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proach utilizing three typical GNN model architectures 

HanYu Zhang †, Nonmember and Tomoji Kishi††, Nonmember 

SUMMARY Software refactoring is an important process in software de-
velopment. During software refactoring, code smell is a popular research 
topic that refers to design or implementation flaws in the software. Large 
class is one of the most concerning code smells in software refactoring. De-
tecting and refactoring such problem has a profound impact on software 
quality. In past years, software metrics and clustering techniques have com-
monly been used for the large class detection. However, deep-learning-
based approaches have also received considerable attention in recent stud-
ies. In this study, we apply graph neural networks (GNNs), an important 
division of deep learning, to address the problem of large class detection. 
First, to support the extensive data requirements of the deep learning task, 
we apply a semiautomatic approach to generate a substantial number of data 
samples. Next, we design a new type of directed heterogeneous graph 
(DHG) as an input graph using the methods similarity matrix and software 
metrics. We construct an input graph for each class sample and make the 
graph classification with GNNs to identify the smelly classes. In our exper-
iments, we apply three typical GNN model architectures for large class de-
tection and compare the results with those of previous studies. The results 
show that the proposed approach can achieve more accurate and stable de-
tection performance. 
key words: Software Refactoring, Code Smell, Large Class, Deep Learning, 
Graph neural networks. 

1. Introduction 

Software Refactoring plays an important role in software de-
velopment and maintenance. It can optimize the internal 
code or structure of software without changing its external 
behavior [1][2]. Code Smell is one of the most important fo-
cuses of software refactoring, and refers to flaws in software 
design or implementation. The term was first mentioned by 
Kent Beck and further elaborated in the publication by 
Fowler [2] in 1992. 

Large Class is one of the most investigated code smells, 
which refers to classes with too many fields or methods [2]. 
The presence of a large class significantly reduces the read-
ability, maintainability, and reusability of the software while 
also violating one of the basic design principles of object-
oriented development (OOD): single responsibility principle 
(SRP). The large class has also received extensive attention 
in the research field, where it is also well-known as the God 
Class or Blob [5]. According to a survey conducted by 
Sharma [3] and AbuHassan [4], the number of studies on 
large classes has always been greater than the number of 
studies on other code smells in the past years.  

From past studies on large class detection, approaches 
based on software metrics have been traditionally and com-
monly used. For instance, Lanza [6] introduced a formula 
with three software metrics and set thresholds for each to 
identify large classes. Such a metric-based approach could 
be useful for many refactoring situations. However, metric-
based approaches rely heavily on metrics and thresholds de-
fined by developers. It is also challenging to find the most 
appropriate metrics because different metrics can yield dif-
ferent detection results.  

To avoid the manual design by researchers, the approach 
based on machine learning techniques has also received 
much attention. Fontana et al. [7] applied 16 machine learn-
ing algorithms to large class detection and horizontally com-
pared the results. The approach performed a large experi-
ment by applying machine learning algorithms to each code 
smell and proved the effectiveness of machine learning in 
large class detection.  

Another machine learning-based approach uses clustering 
algorithms to identify extracted class opportunities from the 
target class. For example, Akash [12], used the hierarchical 
agglomerative clustering (HAC) algorithm to identify ex-
tracted class opportunities. Classes identified as having ex-
traction opportunities were marked as large classes.  

Previous studies demonstrated the feasibility of machine 
learning techniques for large class detection. However, ex-
isting machine-learning-based approaches still have some 
limitations, such as feature selection and threshold design. 
In recent studies, deep learning methodologies have also 
been applied to large class detection.  

Compared with the above two types of machine learning-
based approaches, the deep learning approach achieved bet-
ter performance without feature engineering. However, this 
always requires a substantial number of training data sam-
ples, and the design of the neural network is also a critical 
consideration. Liu et al. [8] first introduced an automatic da-
taset-generation approach called smell introduction refactor-
ing. This approach involves performing unwanted refactor-
ing, which reduces the software quality, to generate a train-
ing dataset with a large number of data samples. Using the 
automatically generated dataset, they constructed a compo-
site network by combining LSTM with dense layers. Subse-
quently, a classifier is trained to detect large classes using 
metrics and textual information as input data. Although this 
approach effectively harnessed deep learning techniques for 
large class detection, it had limitations, primarily because of 
the simplicity of the network design and the quality of the 
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dataset. Further research is needed to improve detection per-
formance.  

In this study, we applied an important division of deep 
learning: GNNs, to large class detection. We used GNNs be-
cause of two primary factors. First, as also mentioned in the 
existing deep learning approach [8], compared with tradi-
tional statistical machine learning techniques, deep learning 
techniques could help us select the most useful features and 
establish complex correspondences from input to output. 
Second, in the existing studies on code smell detection, rep-
resenting the input data as a graph has also been a commonly 
used technique [4]. We assume that integrating graph repre-
sentation techniques with deep learning in large class detec-
tion may yield even more favorable outcomes. 

To obtain sufficient high-quality data samples for the deep 
learning task, we applied a semiautomatic approach to gen-
erate a dataset with a large number of data samples. Next, 
we created a new type of DHG as the input graph, based on 
the method similarity matrix and 22 types of software met-
rics as the node features. Then, we constructed an input 
graph for each data sample and considered the detection pro-
cess as a graph classification task. Finally, we performed 
evaluation experiments using a dataset that was manually re-
viewed and compared the results with those of existing stud-
ies. The results show that the proposed approach achieves 
more accurate and stable detection performance. 

