑊𝑊𝑊𝑊𝑊𝑊 > 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∧
𝑇𝑇𝑇𝑇𝑇𝑇 < 𝑂𝑂𝑂𝑂𝑂𝑂 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (1)

DÉCOR, proposed by Moha [9] gives the following
briefer formula: 𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁 > 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 , in which
the number of methods (NOM) and number of attributes
(NOA) represent the number of methods and fields in the
target class, respectively.

In metric-based detection approaches, metrics and prede-
fined thresholds are the key points in determining whether a
class can be identified as a large class. However, these met-
rics reflect only specific software features. It is also difficult
to determine optimal features or thresholds. In recent years,
machine learning-based approaches have received increas-
ing attention in code smell detection. In 2016, Fontana [7]
provided a statistical machine learning-based approach to
detect large classes. They first created a dataset of 74 open-
source projects and then used an existing code smell detec-
tion tool as an advisor to obtain a candidate list of data sam-
ples. Then, they manually validated 1,986 of these candi-
dates as the training dataset. Based on this dataset, they em-
ployed 16 different machine learning algorithms to detect 4
types of code smells, and they horizontally compared the re-
sults with different algorithms. For large classes, the naïve
Bayes algorithm exhibited the best performance.

IEICE TRANS. ELETRON., VOL.XX-X, NO.X XXXX XXXX
3

Another machine-learning-based approach uses a cluster-
ing algorithm to identify extracted class opportunities. Clas-
ses with extracted class opportunities are identified as large
class. JDeodorant [10][11] is a well-known code smell re-
factoring tool that applies the HAC algorithm to identify ex-
tracted class opportunities. This tool computes the entity sets
for each class entity and compares the similarities between
them using the Jaccard distance. Akash [12] also provided a
HAC-based approach by computing the similarity matrix of
the methods. The similarity matrix exploits both structural
and semantic similarities between the methods using three
cohesion metrics: structural similarity between methods
(SSM), call-based dependence between methods (CDM),
and conceptual similarity between methods (CSM).

Although the above studies proved that machine learning
algorithms could be a valuable approach by which to iden-
tify large classes, achieving the best feature selection and
threshold design remains a challenge. Furthermore, although
the advisor-based dataset generation approach used by Fon-
tana [7] reduces the workload of the human labeling task,
finding smelly classes from a large-scale code corpus re-
mains a labor-intensive task.

Deep learning, an important subfield of machine learning,
has recently received extensive attention from researchers.
A paper presented by Liu [8] described the construction of a
neural network that consists of long short-term memory
(LSTM) and dense layers to identify large classes. To obtain
substantial data samples for deep learning tasks, they intro-
duced an automatic dataset generation approach called
smell-introducing refactoring, which involves unwanted re-
factoring that reduces the software quality. For positive data
samples, they selected several high-quality open-source pro-
jects as the data sources and iterated all classes to find the
class pairs that could be merged. The merged class was used
directly as a positive sample. In contrast, the original classes
in data source were assumed to be negative samples. Based
on an automatically generated dataset, they used 12 types of
software metrics and semantic information (methods and
fields) as input data to train the classifier for large class de-
tection.

To the best of our knowledge, this is the first use of soft-
ware metrics with deep learning, and it opens a new perspec-
tive for code smell detection. However, this approach has
certain limitations. First, as discussed in the paper, the qual-
ity of the automatically generated dataset cannot be guaran-
teed because it is difficult to ensure that all classes in open-
source projects are well-designed, and they cannot guarantee
that all merged class has the characteristics of a large class.
Second, the network used in their approach was simple, and
the input data relied heavily on software metrics.

According to the results of the aforementioned studies, in
this study, we further extend our prior research [29], in
which a GCN was utilized for long method detection, by ap-
plying it to the task of large class detection to address new
challenges in the area of large class detection. First, we re-
design the automatic generation techniques and grouping
rules of the semiautomatic approach from our previous study

[29] to generate sufficient class samples. Next, we define a
new type of DHG as an input graph based on the methods
similarity matrix and software metrics. Then, we approach
the large class detection task as a graph classification prob-
lem to obtain a classifier for identifying large classes. We
experiment with three GNN models and horizontally com-
pare their results.

3. Methodology

3.1 Overview

Figure 1 illustrates the proposed approach. In Step.1, we re-
designed the semiautomatic approach from our previous
study [29] to generate a large number of data samples. In
Step.2, we create a new type of DHG as the input graph for
each class sample based on the methods similarity matrix.
We calculate 22 types of software metrics (11 class-level and
11 method-level metrics) as graph node features. In Step.3,
we take the large class detection task as the graph classifica-
tion task. All graphs were input into the GNN model to train
the classifier for large class detection.

Fig 1 Overview of proposed approach

3.2 Dataset Generation

In the first step, we redesigned the semiautomatic dataset
generation approach based on the basic ideas of our previous
study [29]. Specifically, we first defined two types of class-
merging opportunities that could be automatically identified
to generate a positive sample. Second, we utilized three
class-level metrics to create the possibility range and defined
the corresponding rules for grouping the data samples.
Moreover, we developed a new assistive labeling tool to fur-
ther accelerate the manual checking phase. The details of
this approach are as follows.

