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PAPER
Reinforced Voxel-RCNN: An Efficient 3D Object Detection Method
Based on Feature Aggregation∗

Jia-ji JIANG†a), Hai-bin WAN†b), Hong-min SUN††c), Tuan-fa QIN†d), Nonmembers,
and Zheng-qiang WANG†††e), Member

SUMMARY In this paper, the Towards High Performance Voxel-based
3D Object Detection (Voxel-RCNN) three-dimensional (3D) point cloud
object detection model is used as the benchmark network. Aiming at the
problems existing in the current mainstream 3D point cloud voxelization
methods, such as the backbone and the lack of feature expression ability
under the bird’s-eye view (BEV), a high-performance voxel-based 3D ob-
ject detection network (Reinforced Voxel-RCNN) is proposed. Firstly, a
3D feature extraction module based on the integration of inverted resid-
ual convolutional network and weight normalization is designed on the 3D
backbone. This module can not only well retain more point cloud feature
information, enhance the information interaction between convolutional
layers, but also improve the feature extraction ability of the backbone net-
work. Secondly, a spatial feature-semantic fusion module based on spatial
and channel attention is proposed from a BEV perspective. The mixed use
of channel features and semantic features further improves the network’s
ability to express point cloud features. In the comparison of experimental
results on the public dataset KITTI, the experimental results of this paper
are better than many voxel-based methods. Compared with the baseline
network, the 3D average accuracy and BEV average accuracy on the three
categories of Car, Cyclist, and Pedestrians are improved. Among them, in
the 3D average accuracy, the improvement rate of Car category is 0.23%,
Cyclist is 0.78%, and Pedestrians is 2.08%. In the context of BEV average
accuracy, enhancements are observed: 0.32% for the Car category, 0.99%
for Cyclist, and 2.38% for Pedestrians. The findings demonstrate that the
algorithm enhancement introduced in this study effectively enhances the
accuracy of target category detection.
key words: 3D object detection, inverted residual sparse convolution, spatial
semantic feature fusion, weight normalization

1. Introduction

With the rapid development of deep learning and image pro-
cessing layout, and the improvement of computer hardware
level, the field of target detection continues to receive high
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attention from all walks of life since 2012 [1], [2]. As one
of the main downstream tasks of computer vision, target de-
tection is mainly divided into two-dimensiona l(2D) target
detection and three-dimensional (3D) target detection. Due
to the lack of depth message in 2D target detection, it can not
provide accurate 3D spatial information of the environment.
Meanwhile, the 3D target detection can be more intuitively
close to the real-world scene, including the position, angle
and distance of the target object and other status information.
The research of 3D target detection has received continuous
attention. 3D object detection plays an irreplaceable role
in the fields of autopilot, robotics, and virtual reality, aug-
mented reality at present [3]–[5].

The current 3D object detection methods are mainly
divided into three types. Mainly based on the different data
set used, they are divided into monocular 3D object detec-
tion [6]–[8], point cloud 3D object detection [9]–[12], and
multimodal 3D object detection [13], [14]. As the cost of
LiDAR decreases, 3D point cloud object detection becomes
the mainstream method. The current mainstream 3D point
cloud detection methods are mainly based on two types,
point-based and voxel-based.

The point-based methods [15]–[17] directly input the
raw data collected by the lidar into the network model with-
out preprocessing. These methods can keep the original
information of the real scene well and have the highest accu-
racy, but they spend a long time to train and detect. Because
points are needed to represent the results of the abstract
search of the nearest neighbor set.

The grid-based voxelization methods [18]–[20] are to
divide the original point cloud information into girds of
a fixed size, and perform feature extraction through a 3D
convolutional neural network. These methods abandon the
complex set abstractions in the point-based methods, and
can greatly speed up detection. Due to the occurrence of
empty voxels or insufficient points within the voxel grid in
the process of point cloud voxelization, conventional feature
extraction networks are unable to fully capture the original
feature information. Therefore, the detection accuracy and
predicted position is slightly lower than that of point-based
methods. Meanwhile, because the field of automatic driv-
ing requires real-time detection, the method based on gird
voxelization has become a research hotspot.