This paper is a further extension of our previous study 
[29]. Compared with the previous study, which utilized 
GCN for long method detection, we encountered distinct 
challenges in the realm of large class detection. Firstly, the 
dataset generation approaches used in the previous study 
[29] must be reconsidered and redesigned, as the basic con-
cepts (such as: metrics, rules) are no longer suitable for large 
class detection. Secondly, it is necessary to design a new 
type of class-level input graph for GNN applications. Thus, 
in this study, we made the following expansions. 
• First, we redesigned the semiautomatic dataset generation 

approach from our previous study [29] for large class de-
tection. To achieve this, we first define two types of class 
merging opportunities that can be automatically detected 
to generate positive class samples. Next, we use three 
types of class-level metrics as the basis for categorizing 
the class samples and define the corresponding grouping 
rules for semiautomatic dataset generation. Furthermore, 
to reduce manual labeling costs, we developed a new as-
sistive labeling tool to help developers quickly label large 
numbers of sample classes. This tool can be found at 
https://github.com/Bankzhy/lclb. 

• Second, to apply GNNs to the task of large class detection, 
we first built a similarity matrix based on the structural 
and conceptual similarities of all methods. Based on the 
similarity matrix, a new type of DHG was designed as the 
input graph. Furthermore, we reselected 11 metrics as 
node features at each level of the method and class. 

• Finally, in addition to the basic modeling architecture 

GCN, we further applied two other modeling architec-
tures: GraphSage and GAT, to large class detection and 
made a horizontal comparison of their detection perfor-
mance with existing approaches [8][12]. 
The remainder of this paper is organized as follows. In 

Section 2, several studies on large class detection are intro-
duced. In Section 3, we elaborate on the proposed approach 
including: dataset generation, metric calculations, graph 
construction, and the GNN for large class detection. In Sec-
tion 4, we evaluate the performance of the proposed ap-
proach and compare the results with those of existing large 
class detection approaches. Finally, the conclusions of our 
approach are presented in Section 5. 

2. Related Work 

Several large class detection approaches have been proposed 
over the past few decades. In terms of the techniques used 
by developers, metric-based and machine learning-based ap-
proaches are the two main approaches.  

The metric-based approach begins by calculating a series 
of metrics to capture the software characteristics. Using such 
metrics, developers can identify a large class by using pre-
defined calculation formulas and thresholds. In the study 
proposed by Lanza [6], they used three metrics: access to 
foreign data (ATFD), weighted method count (WMC) and 
tight class cohesion (TCC) to identify the large class follow-
ing Eq.1, in which ATFD is a software metric that represents 
the number of external classes from which a given class ac-
cesses attributes directly or via accessory methods. The 
WMC is the sum of the statistical complexities of all the 
methods in a class, and TCC is the relative number of meth-
ods that are directly connected via attribute access. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 > 𝐹𝐹𝐹𝐹𝐹𝐹 ∧𝑊𝑊𝑊𝑊𝑊𝑊 > 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∧
𝑇𝑇𝑇𝑇𝑇𝑇 < 𝑂𝑂𝑂𝑂𝑂𝑂 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (1) 

DÉCOR, proposed by Moha [9] gives the following 
briefer formula: 𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁 >  𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 , in which 
the number of methods (NOM) and number of attributes 
(NOA) represent the number of methods and fields in the 
target class, respectively. 

In metric-based detection approaches, metrics and prede-
fined thresholds are the key points in determining whether a 
class can be identified as a large class. However, these met-
rics reflect only specific software features. It is also difficult 
to determine optimal features or thresholds. In recent years, 
machine learning-based approaches have received increas-
ing attention in code smell detection. In 2016, Fontana [7] 
provided a statistical machine learning-based approach to 
detect large classes. They first created a dataset of 74 open-
source projects and then used an existing code smell detec-
tion tool as an advisor to obtain a candidate list of data sam-
ples. Then, they manually validated 1,986 of these candi-
dates as the training dataset. Based on this dataset, they em-
ployed 16 different machine learning algorithms to detect 4 
types of code smells, and they horizontally compared the re-
sults with different algorithms. For large classes, the naïve 
Bayes algorithm exhibited the best performance.  
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Another machine-learning-based approach uses a cluster-
ing algorithm to identify extracted class opportunities. Clas-
ses with extracted class opportunities are identified as large 
class. JDeodorant [10][11] is a well-known code smell re-
factoring tool that applies the HAC algorithm to identify ex-
tracted class opportunities. This tool computes the entity sets 
for each class entity and compares the similarities between 
them using the Jaccard distance. Akash [12] also provided a 
HAC-based approach by computing the similarity matrix of 
the methods. The similarity matrix exploits both structural 
and semantic similarities between the methods using three 
cohesion metrics: structural similarity between methods 
(SSM), call-based dependence between methods (CDM), 
and conceptual similarity between methods (CSM).  