To efficiently obtain sufficient high-quality data samples,
it is necessary to reduce the workload of human labeling as
much as possible. Thus, we must determine which classes
have a higher possibility (or lower possibility) of being large
class, so that we can focus human effort on the ambiguous
data samples. To achieve this, we used three software met-
rics: lines of code (LOC), NOM, and NOA, to create three

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
4

possibility ranges (PRs), as shown in Table 1.

Table 1 The possibility-range description.
 Metrics Description

PR1
 LOC > MaxTvLOC

 && NOM > MaxTvNOM
&& NOA > MaxTvNOA

The class has great possi-
bility to be a large class.

PR2
 LOC < MinTvLOC

 && NOM < MinTvNOM
&& NOA < MinTvNOA

The class has less possibil-
ity to be a large class.

PR3 other The class has possibility to
be a large class.

In Table 1, we set two tolerance values for each metric:

the maximum tolerable value (MaxTv) and the minimum
tolerable value (MinTv). When all metrics exceed their
MaxTv, we consider that the class has a high possibility of
being large (PR1). However, if all the metrics are below
MinTv, we consider the class to have a lower possibility of
being a large class (PR2). If a class fails to satisfy any of
these conditions, it is considered to have the general possi-
bility of being a large class (PR3). The MaxTv and MinTv
values depend on the target program language and the pro-
jects used in the code corpus. We need to investigate the
specifications of the target program language or obtain sta-
tistics on the above metrics in the code corpus before setting
the value. In this study, we performed experiments using the
Java language, and the setting of its value is explained in
Section 4.1-B.

The main purpose of the above PRs is to assist in identi-
fying data samples that require human verification, but not
to directly make the identification of large class. In the fol-
lowing steps, we will divide the data samples into two
groups (A_Group and M_Group) by following the rules
listed in Table 2. The data samples in the A_Group will be
directly applied to the final dataset, whereas the data sam-
ples in the M_Group are included after manual confirmation.
With used this technique, we can focus more on those am-
biguous data samples, thus reducing the workload of dataset
production. After the PRs were established, the dataset was
generated following the process illustrated in Fig 2.

Fig 2 Overview of dataset generation

Step.1 Merged Class Generation. In the first step of da-
taset generation, we focused on generating positive data
samples (smelly classes) and categorizing them based on
open-source projects in the code corpus. To achieve this, we
first design two patterns of merging opportunities that can

be automatically identified based on the three refactoring
strategies for large class that were introduced by Fowler [2]:
extract class, extract superclass, and replace type code with
subclasses. These two types of merging opportunities are ex-
plained as follows.

The first pattern involves classes with an inheritance rela-
tionship, in which the parent class can be merged with the
child class. For example, in pattern 1 of Fig 3, the parent
class “Product” can be merged into the child class “Book”
by copying the methods and fields to the child class. On the
other hand, the second pattern encompasses a pair of classes
with a usage relationship that can be combined. As illus-
trated in pattern 2 of Fig 3, the class “Cart” is used as a field
in the “User” class. Thus, we can merge two classes by cop-
ying all fields and methods from the “Cart” class to the
“User” class.

Fig 3 Two types of merge opportunities

Once the merge opportunities were identified, we merged

the classes by copying methods and fields from the source
class to the target class. Different merging opportunity pat-
terns require different merging operations. For example, in
the first pattern, only fields and methods that do not exist in
the child class need to be copied. However, in the second
pattern, all methods and fields must be copied to the target
class. In addition, we must delete the target fields in the orig-
inal class and change all the references. Note that not all
merge opportunities could be successfully executed owing
to potential merge failures, such as method name conflicts
and multiple inheritances. Any merge opportunity that fails
to be executed is removed from consideration. The number
of failed merge opportunity may vary depending on the tar-
get project. In our experiments, we used a total of eight pro-
jects as shown in Section 4.1-B, and the average percentage
of failed merge opportunity was about 40%.

After the merged classes were generated, we divided them
into two groups (A_Group and M_Group) by following the
rules listed in Table 2. The merged class with a possibility
range in PR1 is placed in A_Group. The merged class with
a possibility range in PR3 is placed into the M_Group.

IEICE TRANS. ELETRON., VOL.XX-X, NO.X XXXX XXXX
5

Table 2 The data samples grouping rules.
Group Rules

M_group
1.The merged class in PR3
2.The original class in PR3
3.The original class in PR1