Consider issues such as insufficient point cloud fea-
ture extraction capabilities in voxel-based 3D target detec-
tion methods. To further enhance the performance of grid-
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based voxelization approaches, we used Voxel-RCNN [21]
as the benchmark network and proposed an inverted residual
sparse convolutional network, which improved the feature
extraction ability of the 3D backbone. In the 2D convolu-
tion layer part, an attention-based spatial semantic feature
fusion network was proposed, which could fuse spatial fea-
tures and abstracted semantic features to further improve the
feature integration ability of the model. In conclusion, a
high-performance point cloud 3D object detection network
based on a combination of submanifold inverse residual con-
volution and feature aggregation was proposed (Reinforced
Voxel-RCNN). Specifically, the contributions of this paper
can be summarized as follows:

• A submanifold inverted residual network feature fusion
network was designed to replace the regular 3D convo-
lution backbone in the baseline network. Submanifold
3D convolution [22] was used to extract backbone fea-
tures, which effectively solved the issue of losing orig-
inal feature information when employing excessively
deep stacks of 3D sparse convolutional layers.

• A spatial semantic feature fusion network based on con-
volutional attention was proposed, which could enrich
the feature extraction of the network from the perspec-
tive of BEV and further improved network performance.

2. Related Work

2.1 Point-Based 3D Point Cloud Object Detection Methods

These methods take the original point cloud as input, use
PointNet [9] or PointNet++ [10] as a point cloud information
extraction tool, and use iterative sampling and grouping to
take the points as representative features. 3d object proposal
generation and detection from point cloud (PointRCNN) was
proposed by Shaoshuai Shi, et al. [15], which proposed a
3D region proposal network to obtain regional features. A
method of voting through images (ImVoteNet) was proposed
by Charles R. Qi, et al. [16], it was proposed to fuse 2D votes
in the image and 3D votes in the irregular point cloud to ob-
tain more feature information and achieves good detection
results. The authors in [17] fused D-FPS and F-FPS to build
a one-stage 3D detector (3DSSD), this method achieved a
good balance between accuracy and efficiency. Although
PointNet [9] or PointNet++ [10] can provide a flexible recep-
tive field for point cloud feature extraction, the neighborhood
search of points in three-dimensional space spends a lot of
time.

2.2 Voxel-Based 3D Point Cloud Object Detection Meth-
ods

Techniques employing grid voxelization partition the point
cloud into a grid of constant dimensions, subsequently em-
ploying 2D/3D Convolutional Neural Networks (CNNs) for
the purposes of information extraction and detection. An
End-to-End Learning for Point Cloud Based 3D Object De-
tection (VoxelNet) was proposed by Yin Zhou, et al. [18],

which divided points into 3D voxels, and used tiny Point-
Net [9] to select a representative feature from each voxel.
In 2019, Pointpillars was proposed by Alex H. Lang, et
al. [19], this method divided the point cloud into pillar from
the top view, and used 2D CNN for feature extraction, which
achieved a certain balance between speed and accuracy.
Shaoshuai Shi, et al proposed PV-RCNN [20], which used
multi-scale voxel feature aggregation as keypoints through
the design of voxel set abstraction. PV-RCNN greatly im-
proved the detection accuracy of 3D object detection at that
time. The voxel-based methods abandon the complicated
point cloud neighborhood search, which bring certain effi-
ciency improvements and reasoning speed. However, in the
process of point cloud voxelization, information loss will
inevitably occur. In this paper, we mainly optimize the 3D
backbone and 2D convolutional network parts to enhance the
feature expression ability of the model.

3. Network Design

The network model in this paper is designed with reference
to Voxel-RCNN [21]. From the input to output of point cloud
data, it is mainly divided into the following modules:

1) Point cloud data voxel encoding module.
2) 3D submanifold inverted residual convolutional net-

work feature fusion module.
3) Attention-based spatial semantic feature convolution

module.
4) Region proposal network.
5) Voxel ROI Pooling.
6) Multi-tasking detection head.

3.1 Voxelization Encoding Module

The objective of voxel coding is to partition point cloud data
into uniformly volumetric grids along the three axis: X, Y,
and Z. Set the length, width and height of each voxel to Vl ,
Vw , Vh . Correlation scale corresponding to the point cloud
are L, W , H. Then there are L ′ = L/Vl , W ′ = W/Vw ,
H ′=H/Vh . Therefore, a non-empty voxel can be expressed
as:

V =
{
Pi = [xi, yi, zi,ri] ∈ R4}N

i
, (1)

where Pi is the feature output of the point, including the
coordinate values xi , yi , zi of the X-axis, Y-axis, and Z-axis
and the reflection intensity ri . i represents i-th point, and N
represents the greatest amount of points in each voxel. We
adopt the method of benchmark network, and compute the
average value of the points in the voxel after gridding as the
feature of the voxel, and the compution process is shown as:

Vk =

T∑
i

Pi/T, (2)

where Vk is the average value of points in the k-th voxel, with
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Fig. 1 Network structure

Fig. 2 The basic unit of the module

Vk as the feature of the voxel. Pi is the feature vector of the i-
th point in the voxel grid, the meaning is the same as Eq. (1),
and T represents the maximum number of sampling points in
each voxel, here set T to 5. Vk is the output of the voxelization
of the network, followed by 3D sparse convolution to extract
the features of each voxel. This work is in the second and
third parts of the network structure in Fig. 1.