Although the above studies proved that machine learning 
algorithms could be a valuable approach by which to iden-
tify large classes, achieving the best feature selection and 
threshold design remains a challenge. Furthermore, although 
the advisor-based dataset generation approach used by Fon-
tana [7] reduces the workload of the human labeling task, 
finding smelly classes from a large-scale code corpus re-
mains a labor-intensive task. 

Deep learning, an important subfield of machine learning, 
has recently received extensive attention from researchers. 
A paper presented by Liu [8] described the construction of a 
neural network that consists of long short-term memory 
(LSTM) and dense layers to identify large classes. To obtain 
substantial data samples for deep learning tasks, they intro-
duced an automatic dataset generation approach called 
smell-introducing refactoring, which involves unwanted re-
factoring that reduces the software quality. For positive data 
samples, they selected several high-quality open-source pro-
jects as the data sources and iterated all classes to find the 
class pairs that could be merged. The merged class was used 
directly as a positive sample. In contrast, the original classes 
in data source were assumed to be negative samples. Based 
on an automatically generated dataset, they used 12 types of 
software metrics and semantic information (methods and 
fields) as input data to train the classifier for large class de-
tection.  

To the best of our knowledge, this is the first use of soft-
ware metrics with deep learning, and it opens a new perspec-
tive for code smell detection. However, this approach has 
certain limitations. First, as discussed in the paper, the qual-
ity of the automatically generated dataset cannot be guaran-
teed because it is difficult to ensure that all classes in open-
source projects are well-designed, and they cannot guarantee 
that all merged class has the characteristics of a large class. 
Second, the network used in their approach was simple, and 
the input data relied heavily on software metrics. 

According to the results of the aforementioned studies, in 
this study, we further extend our prior research [29], in 
which a GCN was utilized for long method detection, by ap-
plying it to the task of large class detection to address new 
challenges in the area of large class detection. First, we re-
design the automatic generation techniques and grouping 
rules of the semiautomatic approach from our previous study 

[29] to generate sufficient class samples. Next, we define a 
new type of DHG as an input graph based on the methods 
similarity matrix and software metrics. Then, we approach 
the large class detection task as a graph classification prob-
lem to obtain a classifier for identifying large classes. We 
experiment with three GNN models and horizontally com-
pare their results. 

3. Methodology 

3.1 Overview 

Figure 1 illustrates the proposed approach. In Step.1, we re-
designed the semiautomatic approach from our previous 
study [29] to generate a large number of data samples. In 
Step.2, we create a new type of DHG as the input graph for 
each class sample based on the methods similarity matrix. 
We calculate 22 types of software metrics (11 class-level and 
11 method-level metrics) as graph node features. In Step.3, 
we take the large class detection task as the graph classifica-
tion task. All graphs were input into the GNN model to train 
the classifier for large class detection.  

 
Fig 1 Overview of proposed approach 

3.2 Dataset Generation 

In the first step, we redesigned the semiautomatic dataset 
generation approach based on the basic ideas of our previous 
study [29]. Specifically, we first defined two types of class-
merging opportunities that could be automatically identified 
to generate a positive sample. Second, we utilized three 
class-level metrics to create the possibility range and defined 
the corresponding rules for grouping the data samples. 
Moreover, we developed a new assistive labeling tool to fur-
ther accelerate the manual checking phase. The details of 
this approach are as follows. 

To efficiently obtain sufficient high-quality data samples, 
it is necessary to reduce the workload of human labeling as 
much as possible. Thus, we must determine which classes 
have a higher possibility (or lower possibility) of being large 
class, so that we can focus human effort on the ambiguous 
data samples. To achieve this, we used three software met-
rics: lines of code (LOC), NOM, and NOA, to create three 
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possibility ranges (PRs), as shown in Table 1. 

Table 1 The possibility-range description. 
 Metrics Description 

PR1 
   LOC > MaxTvLOC  

 && NOM > MaxTvNOM  
&& NOA > MaxTvNOA 

The class has great possi-
bility to be a large class. 

PR2 
   LOC < MinTvLOC  

 && NOM < MinTvNOM 
&& NOA < MinTvNOA 

The class has less possibil-
ity to be a large class. 

PR3 other The class has possibility to 
be a large class. 

 
In Table 1, we set two tolerance values for each metric: 

the maximum tolerable value (MaxTv) and the minimum 
tolerable value (MinTv). When all metrics exceed their 
MaxTv, we consider that the class has a high possibility of 
being large (PR1). However, if all the metrics are below 
MinTv, we consider the class to have a lower possibility of 
being a large class (PR2). If a class fails to satisfy any of 
these conditions, it is considered to have the general possi-
bility of being a large class (PR3). The MaxTv and MinTv 
values depend on the target program language and the pro-
jects used in the code corpus. We need to investigate the 
specifications of the target program language or obtain sta-
tistics on the above metrics in the code corpus before setting 
the value. In this study, we performed experiments using the 
Java language, and the setting of its value is explained in 
Section 4.1-B.  

The main purpose of the above PRs is to assist in identi-
fying data samples that require human verification, but not 
to directly make the identification of large class. In the fol-
lowing steps, we will divide the data samples into two 
groups (A_Group and M_Group) by following the rules 
listed in Table 2. The data samples in the A_Group will be 
directly applied to the final dataset, whereas the data sam-
ples in the M_Group are included after manual confirmation. 
With used this technique, we can focus more on those am-
biguous data samples, thus reducing the workload of dataset 
production. After the PRs were established, the dataset was 
generated following the process illustrated in Fig 2. 