A_Group 1.The merged class in PR1
2.The original class in PR2

Step.2 Original Class Categorization. The second step in
the dataset generation is to iterate all classes in the code cor-
pus and categorize them into the above two groups by fol-
lowing the rules in Table 2. If the original class is classified
as PR2, we assume that the class is smell-free and put it into
the A_Group as a negative data sample. However, if the orig-
inal class is in PR1 or PR3, it is placed into the M_Group to
wait for a human check.
 Using this grouping technique, we did not need to check
for classes that were less likely to be large. This reduces the
human labeling cost of dataset generation. However, we
could not guarantee extremely high quality of the negative
samples because a large class may also exist in PR2. Never-
theless, considering both the cost and quality of the dataset,
we still think this is an efficient approach. Furthermore, be-
cause we used the PRs to categorize the classes, only those
classes that have a small chance of being large are automat-
ically placed into the final dataset. Hence, the quality of our
dataset can be greatly improved compared with the existing
automatic dataset generation approach [8].
Step.3 Manually Checking. The last step in the dataset gen-
eration is labeling the code sample in the M_Group. A com-
mon problem in the manual checking phase is that different
labeling results might be given for some ambiguous data
samples owing to the different cognition of large class or the
experience of the reviewers regarding the target project. To
alleviate this issue, we set up a list of guideline questions
based on the relevant prior studies [2][5] et al. The specific
guidelines are as follows:
1. Does the class have too many lines of code?
2. Does the class have too many fields?
3. Does the class have too many complex methods?
4. Does the class have class extraction opportunities that

may reduce the reusability of the target class?
5. Does the class have too many responsibilities, which
may reduce the maintainability of the target class?

In this study, to further accelerate the manual checking
phase, we developed a new assist tool to help developers
quickly grasp the basic characteristics of the target class and
make precise judgments. The tool is available at
https://github.com/Bankzhy/lclb.

After manual confirmation, we need to merge the data
samples from A_Group and M_Group. It's essential to con-
sider the balance of data samples. In the experiments of this
study, we will try to keep the ratio of positive to negative
samples as 1:1. Additionally, to ensure the quality of the da-
taset, we set the proportion of automatically generated data
samples in the final dataset should not exceed sixty percent.

3.3 Metrics Calculation

Software metrics are some of the most commonly used tech-
niques in software quality assessment. In this study, we also
calculated 22 types of software metrics from the method and
class levels as node features of the input graph. At the
method level, we primarily followed metrics from previous
studies [29][13] that are appropriate for measuring methods,
and at the class level, we referred to metrics from existing
studies [6][14] that are often used to capture class character-
istics. The details of the metrics used are as follows.

At the method level, we calculated the following 11 met-
rics. LOC, McCabe’s cyclomatic complexity (CC), parame-
ter count (PC), and nest block depth (NBD) are the four most
commonly used metrics. The lack of cohesion method
(LCOM1 to LCOM3) are three metrics introduced by Char-
alampidou [13], and the number of accessed variables
(NOAV) is a metric introduced by Lanza [6].

The field-used count (FUC), local method using count
(LMUC), and text similarity method class (TSMC) are three
custom metrics. The FUC and LMUC represent the total

Fig 4 Example of graph construction - example class

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
6

numbers of fields and methods in the target class, respec-
tively. Furthermore, we used Word2Vec [21][22] to calculate
the text similarity between the method name and class name
for the TSMC.

At the class level, the following 11 metrics were calcu-
lated. The NOM, NOA, number of public attributes (NOPA),
ATFD, WMC, and TCC are the metrics from Lanza [6]. The
class interface size (CIS), direct class coupling (DCC), and
cohesion among methods of class (CAM) are the metrics
from Bansiya [14]. The depth of inheritance tree (DIT) and
lack of cohesion in methods (LCOM) are the metrics from
Chidamber [15].

3.4 Graph Construction

For the task with used GNNs, it is crucial to construct the
input graph. In contrast to the method-level input graph
based on the program dependency graph (PDG) proposed in
our previous study [29], we define a new type of class-level
DHG as an input graph based on previous studies [12][16].

To simplify the input graph construction process, we first
introduce an example class, as shown in Fig 4. In this exam-
ple, the “User” class comprises 5 fields and 12 methods,
clearly demonstrating the presence of three distinct types of
functions that are aggregated. The first type of function per-
tains to the operations performed by the “User” class, with
the relevant methods (1) to (6). The second type of function

involves the operations related to the “User” database, cor-
responding to methods (7) to (9). Finally, the third type of
function pertains to the operations performed on the user
shopping cart using the relevant methods (10) to (12).

Fig 5 Example of graph construction - similarity matrix

To construct the input graph for the example class above,

we first need to calculate the methods similarity matrix pro-
posed by Akash [12], as shown in Fig 5. In this figure, we
compute three metrics, SSM, CDM, and CSM, for each
method to construct its corresponding similarity matrix. The
details of the calculation are explained in the following par-
agraphs. Next, we built an input graph, as shown in Fig 6.
To maintain the readability of the input graph, we split it into
different edge types. The input graph comprises two types of
nodes and four types of edges. The two types of nodes in-
clude the class node and method node, which represent the
target class and all methods within it, respectively. For the
edges of the input graph, we first created three types of edges
between the methods: SSM, CDM, and CSM edges based
on the above similarity matrix. Moreover, we created the in-
clude edge from the class node to all method nodes within