3.2 3D Inverted Residual Network Feature Fusion Module

This paragraph provides an introductory overview of the de-
signed 3D Inverted Residual Network Feature Fusion Mod-
ule (3DFFM). In conventional 3D convolution, as outlined in
[23], the necessity to traverse the entire spatial area during the
convolution process, coupled with the sparsity of point cloud
data, leads to substantial computational costs. To address
this, two convolution methods have emerged as the main-
stream direction in extracting features for 3D point cloud
detection in state-of-the-art networks, these are sparse 3D
convolution and submanifold sparse 3D convolution. How-
ever, with increasing depth of convolution layers, sparse 3D
convolution loses some level information and dilutes the fea-
ture communication between wach convolutional layer.

In the Voxel-RCNN baseline network, the 3D back-
bone section employs merely four layers of 3D sparse con-
volutional layers for feature extraction. Notably, only ad-
jacent convolutional layers facilitate information exchange,
inevitably leading to a significant information gap between
the first and last convolutional layers. This disparity in fea-
ture information extraction is a contributing factor to re-
duced accuracy in detection outcomes. To solve this issue,
a 3D convolution fusion network based on inverted residual
is designed. Inspired by Deep Residual Learning for Im-
age Recognition (ResNet), which was proposed by Kaiming
He,et al. [24], ResNet used the design of residual networks
for the first time, and inspired by MobileNetV2 [25], which
was proposed by Mark Sandler, et al. Our fusion network
leverages the inverted residual submanifold sparse convolu-
tion method, and enhances the extracted feature information
in the latter portion of the network. Specifically, the structure
we propose is expressed as shown in Fig. 2.

Table 1 3D backbone network parameters

The design based on the residual network can deepen
the network structure, which has a positive effect on the ex-
traction of sparse features in point clouds, and effectively
solves the problem of gradient disappearance of gradient de-
scent caused by the deepening of network layers. Drawing
inspiration from the concept of channel expansion in Mo-
bileNetV2 [25], the initial convolutional layer doubles the
number of channels. This channel expansion is designed
to preserve the maximum amount of original feature infor-
mation. The design of the inverted residual mitigates infor-
mation loss resulting from the deployment of the Rectified
Linear Unit (ReLU) activation function within the convo-
lutional process. Experimental results demonstrate that the
strategy of augmenting the number of channels positively
contributes to enhancing detection accuracy, and the specific
channel number design is given in Sect. 3.3 and Table 1. The
comprehensive design is elucidated as follows:{

f (x) = w2 {σw1(x)} ,
y = f (x) + x,

(3)

where w1, w2 denote the convolution parameter weight of
convolution kernel with a size of 3*3*3, which are used for
the expansion or compression of the feature channel. In
this context, σ denotes the ReLU activation function, and x
symbolizes the input feature. The resultant feature follow-
ing the operation of the inverted residual network is denoted
as y. After the inverted residual convolutional network, a
feature fusion network based on the weight normalization
function is designed to derive the normalized weights (the
structure of the second half of Fig. 2). Normalized weights
are acquired to extract underlying information, thereby en-
hancing the model’s capacity for feature expression. The
acquired weights are subjected to a pointwise multiplication
with the eigenvalues generated by the convolution operation.
The findings substantiate the superior performance achieved
by this method, and the complete design can be formally
articulated as follows:

F = y ∗ {ℓcσ(y)} , (4)

where y represents the features produced by the inverted
residual network, ℓ denotes the Soft Maximum Activation
Function (SoftMax), and c corresponds to the Conv Block
illustrated in Fig. 2, encompassing a comprehensive convo-
lutional process. It contains three parts, submanifold convo-
lution, batch normalization and ReLU activation function.

Since the submanifold sparse convolution restricts non-
empty voxels, there is a disadvantage that the expression of
some original features is not clear enough. So in the Conv
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Fig. 3 3D feature extraction network

Table 2 Spatial semantic feature convolution parameters

Block module, using the submanifold sparse convolution
with a convolution kernel size of 3*3*3 to compress the fea-
ture map output by the inverted residual sparse convolution
into a channel number of 1, and adaptively extract its chan-
nel information, followed by batch normalization and ReLU
activation. Then we use the SoftMax function to normalize
the feature and obtain the weight (the Softmax function gen-
erates values within the range of 0 to 1, facilitating gradient
propagation in the network and aiding in model training).
Finally, we multiply the weight with the feature map output
by the inverted residual sparse convolution in an element-
by-element manner, and the result is used as the final output.