 
Fig 2 Overview of dataset generation 

 
Step.1 Merged Class Generation. In the first step of da-
taset generation, we focused on generating positive data 
samples (smelly classes) and categorizing them based on 
open-source projects in the code corpus. To achieve this, we 
first design two patterns of merging opportunities that can 

be automatically identified based on the three refactoring 
strategies for large class that were introduced by Fowler [2]: 
extract class, extract superclass, and replace type code with 
subclasses. These two types of merging opportunities are ex-
plained as follows. 

The first pattern involves classes with an inheritance rela-
tionship, in which the parent class can be merged with the 
child class. For example, in pattern 1 of Fig 3, the parent 
class “Product” can be merged into the child class “Book” 
by copying the methods and fields to the child class. On the 
other hand, the second pattern encompasses a pair of classes 
with a usage relationship that can be combined. As illus-
trated in pattern 2 of Fig 3, the class “Cart” is used as a field 
in the “User” class. Thus, we can merge two classes by cop-
ying all fields and methods from the “Cart” class to the 
“User” class. 

 
Fig 3 Two types of merge opportunities 

 
Once the merge opportunities were identified, we merged 

the classes by copying methods and fields from the source 
class to the target class. Different merging opportunity pat-
terns require different merging operations. For example, in 
the first pattern, only fields and methods that do not exist in 
the child class need to be copied. However, in the second 
pattern, all methods and fields must be copied to the target 
class. In addition, we must delete the target fields in the orig-
inal class and change all the references. Note that not all 
merge opportunities could be successfully executed owing 
to potential merge failures, such as method name conflicts 
and multiple inheritances. Any merge opportunity that fails 
to be executed is removed from consideration. The number 
of failed merge opportunity may vary depending on the tar-
get project. In our experiments, we used a total of eight pro-
jects as shown in Section 4.1-B, and the average percentage 
of failed merge opportunity was about 40%. 

After the merged classes were generated, we divided them 
into two groups (A_Group and M_Group) by following the 
rules listed in Table 2. The merged class with a possibility 
range in PR1 is placed in A_Group. The merged class with 
a possibility range in PR3 is placed into the M_Group. 
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Table 2 The data samples grouping rules. 
Group Rules 

M_group 
1.The merged class in PR3 
2.The original class in PR3 
3.The original class in PR1 

A_Group 1.The merged class in PR1 
2.The original class in PR2 

 
Step.2 Original Class Categorization. The second step in 
the dataset generation is to iterate all classes in the code cor-
pus and categorize them into the above two groups by fol-
lowing the rules in Table 2. If the original class is classified 
as PR2, we assume that the class is smell-free and put it into 
the A_Group as a negative data sample. However, if the orig-
inal class is in PR1 or PR3, it is placed into the M_Group to 
wait for a human check. 
 Using this grouping technique, we did not need to check 
for classes that were less likely to be large. This reduces the 
human labeling cost of dataset generation. However, we 
could not guarantee extremely high quality of the negative 
samples because a large class may also exist in PR2. Never-
theless, considering both the cost and quality of the dataset, 
we still think this is an efficient approach. Furthermore, be-
cause we used the PRs to categorize the classes, only those 
classes that have a small chance of being large are automat-
ically placed into the final dataset. Hence, the quality of our 
dataset can be greatly improved compared with the existing 
automatic dataset generation approach [8]. 
Step.3 Manually Checking. The last step in the dataset gen-
eration is labeling the code sample in the M_Group. A com-
mon problem in the manual checking phase is that different 
labeling results might be given for some ambiguous data 
samples owing to the different cognition of large class or the 
experience of the reviewers regarding the target project. To 
alleviate this issue, we set up a list of guideline questions 
based on the relevant prior studies [2][5] et al. The specific 
guidelines are as follows: 
1. Does the class have too many lines of code? 
2. Does the class have too many fields? 
3. Does the class have too many complex methods? 
4. Does the class have class extraction opportunities that 

may reduce the reusability of the target class? 
5. Does the class have too many responsibilities, which 
may reduce the maintainability of the target class? 

In this study, to further accelerate the manual checking 
phase, we developed a new assist tool to help developers 
quickly grasp the basic characteristics of the target class and 
make precise judgments. The tool is available at 
https://github.com/Bankzhy/lclb. 

After manual confirmation, we need to merge the data 
samples from A_Group and M_Group. It's essential to con-
sider the balance of data samples. In the experiments of this 
study, we will try to keep the ratio of positive to negative 
samples as 1:1. Additionally, to ensure the quality of the da-
taset, we set the proportion of automatically generated data 
samples in the final dataset should not exceed sixty percent. 

3.3 Metrics Calculation 

Software metrics are some of the most commonly used tech-
niques in software quality assessment. In this study, we also 
calculated 22 types of software metrics from the method and 
class levels as node features of the input graph. At the 
method level, we primarily followed metrics from previous 
studies [29][13] that are appropriate for measuring methods, 
and at the class level, we referred to metrics from existing 
studies [6][14] that are often used to capture class character-
istics. The details of the metrics used are as follows. 