Fig 6 Example of graph construction - input graph

IEICE TRANS. ELETRON., VOL.XX-X, NO.X XXXX XXXX
7

the target class. The details of the input graph are as follows.
Class Node: The class node represents the target class. Only
one class node exists in the input graph. For example, in Fig
6, the class node “C” is the unique class node representing
the target class “User” from Fig 4. In addition, the class-level
metrics calculated in Section 3.3 are used as class node fea-
tures.
Method Node: The method nodes represent methods within
the target class. In the example shown in Fig 4, methods (1)
–(12) are represented as nodes (1)–(12) in Fig 6. In addition,
the method level metrics calculated in Section 3.3 are used
as the method node features.
Include Edge: The edges from class node to method nodes.
For example, in Fig 6, the class node “C” and all method
nodes are connected by include edges.
SSM Edge: The SSM metric is the structural similarity pro-
posed by Gui [17]. This metric is calculated based on the
cohesion and transitivity between the methods. The SSM
calculation is shown in Eq.2.

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 = �
�𝑉𝑉𝑖𝑖 ∩ 𝑉𝑉𝑗𝑗�
�𝑉𝑉𝑖𝑖 ∪ 𝑉𝑉𝑗𝑗�

 𝑖𝑖𝑖𝑖�𝑉𝑉𝑖𝑖 ∪ 𝑉𝑉𝑗𝑗� ≠ 0

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
(2)

In this formula, suppose that we have two methods: mi
and mj. Then, Vi and Vj are the instance variables accessed
by mi and mj. A higher SSM value suggests that mi and mj
belongs to the same class.

In our approach, we calculated the SSM for each pair of
methods. If the SSM value was greater than zero, we con-
nected the two methods with a bi-directional SSM edge. For
the example in Fig 4, we calculated the similarity matrix for
all methods, as shown in Fig 5. Focusing on methods (1) and
(5), we observed that SSM1-5 exceeded the predefined
threshold of 0 by 0.5. Consequently, we connected the two
method nodes using an SSM edge, as shown in Fig 6.
CDM Edge: In contrast to SSM, CDM is another structural
similarity metric calculated by method calls between meth-
ods. It was proposed by Bavota in 2011 [16], and its calcu-
lation is shown in Eq.3. In this formula, calls(mi , mj) denotes
the number of times mj is called from mi, and callsin(mj) is
the total number of incoming calls for mj.

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖→𝑗𝑗 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝑖𝑖 ,𝑚𝑚𝑗𝑗)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑚𝑚𝑗𝑗)

 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑚𝑚𝑗𝑗) ≠ 0

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
(3)

In our approach, we calculate the CDM for each pair of
methods. If the CDM value is greater than zero, we connect
the two methods with a directional CDM edge from the
caller method to the callee method. In the example class
shown in Fig 4, the CDM between methods (6) and (9) ex-
ceeds the threshold of 0 by 0.5, as shown in Fig 5. In this
case, the two method nodes are connected using a CDM
edge, as shown in Fig 6.
CSM Edge: CSM represents the conceptual cohesion meas-
ure between each pair of methods within a class, as proposed
by Poshyvanyk [18]. This measures how semantically the

two methods are related. The calculation of this formula is
shown in Eq.4. In this formula, the vector 𝑣𝑣 is calculated
via latent semantic indexing (LSI) [19]. However, the ap-
proach proposed by Akash [12] used the latent Dirichlet al-
location [20] algorithm. In our approach, we use Word2Vec
[21][22] to represent semantic information as a vector.

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 =
𝑣𝑣𝑖𝑖𝑇𝑇 ∙ 𝑣𝑣𝑗𝑗

||𝑣𝑣𝑖𝑖|| ∙ ||𝑣𝑣𝑗𝑗||
(4)

We calculated the CSM for each pair of methods. If the
CSM value is greater than 0.5, the two method nodes are
connected by a CSM edge. For example, the CSM between
methods (1) and (2) was 0.97, exceeding the threshold of 0.5,
as shown in Fig 5. In this case, we can connect the two
method nodes using a CSM edge, as shown in Fig 6.

Note that in the above construction process, we set the
connection thresholds for the SSM, CDM, and CSM edges,
which are designed with the basic principle of making the
input graph more informative. For SSM and CDM edge,
they represent the structural information (common in-
stance variables or calling relationships) among meth-
ods within the target class. Since the structural relation-
ships are not commonly exist between methods, we set
the thresholds for these two edges to zero. For instance,
our experiments revealed that over 80% of inter-meth-
ods lacked these structural relationships in the code
corpus of Section 4.1-B. However, for CSM edge, be-
cause some of the same common token often appears
between methods (such as: “create”, “get”, etc.), set-
ting the threshold to zero may not appropriate. Our in-
vestigation into the code corpus indicated that the av-
erage CSM value across different projects ranged from
0.5 to 0.7. Thus, based on the above design principle,
we set the threshold value to 0.5 for the CSM edge.