3.3 3D Backbone Design

In the network of our method, the 3D backbone feature ex-
traction network is designed immediately after voxelization
encoding. The 3D backbone which designed to extract fea-
ture is mainly composed of four down-sampling convolution
modules, where the down-sampling operation is mainly con-
centrated in the sparse convolution layer. The convolution
module is structured with two components: sparse 3D con-
volution and a novel sparse convolution founded on inverse
residual and feature aggregation. Sparse 3D convolution is
characterized by height computational efficiency, whereas
the inverted residual sparse convolution excels in capturing
pivotal features, the composition relationship is shown in
Fig. 3.

Table 1 shows the down-sampling parameter informa-
tion of each layer. The output features are acquired through
the reduction in size of the input features, achieved primarily
through two prevalent down-sampling techniques: convolu-
tion and pooling. In this study, convolution downsampling
is used, and feature map size downsampling can be achieved
by changing the convolution step size. Table 1 details the
specific convolution step values for the four convolutional
layers, which are set to 1, 2, 2, and 2, respectively. The
feature sizes are displayed according to the Y*X*Z axis, and
the usage is consistent with Table 2 below. Based on the

Fig. 4 Spatial semantic feature convolution module structure

input feature size, the down-sampling multiples are set to
1, 2, 4, and 8 times, the convolution kernel size is set to
3*3*3, and the number of channels is designed to be 16, 32,
64, 128 respectively. The output feature is converted into
a feature map with a size of 200*176*2 after a layer of 3D
sparse convolution with a convolution kernel size of 3*1*1.
This adjustment can increase the receptive field in the height
direction and speed up the training speed of the network.

3.4 Spatial Semantic Feature Convolution Module Based
on Convolutional Attention

In this section, our primary focus is to provide a comprehen-
sive introduction to the specially designed 2D convolutional
feature extraction network.

After downsampling the 3D convolutional network to
obtain the feature data of the point cloud, the next step of fea-
ture extraction needs to be performed in the BEV perspective.
For the calculation method of the BEV perspective, we refer
to Voxel-RCNN. By compressing along the Z-axis, the out-
put feature map size is altered from 200*176*2 to 200*176.
This adjustment is guided by real-world scenarios where ob-
jects tend not to overlap along the Z-axis. Furthermore, the
tensor derived from the 3D convolutional network segment
is inherently sparse, necessitating a conversion from sparse
to dense data before the commencement of 2D convolution
feature extraction. Although the method of compressing the
feature map on the Z-axis improves efficiency, in the base-
line, only two branches of down sampling and transposed
convolution are used to extract spatial and semantic infor-
mation, and the number of stacked layers is too deep, which
will cause a certain degree of information loss. Therefore, it
is necessary to redesign the 2D convolutional network part.

To address this issue, with reference to the spatial se-
mantic feature aggregation network in CIA-SSD, which was
proposed by Wu Zheng, et al. [26], and the design ideas of
attention modules in Convolutional Block Attention Module
(CBAM), which was proposed by Sanghyun Woo, et al. [27].
We propose a 2D spatial semantic feature extraction network
which is based on channel and spatial attention. The use of
spatial feature convolution groups and semantic feature con-
volution groups in the network can achieve robuster feature
extraction. Figure 4 shows the module structrue.

Different from the benchmark network, we only stack
three layers of convolutional layers in the semantic and spa-
tial feature convolution groups, which reduces the processing
complexity of the network while retaining certain spatial and
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Fig. 5 Convolutional block attention module

semantic information. The amount of output channels of the
spatial feature convolution part is 64. The convolution step
is set to 1, and the feature size is guaranteed to remain un-
changed. The number of output channels of the semantic
feature convolution part is 128, the convolution step is set
to 2, and the feature size is reduced to original half. The
specific convolution parameters are shown in Table 2.

The configuration of the spatial and semantic feature
convolution group enables the acquisition of more extensive
high-level semantic features and deep spatial feature infor-
mation. After obtaining the spatial and semantic features, the
semantic features are transposed and convolved. Transposed
convolution, also known as deconvolution, is an upsampling
operation that maps an image from a small resolution to
a large resolution. The purpose of upsampling is to make
the resolution size of semantic features consistent with the
spatial features.