At the method level, we calculated the following 11 met-
rics. LOC, McCabe’s cyclomatic complexity (CC), parame-
ter count (PC), and nest block depth (NBD) are the four most 
commonly used metrics. The lack of cohesion method 
(LCOM1 to LCOM3) are three metrics introduced by Char-
alampidou [13], and the number of accessed variables 
(NOAV) is a metric introduced by Lanza [6].  

The field-used count (FUC), local method using count 
(LMUC), and text similarity method class (TSMC) are three 
custom metrics. The FUC and LMUC represent the total 

Fig 4 Example of graph construction - example class 
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numbers of fields and methods in the target class, respec-
tively. Furthermore, we used Word2Vec [21][22] to calculate 
the text similarity between the method name and class name 
for the TSMC. 

At the class level, the following 11 metrics were calcu-
lated. The NOM, NOA, number of public attributes (NOPA), 
ATFD, WMC, and TCC are the metrics from Lanza [6]. The 
class interface size (CIS), direct class coupling (DCC), and 
cohesion among methods of class (CAM) are the metrics 
from Bansiya [14]. The depth of inheritance tree (DIT) and 
lack of cohesion in methods (LCOM) are the metrics from 
Chidamber [15]. 

3.4 Graph Construction 

For the task with used GNNs, it is crucial to construct the 
input graph. In contrast to the method-level input graph 
based on the program dependency graph (PDG) proposed in 
our previous study [29], we define a new type of class-level 
DHG as an input graph based on previous studies [12][16].  

To simplify the input graph construction process, we first 
introduce an example class, as shown in Fig 4. In this exam-
ple, the “User” class comprises 5 fields and 12 methods, 
clearly demonstrating the presence of three distinct types of 
functions that are aggregated. The first type of function per-
tains to the operations performed by the “User” class, with 
the relevant methods (1) to (6). The second type of function 

involves the operations related to the “User” database, cor-
responding to methods (7) to (9). Finally, the third type of 
function pertains to the operations performed on the user 
shopping cart using the relevant methods (10) to (12). 

 
Fig 5 Example of graph construction - similarity matrix 

 
To construct the input graph for the example class above, 

we first need to calculate the methods similarity matrix pro-
posed by Akash [12], as shown in Fig 5. In this figure, we 
compute three metrics, SSM, CDM, and CSM, for each 
method to construct its corresponding similarity matrix. The 
details of the calculation are explained in the following par-
agraphs. Next, we built an input graph, as shown in Fig 6. 
To maintain the readability of the input graph, we split it into 
different edge types. The input graph comprises two types of 
nodes and four types of edges. The two types of nodes in-
clude the class node and method node, which represent the 
target class and all methods within it, respectively. For the 
edges of the input graph, we first created three types of edges 
between the methods: SSM, CDM, and CSM edges based 
on the above similarity matrix. Moreover, we created the in-
clude edge from the class node to all method nodes within 

Fig 6 Example of graph construction - input graph 
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the target class. The details of the input graph are as follows. 
Class Node: The class node represents the target class. Only 
one class node exists in the input graph. For example, in Fig 
6, the class node “C” is the unique class node representing 
the target class “User” from Fig 4. In addition, the class-level 
metrics calculated in Section 3.3 are used as class node fea-
tures. 
Method Node: The method nodes represent methods within 
the target class. In the example shown in Fig 4, methods (1) 
–(12) are represented as nodes (1)–(12) in Fig 6. In addition, 
the method level metrics calculated in Section 3.3 are used 
as the method node features. 
Include Edge: The edges from class node to method nodes. 
For example, in Fig 6, the class node “C” and all method 
nodes are connected by include edges. 
SSM Edge: The SSM metric is the structural similarity pro-
posed by Gui [17]. This metric is calculated based on the 
cohesion and transitivity between the methods. The SSM 
calculation is shown in Eq.2. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 = �
�𝑉𝑉𝑖𝑖 ∩ 𝑉𝑉𝑗𝑗�
�𝑉𝑉𝑖𝑖 ∪ 𝑉𝑉𝑗𝑗�

         𝑖𝑖𝑖𝑖�𝑉𝑉𝑖𝑖 ∪ 𝑉𝑉𝑗𝑗� ≠ 0

0                   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
(2) 

In this formula, suppose that we have two methods: mi 
and mj. Then, Vi and Vj are the instance variables accessed 
by mi and mj. A higher SSM value suggests that mi and mj 
belongs to the same class. 

In our approach, we calculated the SSM for each pair of 
methods. If the SSM value was greater than zero, we con-
nected the two methods with a bi-directional SSM edge. For 
the example in Fig 4, we calculated the similarity matrix for 
all methods, as shown in Fig 5. Focusing on methods (1) and 
(5), we observed that SSM1-5 exceeded the predefined 
threshold of 0 by 0.5. Consequently, we connected the two 
method nodes using an SSM edge, as shown in Fig 6. 
CDM Edge: In contrast to SSM, CDM is another structural 
similarity metric calculated by method calls between meth-
ods. It was proposed by Bavota in 2011 [16], and its calcu-
lation is shown in Eq.3. In this formula, calls(mi , mj) denotes 
the number of times mj is called from mi, and callsin(mj) is 
the total number of incoming calls for mj. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖→𝑗𝑗 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝑖𝑖 ,𝑚𝑚𝑗𝑗)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑚𝑚𝑗𝑗)

         𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑚𝑚𝑗𝑗) ≠ 0

0                   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
(3) 

In our approach, we calculate the CDM for each pair of 
methods. If the CDM value is greater than zero, we connect 
the two methods with a directional CDM edge from the 
caller method to the callee method. In the example class 
shown in Fig 4, the CDM between methods (6) and (9) ex-
ceeds the threshold of 0 by 0.5, as shown in Fig 5. In this 
case, the two method nodes are connected using a CDM 
edge, as shown in Fig 6. 
CSM Edge: CSM represents the conceptual cohesion meas-
ure between each pair of methods within a class, as proposed 
by Poshyvanyk [18]. This measures how semantically the 

two methods are related. The calculation of this formula is 
shown in Eq.4. In this formula, the vector 𝑣𝑣 is calculated 
via latent semantic indexing (LSI) [19]. However, the ap-
proach proposed by Akash [12] used the latent Dirichlet al-
location [20] algorithm. In our approach, we use Word2Vec 
[21][22] to represent semantic information as a vector. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 =
𝑣𝑣𝑖𝑖𝑇𝑇 ∙ 𝑣𝑣𝑗𝑗

||𝑣𝑣𝑖𝑖|| ∙ ||𝑣𝑣𝑗𝑗||
(4) 

We calculated the CSM for each pair of methods. If the 
CSM value is greater than 0.5, the two method nodes are 
connected by a CSM edge. For example, the CSM between 
methods (1) and (2) was 0.97, exceeding the threshold of 0.5, 
as shown in Fig 5. In this case, we can connect the two 
method nodes using a CSM edge, as shown in Fig 6. 

Note that in the above construction process, we set the 
connection thresholds for the SSM, CDM, and CSM edges, 
which are designed with the basic principle of making the 
input graph more informative. For SSM and CDM edge, 
they represent the structural information (common in-
stance variables or calling relationships) among meth-
ods within the target class. Since the structural relation-
ships are not commonly exist between methods, we set 
the thresholds for these two edges to zero. For instance, 
our experiments revealed that over 80% of inter-meth-
ods lacked these structural relationships in the code 
corpus of Section 4.1-B. However, for CSM edge, be-
cause some of the same common token often appears 
between methods (such as: “create”, “get”, etc.), set-
ting the threshold to zero may not appropriate. Our in-
vestigation into the code corpus indicated that the av-
erage CSM value across different projects ranged from 
0.5 to 0.7. Thus, based on the above design principle, 
we set the threshold value to 0.5 for the CSM edge. 

3.5 GNNs for Large Class Detection 

Graph neural networks (GNNs) are neural models that can 
be directly applied to graphs to capture interdependencies 
between nodes through message passing [23]. This was first 
mentioned by Gori [24] in 2005 and further elaborated by 
Scarselli [25] in 2009. GNNs have made significant progress 
and are used in various areas, including social network anal-
ysis, protein interface prediction, and recommendation sys-
tems. To date, various model architectures of GNNs have 
been proposed, and we applied three widely used GNN 
model architectures: GCN [27], GraphSage [26], and GAT 
[28], to the large class detection task. Each of these three 
model architectures has unique characteristics. In brief, 
GCN is a basic GNN model that obtains node feature infor-
mation from itself and all neighboring nodes. GraphSage ac-
quires node representation by aggregating information from 
neighbor sampling. GAT uses an attention mechanism to 
learn the weights from different nodes. A detailed descrip-
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tion and comparison of the three model architectures are pro-
vided in [30]. 

First, we constructed an input graph for each data sample 
according to the graph construction approach described in 
Section 3.4. Next, we considered the identification of a large 
class as a graph classification task. Then, we applied the 
above three GNN models to construct the network and fed 
all the input graphs to train the classifier for large class de-
tection. A detailed experiment and performance evaluation 
are described in Section 4. 

4. Evaluation Experiment 

4.1 Experiment Design 

A. Research Questions 
In the evaluation experiments, we aim to verify the effec-

tiveness of the proposed approach and determine whether its 
performance is superior to that of existing approaches. 
Moreover, because there are different ratios of large classes 
in real projects, we further validate the effectiveness of the 
proposal approach under different ratios of large classes. We 
mainly focus on the following research questions. 
Q1. Does the proposed large class detection approach yield 
satisfactory training results when using the training dataset, 
and can the resulting classifier be used to detect large classes? 
Q2. How does the performance of the proposed approach 
compare with those of existing large class detection ap-
proaches? 
Q3. How does the proposed approach perform for different 
ratios of positive data samples? 
B. Training Dataset 

In our experiment, we first collected the training dataset 
using the process described in Section 3.2. 

First, we collected code corpus from eight popular open-
source projects: Junit4 [33], Mybatis3 [34], RxJava [40], 
JEdit [35], Netty [36], PMD [37], Gephi [38], and Libgdx 
[39]. These projects are well-known and come from a vari-
ety of usage areas. Next, we set up the possibility ranges as 
described in Section 3.2. The values of MaxTv and MinTv 
for each metric were determined based on the recommenda-
tions proposed by Lanza [6], who suggested that the average 
LOC was 70 in Java programming and that when the LOC 
exceeded 130, it appeared to be high. In terms of NOM, the 
average value could be 7, and the highest value could be 10 
in Java programming. However, we could not find an ex-
plicit standard for the value of NOA. Thus, we examined the 
aforementioned eight projects and observed that the average 
NOA ranged from 0 to 5, whereas for classes with LOC val-
ues exceeding 130, the average of NOA fell within the range 
of 5–10. For this reason, the MinTv and MaxTv of each met-
ric were set as shown in Table 3. 