3.5 GNNs for Large Class Detection

Graph neural networks (GNNs) are neural models that can
be directly applied to graphs to capture interdependencies
between nodes through message passing [23]. This was first
mentioned by Gori [24] in 2005 and further elaborated by
Scarselli [25] in 2009. GNNs have made significant progress
and are used in various areas, including social network anal-
ysis, protein interface prediction, and recommendation sys-
tems. To date, various model architectures of GNNs have
been proposed, and we applied three widely used GNN
model architectures: GCN [27], GraphSage [26], and GAT
[28], to the large class detection task. Each of these three
model architectures has unique characteristics. In brief,
GCN is a basic GNN model that obtains node feature infor-
mation from itself and all neighboring nodes. GraphSage ac-
quires node representation by aggregating information from
neighbor sampling. GAT uses an attention mechanism to
learn the weights from different nodes. A detailed descrip-

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
8

tion and comparison of the three model architectures are pro-
vided in [30].

First, we constructed an input graph for each data sample
according to the graph construction approach described in
Section 3.4. Next, we considered the identification of a large
class as a graph classification task. Then, we applied the
above three GNN models to construct the network and fed
all the input graphs to train the classifier for large class de-
tection. A detailed experiment and performance evaluation
are described in Section 4.

4. Evaluation Experiment

4.1 Experiment Design

A. Research Questions
In the evaluation experiments, we aim to verify the effec-

tiveness of the proposed approach and determine whether its
performance is superior to that of existing approaches.
Moreover, because there are different ratios of large classes
in real projects, we further validate the effectiveness of the
proposal approach under different ratios of large classes. We
mainly focus on the following research questions.
Q1. Does the proposed large class detection approach yield
satisfactory training results when using the training dataset,
and can the resulting classifier be used to detect large classes?
Q2. How does the performance of the proposed approach
compare with those of existing large class detection ap-
proaches?
Q3. How does the proposed approach perform for different
ratios of positive data samples?
B. Training Dataset

In our experiment, we first collected the training dataset
using the process described in Section 3.2.

First, we collected code corpus from eight popular open-
source projects: Junit4 [33], Mybatis3 [34], RxJava [40],
JEdit [35], Netty [36], PMD [37], Gephi [38], and Libgdx
[39]. These projects are well-known and come from a vari-
ety of usage areas. Next, we set up the possibility ranges as
described in Section 3.2. The values of MaxTv and MinTv
for each metric were determined based on the recommenda-
tions proposed by Lanza [6], who suggested that the average
LOC was 70 in Java programming and that when the LOC
exceeded 130, it appeared to be high. In terms of NOM, the
average value could be 7, and the highest value could be 10
in Java programming. However, we could not find an ex-
plicit standard for the value of NOA. Thus, we examined the
aforementioned eight projects and observed that the average
NOA ranged from 0 to 5, whereas for classes with LOC val-
ues exceeding 130, the average of NOA fell within the range
of 5–10. For this reason, the MinTv and MaxTv of each met-
ric were set as shown in Table 3.

Table 3 The value of MaxTV and MinTv.
Group NOA NOM LOC
MaxTv 10 10 130
MinTv 5 7 70

After preparation, we implemented the assistance pro-

gram to process the dataset generation. The program first
transforms all target projects to the abstract syntax tree (AST)
using the “tree-sitter” [41]. The program then generates the
merged class and divides it into two groups, following the
rules in Section 3.2-Step.1. Next, the program iterates all the
original classes and categorizes them according to the rules
in Section 3.2-Step.2. Finally, with the help of three Java de-
velopers, we performed manual checking in the M_Group
based on the guidelines and assistance program introduced
in Section 3.2-Step.3. Of the three Java developers, two were
master students, and one was an assistant teacher. All three
developers came from the Department of Computer Science
and have extensive learning experience in both software de-
sign and the Java language. Moreover, two of them had more
than one year of work experience. Furthermore, we con-
ducted tutorials in large class for all developers and distrib-
uted guidebooks before the experiment. With the help of the
assistance program developed in Section 3.2-Step.3, all
three developers collaborated remotely to perform the label-
ing process, and the results were stored directly in a central-
ized database. Although we were unable to accurately meas-
ure the overall time cost, it took approximately 1–5 minutes
for each class sample.

Using this process, in total, we obtained 4,510 merged
class samples and approximately 10,000 original class sam-
ples. After grouping and manual checking, we constructed a
dataset of 3,102 positive data samples and 3,495 negative
data samples. Approximately 30% of the positive and 50%
of the negative samples were manually checked.
C. Evaluation Dataset

To prove the validity of the proposed approach, an inde-
pendent evaluation dataset was created. In contrast to the
training dataset, the evaluation dataset was created based on
five open-source projects: OpenRefine [42], Jgrapht [43],
Freeplane [44], Open Hospital [45], and Jsprit [46], and it
was completely reviewed by above three Java developers.

We assigned three Java developers to manually validate
the classes in the source projects by following the guidelines
in Section 3.2-Step.3. Once the number of reviewed positive
sample classes reached approximately 200, manual confir-
mation ceased, and an equal number of corresponding neg-
ative samples were selected to construct the dataset.
D. GNN Model Architectures and Configurations

In our experiment, the training networks of all three GNN
models were constructed according to the architecture in Fig
7. The network consists of two GNN layers and one linear
layer. In addition, Adam was used as the optimizer, and
cross-entropy was used as the loss function. The experi-
ments relied primarily on the PyTorch [47], whereas the im-
plementation of the GNN predominantly utilized DGL [48].

IEICE TRANS. ELETRON., VOL.XX-X, NO.X XXXX XXXX
9

Fig 5 The model architecture of GNN models

E. Evaluation Criteria

In this study, we employed three commonly used metrics
to evaluate the detection performance of the proposed ap-
proach: precision, recall, and F1. Precision is the ratio of
positive samples marked by developers to detected positive
samples. Recall is the probability of being predicted as a
positive sample for all classes labeled as positive by devel-
opers. F1 is the harmonized average of the above two met-
rics, and it is calculated using Eq.5.

𝐹𝐹1 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(5)

4.2 Experiment Results

Q1. Does the proposed large class detection approach
yield satisfactory training results with used the training
dataset, and if the result classifier could be used to detect
large classes?

For the first research question, we applied the training da-
taset to the above GNN. We randomly selected 80% of the
training dataset to train the network and the other 20% as the
test dataset to observe the training results. To make the re-
sults more plausible, we repeated the process five times and
performed 5-fold cross-validation. Table 4 presents the av-
erages of the results.

Table 4 The training results of large class detection.

Metrics GCN GraphSage GAT
POS NEG POS NEG POS NEG

Precision 0.89 0.88 0.98 0.98 0.97 0.97
Recall 0.86 0.91 0.97 0.98 0.97 0.98

F1 0.88 0.90 0.98 0.98 0.97 0.98

The results in Table 4 show that from an overall perspec-

tive, although all three GNN models achieved good training
results, the results of the GCN (0.88) were lower than those
of the other models. In positive sample detection,
GraphSage and GAT did not show a significant performance
gap, with GraphSage having a slightly higher F1 score than
GAT (0.98 and 0.97).

Because the differences in Table 4 were small, we further
tested the differences for each GNN model using
McNemar’s test [31], which is a statistical test that can be
used to compare two classifiers in machine learning [32]. We
employed all five classifiers from each GNN model to make

predictions and determined a positive classification result
only when over 80% of the classifiers predicted a positive
result. The results show that GAT and GraphSage do not
show significant differences when the significance level is
0.05; however, GCN shows significant differences from
both GAT and GraphSage.

From the above results, we can make the following obser-
vations. First, all three GNN models achieved good training
results, and the classifiers can be applied to large class de-
tection. Second, the training results of the GAT and
GraphSage were significantly higher than those of the GCN.
However, GraphSage and GAT did not exhibit a significant
performance gap, with the mean of GraphSage being
slightly higher than that of GAT.
Q2. How does the performance of proposed approach
compare to the existing large class detection approach?

To answer this question, we compared the detection perfor-
mance of our approach with those of the existing clustering-
based approach proposed by Akash [12] and the deep learn-
ing approach proposed by Liu [8]. We used the dataset from
Section 4.1-B as the training dataset, and the dataset in Sec-
tion 4.1-C as the evaluation dataset. The evaluation results
are shown in Fig 8.

Fig 6 The detection results compared with those of existing ap-

proaches

From the results in Fig 8, we could make following obser-
vations.
• The F1-score of each GNN model exceeded 0.80, which

is higher than those achieved by the existing approaches
proposed by Akash [12] (0.68) and Liu [8] (0.64). Overall,
GraphSage achieved the best detection performance
(0.86).

• The recall of the existing approaches [8][12] have both
reached above 0.90 higher than all GNN-based ap-
proaches proposed by us. This means that the existing
deep learning approach [8] and clustering-based approach
[12] have greater abilities to capture large classes from
code samples.

• However, the precision of all GNN models in our ap-
proach exceeded 0.90, which is significantly higher than
those of the existing approaches [8][12] (0.47 and 0.54),
indicating that the existing approaches [8][12] may detect
many erroneous samples. Conversely, our approach could
identify the large class more accurate.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
10

Q3. How does the proposed approach perform under dif-
ferent ratios of positive data samples?
For the assessment of Q2, we used an evaluation dataset with
positive samples accounting for 50%. However, in practical
software projects, the proportion of large classes may differ
according to the project quality. Thus, we adjusted the pro-
portion of positive samples in the dataset by increasing the
number of negative samples in the evaluation dataset to test
the detection performance under different values (10–60%).
The results of F1-score are shown in Fig 9. From the results,
we could make following observations:
• Although the GCN had a slightly lower F1-score than the

other models, GraphSage and GAT achieved nearly the
same value. The results of GraphSage were slightly better
than those of the other models.

• From the comparison results of our approach with the ex-
isting clustering-based approach proposed by Akash [12],
we observed that the F1 of the existing clustering-based
approach [12] increases significantly as the proportion of
positive samples increases. When the proportion of posi-
tive samples is less than 30%, the existing clustering-
based approach [12] does not perform well. The main rea-
son for this result is that the clustering-based approach
aims to find the extract class opportunities from the target
class. However, despite being identified as having extrac-
tion opportunities, some classes still do not meet the cri-
teria for being marked as large by reviewers in terms of
the number of methods or complexity of the class. There-
fore, when the proportion of positive samples is small, the
precision of this approach is significantly reduced. How-
ever, compared with the significant shifts in the existing
study [12], our approach has showed more stability and
better detection performance for any positive sample ratio.