Table 3 The value of MaxTV and MinTv. 
Group NOA NOM LOC 
MaxTv 10 10 130 
MinTv 5 7 70 

 
After preparation, we implemented the assistance pro-

gram to process the dataset generation. The program first 
transforms all target projects to the abstract syntax tree (AST) 
using the “tree-sitter” [41]. The program then generates the 
merged class and divides it into two groups, following the 
rules in Section 3.2-Step.1. Next, the program iterates all the 
original classes and categorizes them according to the rules 
in Section 3.2-Step.2. Finally, with the help of three Java de-
velopers, we performed manual checking in the M_Group 
based on the guidelines and assistance program introduced 
in Section 3.2-Step.3. Of the three Java developers, two were 
master students, and one was an assistant teacher. All three 
developers came from the Department of Computer Science 
and have extensive learning experience in both software de-
sign and the Java language. Moreover, two of them had more 
than one year of work experience. Furthermore, we con-
ducted tutorials in large class for all developers and distrib-
uted guidebooks before the experiment. With the help of the 
assistance program developed in Section 3.2-Step.3, all 
three developers collaborated remotely to perform the label-
ing process, and the results were stored directly in a central-
ized database. Although we were unable to accurately meas-
ure the overall time cost, it took approximately 1–5 minutes 
for each class sample. 

Using this process, in total, we obtained 4,510 merged 
class samples and approximately 10,000 original class sam-
ples. After grouping and manual checking, we constructed a 
dataset of 3,102 positive data samples and 3,495 negative 
data samples. Approximately 30% of the positive and 50% 
of the negative samples were manually checked. 
C. Evaluation Dataset 

To prove the validity of the proposed approach, an inde-
pendent evaluation dataset was created. In contrast to the 
training dataset, the evaluation dataset was created based on 
five open-source projects: OpenRefine [42], Jgrapht [43], 
Freeplane [44], Open Hospital [45], and Jsprit [46], and it 
was completely reviewed by above three Java developers.  

We assigned three Java developers to manually validate 
the classes in the source projects by following the guidelines 
in Section 3.2-Step.3. Once the number of reviewed positive 
sample classes reached approximately 200, manual confir-
mation ceased, and an equal number of corresponding neg-
ative samples were selected to construct the dataset. 
D. GNN Model Architectures and Configurations 

In our experiment, the training networks of all three GNN 
models were constructed according to the architecture in Fig 
7. The network consists of two GNN layers and one linear 
layer. In addition, Adam was used as the optimizer, and 
cross-entropy was used as the loss function. The experi-
ments relied primarily on the PyTorch [47], whereas the im-
plementation of the GNN predominantly utilized DGL [48]. 
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Fig 5 The model architecture of GNN models 

 
E. Evaluation Criteria 

In this study, we employed three commonly used metrics 
to evaluate the detection performance of the proposed ap-
proach: precision, recall, and F1. Precision is the ratio of 
positive samples marked by developers to detected positive 
samples. Recall is the probability of being predicted as a 
positive sample for all classes labeled as positive by devel-
opers. F1 is the harmonized average of the above two met-
rics, and it is calculated using Eq.5. 

𝐹𝐹1 =
2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(5) 

4.2 Experiment Results 

Q1. Does the proposed large class detection approach 
yield satisfactory training results with used the training 
dataset, and if the result classifier could be used to detect 
large classes? 

For the first research question, we applied the training da-
taset to the above GNN. We randomly selected 80% of the 
training dataset to train the network and the other 20% as the 
test dataset to observe the training results. To make the re-
sults more plausible, we repeated the process five times and 
performed 5-fold cross-validation. Table 4 presents the av-
erages of the results. 

Table 4 The training results of large class detection. 

Metrics GCN GraphSage GAT 
POS NEG POS NEG POS NEG 

Precision 0.89 0.88 0.98 0.98 0.97 0.97 
Recall 0.86 0.91 0.97 0.98 0.97 0.98 

F1 0.88 0.90 0.98 0.98 0.97 0.98 

 
The results in Table 4 show that from an overall perspec-

tive, although all three GNN models achieved good training 
results, the results of the GCN (0.88) were lower than those 
of the other models. In positive sample detection, 
GraphSage and GAT did not show a significant performance 
gap, with GraphSage having a slightly higher F1 score than 
GAT (0.98 and 0.97).  

Because the differences in Table 4 were small, we further 
tested the differences for each GNN model using 
McNemar’s test [31], which is a statistical test that can be 
used to compare two classifiers in machine learning [32]. We 
employed all five classifiers from each GNN model to make 

predictions and determined a positive classification result 
only when over 80% of the classifiers predicted a positive 
result. The results show that GAT and GraphSage do not 
show significant differences when the significance level is 
0.05; however, GCN shows significant differences from 
both GAT and GraphSage. 