• Compared with the existing deep learning approach [8],
our approach exhibited a more stable detection perfor-
mance. The proposed approach outperforms the existing
deep learning approach [8] when the proportion of posi-
tive samples ranges from 10% to 50%. However, when
the proportion of positive samples reaches 60%, the nu-
merical growth of the existing deep learning approach [8]
quickly surpasses that of the proposed approach.

Fig 7 The F1-score under different ratios of positive data samples

We can summarize the results as follows. First, among all
experimental GNN models, GraphSage performed slightly
better. Second, our approach shows better accuracy than do
those from prior studies [8][12]. Meanwhile, our approach
showed a more stable detection performance for different ra-
tios of positive data samples.

5. Conclusion

In this study, we applied an important division of deep learn-
ing: GNNs, to large class detection. To obtain sufficient data
samples for the deep learning task, we redesigned the auto-
matic generation techniques and grouping rules of the semi-
automatic approach in our previous study [29], which could
generate a large number of data samples with less human
labeling effort. Using this generation approach, we obtained
a total of 6,597 data samples for large class detection.

After generating the dataset, we designed a new type of
DHG based on the methods similarity matrix and software
metrics. We treated the identification of large classes as a
graph classification task and fed all the input graphs to train
the classifier for large class detection.

In the evaluation experiment, three typical GNNs were
applied for large class detection. By using the trained classi-
fiers, we compared the detection performance of the pro-
posed approach with the existing clustering-based approach
proposed by Akash [12] and the deep learning approach pro-
posed by Liu [8]. The results showed that the proposed ap-
proach achieved better accuracy and more stable detection
performance under different ratios of positive data samples.

In future work, we intend to extend our study in the fol-
lowing aspects. First, we shall extend our approach to mul-
tiple classification tasks in the future, as a large class could
be further classified into several levels, depending on the se-
verity of the situation. Further, we can apply the GNN-based
approach to other code smells, such as feature envy and du-
plicated code.

References

 [1] W.F. Opdyke, "Refactoring Object-Oriented Frameworks," PhD the-
sis, University of Illinois at Urbana, 1992.

 [2] M. Fowler, ed., Refactoring: improving the design of existing code,
Addison-Wesley Signature, 1999 1st ed, 2018 2nd ed.

 [3] T. Sharma, D. Spinellis, "A survey on software smells," Journal of
Systems and Software, vol.138, pp.158-173, 2018.

 [4] A. AbuHassan, M. Alshayeb, L. Ghouti, "Software smell detection
techniques: A systematic literature review," Journal of Software:
Evolution and Process, vol.33, e2320, 2021.

 [5] W.J. Brown, R.C. Malveau, H.W. McCormick, T.J. Mowbray, ed.,
Anti patterns: refactoring software, architectures, and projects in cri-
sis, John Wiley and Sons, 1998.

 [6] M. Lanza, R. Marinescu, ed., Object-Oriented Metrics in Practice,
2006.

 [7] F.A. Fontana, M.V. Mäntylä, M. Zanoni, A. Marino, "Comparing and
experimenting machine learning techniques for code smell detec-
tion," Empirical Software Engineering, vol.21, pp.1143-1191, 2016.

 [8] H. Liu, J. Jin, Z. Xu, Y. Zou, Y. Bu, L. Zhang, "Deep Learning Based
Code Smell Detection," IEEE Transactions on Software Engineering,
vol.47, pp.1811-1837, 2021.

IEICE TRANS. ELETRON., VOL.XX-X, NO.X XXXX XXXX
11

 [9] N. Moha, Y. Gueheneuc, L. Duchien, A.L. Meur, "DECOR: A
Method for the Specification and Detection of Code and Design
Smells," IEEE Transactions on Software Engineering, vol.36, pp.20-
36, 2009.

 [10] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, "JDeodor-
ant: identification and application of extract class refactorings," ICSE
'11: Proceedings of the 33rd International Conference on Software
Engineering, pp.1037-1039, 2011.

 [11] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, " Identifi-
cation and application of Extract Class refactorings in object-oriented
systems," Journal of Systems and Software, vol.85, pp.2241-2260,
2012.

 [12] P.S. Akash, A.Z. Sadiq and A. Kabir, "An Approach of Extracting
God Class Exploiting Both Structural and Semantic Similarity," EN-
ASE 2019, pp.427-433, 2019.

 [13] S. Charalampidou, A. Ampatzoglou, P. Avgeriou, "Size and cohesion
metrics as indicators of the long," PROMISE '15, vol.8, pp.1-10,
2015.

 [14] J. Bansiya, C.G. Davis, A hierarchical model for object-oriented de-
sign quality assessment," IEEE Transactions on Software Engineer-
ing, vol.28, pp.4-17, 2002.

 [15] S.R. Chidamber; C.F. Kemerer, "A metrics suite for object oriented
design," IEEE Transactions on Software Engineering, vol.20,
pp.476-493, 1994.

 [16] G. Bavota, A.D. Lucia, A. Marcus, R. Oliveto, "A two-step technique
for extract class refactoring," ASE '10, vol.20, pp.151-154, 2010.

 [17] G. Gui, P.D. Scott, "Coupling and cohesion measures for evaluation
of component reusability," MSR '06, pp.18-21, 2006.

 [18] D. Poshyvanyk, A. Marcus, R. Ferenc, T. Gyimóthy, "Using infor-
mation retrieval based coupling measures for impact analysis," Em-
pirical Software Engineering, vol.14, pp.5-32, 2009.

 [19] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, Richard
Harshman, "Indexing by latent semantic analysis," Journal of the
American Society for Information, vol.41, pp.391-407, 1990.

 [20] D.M. Blei, A.Y. Ng, M.I. Jordan, " Latent dirichlet allocation," Jour-
nal of Machine Learning Research, vol.3, pp.993-1022, 2003.

 [21] T. Mikolov, K. Chen, G. Corrado, J. Dean, "Efficient Estimation of
Word Representations in Vector Space," Journal of Machine Learn-
ing Research, arXiv:1301.3781 [cs.CL].

 [22] T. Mikolov, K. Chen, G. Corrado, J. Dean, "Distributed representa-
tions of words and phrases and their compositionality," Proceedings
of the 26th International Conference on Neural Information Pro-
cessing Systems, vol.2, pp.3111-3119, 2013.

 [23] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M.
Sun, "Graph neural networks: A review of methods and applications,"
AI Open, vol.1, pp.57-81, 2020.

 [24] M. Gori, G. Monfardini and F. Scarselli, "IEEE International Joint
Conference on Neural Networks," 2005.

 [25] F. Scarselli, M. Gori and A.C. Tsoi, "The graph neural network
model," IEEE Transactions on Neural Networks, vol.20, pp.61-80,
2009.

 [26] W.L. Hamilton, R. Ying, J. Leskovec, "Inductive representation
learning on large graphs," NIPS'17, pp.1024-1034, 2017.

 [27] T.N. Kipf, M. Welling, "Semi-Supervised Classification with Graph
Convolutional Networks," ICLR'2017, 2017.

 [28] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Ben-
gio, "Graph Attention Networks," ICLR 2018, 2018.

 [29] HY Zhang, TJ Kishi, "Long Method Detection using Graph Convo-
lutional Networks," Journal of Information Process, vol.31, pp.469-
477, 2023.

 [30] B. Khemani, S. Patil, K. Kotecha, S. Tanwar, "A review of graph neu-
ral networks: concepts, architectures, techniques, challenges, datasets,
applications, and future directions," Journal of Big Data, 18, 2024.

 [31] Q. McNemar, "Note on the sampling error of the difference between
correlated proportions or percentages," Psychometrika, vol.12,
pp.153-157, 1947.

 [32] S Raschka, "Model Evaluation, Model Selection, and Algorithm Se-
lection in Machine Learning," arXiv:1811.12808 [cs.LG].

 [33] Junit, https://github.com/junit-team/junit4. accessed Nov.29.2022.
 [34] Mybatis, https://github.com/mybatis/mybatis-3. accessed

Nov.29.2022.
 [35] JEdit, http://www.jedit.org/index.php?page=download, accessed

Nov.29.2022.
 [36] Netty, https://netty.io/, accessed Nov.29.2022.
 [37] PMD, https://github.com/pmd/pmd, accessed Nov.29.2022.
 [38] Gephi, https://gephi.org/, accessed Nov.29.2022.
 [39] Libgdx, https://libgdx.com/, accessed Nov.29.2022.
 [40] RxJava. https://github.com/ReactiveX/RxJava, accessed

Nov.29.2022.
 [41] tree-sitter. https://github.com/tree-sitter/, accessed Nov.29.2022
 [42] OpenRefine. https://github.com/OpenRefine/, accessed Nov.29.2022
 [43] Jgrapht. https://jgrapht.org/, accessed Nov.29.2022
 [44] Freeplane. https://github.com/freeplane/, accessed Nov.29.2022
 [45] Open Hospital. https://github.com/informatici, accessed

Nov.29.2022
 [46] Jsprit. https://github.com/graphhopper/jsprit, accessed Nov.29.2022
 [47] PyTorch. https://pytorch.org/, accessed Nov.29.2022
 [48] DGL. https://www.dgl.ai/, accessed Nov.29.2022

 Hanyu Zhang received M.S. in Deparment
of Industrial and Management Systems Engi-
neering, Waseda University. He is currently
working at Inner Mongolia University of Sci-
ence & Technology.

 Tomoji Kishi received M.S. in Infor-
mation Science, Graduate School of Engi-
neering, Kyoto University. Ph.D. from Japan
Advanced Institute of Science and Technol-
ogy (JAIST). After working at NEC and
JAIST, he has been a professor at the Depart-
ment of Industrial and Management Systems
Engineering, Waseda University.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