From the above results, we can make the following obser-
vations. First, all three GNN models achieved good training 
results, and the classifiers can be applied to large class de-
tection. Second, the training results of the GAT and 
GraphSage were significantly higher than those of the GCN. 
However, GraphSage and GAT did not exhibit a significant 
performance gap, with the mean of GraphSage being 
slightly higher than that of GAT. 
Q2. How does the performance of proposed approach 
compare to the existing large class detection approach? 

To answer this question, we compared the detection perfor-
mance of our approach with those of the existing clustering-
based approach proposed by Akash [12] and the deep learn-
ing approach proposed by Liu [8]. We used the dataset from 
Section 4.1-B as the training dataset, and the dataset in Sec-
tion 4.1-C as the evaluation dataset. The evaluation results 
are shown in Fig 8. 

 
Fig 6 The detection results compared with those of existing ap-

proaches 
 
From the results in Fig 8, we could make following obser-
vations. 
• The F1-score of each GNN model exceeded 0.80, which 

is higher than those achieved by the existing approaches 
proposed by Akash [12] (0.68) and Liu [8] (0.64). Overall, 
GraphSage achieved the best detection performance 
(0.86). 

• The recall of the existing approaches [8][12] have both 
reached above 0.90 higher than all GNN-based ap-
proaches proposed by us. This means that the existing 
deep learning approach [8] and clustering-based approach 
[12] have greater abilities to capture large classes from 
code samples. 

• However, the precision of all GNN models in our ap-
proach exceeded 0.90, which is significantly higher than 
those of the existing approaches [8][12] (0.47 and 0.54), 
indicating that the existing approaches [8][12] may detect 
many erroneous samples. Conversely, our approach could 
identify the large class more accurate. 
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Q3. How does the proposed approach perform under dif-
ferent ratios of positive data samples? 
For the assessment of Q2, we used an evaluation dataset with 
positive samples accounting for 50%. However, in practical 
software projects, the proportion of large classes may differ 
according to the project quality. Thus, we adjusted the pro-
portion of positive samples in the dataset by increasing the 
number of negative samples in the evaluation dataset to test 
the detection performance under different values (10–60%). 
The results of F1-score are shown in Fig 9. From the results, 
we could make following observations: 
• Although the GCN had a slightly lower F1-score than the 

other models, GraphSage and GAT achieved nearly the 
same value. The results of GraphSage were slightly better 
than those of the other models. 

• From the comparison results of our approach with the ex-
isting clustering-based approach proposed by Akash [12], 
we observed that the F1 of the existing clustering-based 
approach [12] increases significantly as the proportion of 
positive samples increases. When the proportion of posi-
tive samples is less than 30%, the existing clustering-
based approach [12] does not perform well. The main rea-
son for this result is that the clustering-based approach 
aims to find the extract class opportunities from the target 
class. However, despite being identified as having extrac-
tion opportunities, some classes still do not meet the cri-
teria for being marked as large by reviewers in terms of 
the number of methods or complexity of the class. There-
fore, when the proportion of positive samples is small, the 
precision of this approach is significantly reduced. How-
ever, compared with the significant shifts in the existing 
study [12], our approach has showed more stability and 
better detection performance for any positive sample ratio. 

• Compared with the existing deep learning approach [8], 
our approach exhibited a more stable detection perfor-
mance. The proposed approach outperforms the existing 
deep learning approach [8] when the proportion of posi-
tive samples ranges from 10% to 50%. However, when 
the proportion of positive samples reaches 60%, the nu-
merical growth of the existing deep learning approach [8] 
quickly surpasses that of the proposed approach. 

 
Fig 7 The F1-score under different ratios of positive data samples 

 

We can summarize the results as follows. First, among all 
experimental GNN models, GraphSage performed slightly 
better. Second, our approach shows better accuracy than do 
those from prior studies [8][12]. Meanwhile, our approach 
showed a more stable detection performance for different ra-
tios of positive data samples. 

5. Conclusion 

In this study, we applied an important division of deep learn-
ing: GNNs, to large class detection. To obtain sufficient data 
samples for the deep learning task, we redesigned the auto-
matic generation techniques and grouping rules of the semi-
automatic approach in our previous study [29], which could 
generate a large number of data samples with less human 
labeling effort. Using this generation approach, we obtained 
a total of 6,597 data samples for large class detection.  

After generating the dataset, we designed a new type of 
DHG based on the methods similarity matrix and software 
metrics. We treated the identification of large classes as a 
graph classification task and fed all the input graphs to train 
the classifier for large class detection. 

In the evaluation experiment, three typical GNNs were 
applied for large class detection. By using the trained classi-
fiers, we compared the detection performance of the pro-
posed approach with the existing clustering-based approach 
proposed by Akash [12] and the deep learning approach pro-
posed by Liu [8]. The results showed that the proposed ap-
proach achieved better accuracy and more stable detection 
performance under different ratios of positive data samples. 

In future work, we intend to extend our study in the fol-
lowing aspects. First, we shall extend our approach to mul-
tiple classification tasks in the future, as a large class could 
be further classified into several levels, depending on the se-
verity of the situation. Further, we can apply the GNN-based 
approach to other code smells, such as feature envy and du-
plicated code. 
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