In our approach, the convolution kernel size of the de-
convolution is set to 3*3, the convolution stride is set to 2,
the ReLU activation function is used to activate, and then
stacked with the spatial features in the channel direction.
The stacking operation is the operation of juxtaposing two
feature maps with the same resolution and size on the chan-
nel. The semantic features after transposed convolution and
the spliced spatial features are stacked again in the channel
direction. As a result of decreasing the number of semantic
feature channels and augmenting the dimensions of semantic
features during the transposed convolution process, a portion
of the feature information may become attenuated. To find
solutions to problems, after the second stacking of seman-
tic features and spatial features, a CBAM attention module
is added to strengthen the stacked spatial semantic features
in terms of channels and spatial directions. The module
structure is depicted shown in Fig. 5.

CBAM contains channel attention and spatial atten-
tion. The role of the channel attention module is to keep
the channel dimension unchanged, compresses the spatial
dimension, and focus on the classification information of
the target, while the spatial attention module compresses the
channel dimension based on the unchanged spatial dimen-
sion, this part focuses on target’s location information. For
the input feature F ∈ RC*H*W , passing through the first
channel attention module and the subsequent spatial atten-
tion module, the corresponding weights are MC ∈ RC*1*1,
MS ∈ R1*H*W . Assuming the input features is F, the output
features are obtained as:

F ′ = MC(F) ⊗ F, (5)
F ′′ = MS(F ′) ⊗ F ′, (6)

where ⊗ is dot product between elements, channel attention
weight MC and spatial attention weight MS can be expressed
as:

MC (F) = σ {MLP (AvgPool(F))}
+ σ {MLP (MaxPool(F))} , (7)

MS = σ
{

f 7×7 ([AvgPool(F),MaxPool(F)])
}

(8)

where AvgPool, MaxPool are average pooling and max-
imum pooling operations respectively. MLP represents a
multi-layer perceptron, here are two layers, and f 7×7 is 7*7
convolution operation. After the attention module, the fused
spatial and semantic feature information has been strength-
ened, and the last step is to perform the fusion operation.
Assuming that the output feature after the CBAM attention
is F ∈ RC*H*W , the feature after the fusion operation can be
defined as:

F ′ =
(
ℓ f 3X3(F)

)
⊗ F, (9)

where f 3X3 is 3*3 convolution operation, and ℓ is SoftMax
function. The design of feature fusion is mainly to use the
SoftMax function to regularize the merged spatial semantic
features, and used the result of regularization as the weight
of each feature after merging. Finally, we perform dot mul-
tiplication on the corresponding weight and feature value.
Such a structure can establish the dependency relationship
between spatial features and semantic features, and the dot
product result is output from the BEV perspective as the final
spatial and semantic fusion feature.

3.5 Design of Loss Function

3.5.1 Design of Focal Loss Function

To solve the issue of unbalanced anchor categories gener-
ated on the point cloud feature map, the FocalLoss [28] is
referenced, and the function is designed as follows:

f ocalloss (pt ) = −αt (1 − pt )γ log (pt ) , (10)

pt =
{

p i f y = 1,
1 − p otherwise,

(11)

where y is the label value of the sample, and p is the model
predicts the probability that a certain sample is a positive
sample. y = 1 indicates a positive sample, αt , γ are hyper-
parameters, set 0.25 and 0.2, respectively.

3.5.2 RPN Loss Function

For point cloud detection, the setting of anchors generally
contains eight vector dimensions, the first seven-dimensional
vector represents the position information, length, width and
height of the box. The last vector is the target category infor-
mation. For different categories, different IoU thresholds are
required to divide positive and negative sample information.
The RPN loss function is as follows:
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Table 3 The comparison results of this network in 3D evaluation indicators and mainstream networks
in the KITTI dataset.

LRPN =
1

Nf

{∑
i

Lcls (ci a, pi∗)
}

+
1

Nf

{
I (pi∗ ≥ 1)

∑
i

Lreg (δi a, ti∗)
}
, (12)

where Nf is the number of foreground anchor boxes, and
Lcls , Lreg are classification and regression loss, respectively.
ci a, pi∗ represent the prediction results of classification and
regression. δi a, ti∗ indicate classification labels and re-
gression labels respectively. I (pi∗ ≥ 1) indicates that the
regression loss is only by calculated on the positive samples.

3.5.3 The Loss Function of Detection Head

The design of the detection head loss function refers to the
benchmark, which can be expressed as:

Lhead =
1
N s

{∑
i

Lcls (pi, li∗)
}

+
1
N s

{
I
(
IoUi ≥ θreg

)∑
i

Lreg (δi, ti∗)
}
, (13)

where IoUi indicates the IoU ratio between the i-th sugges-
tion box and the real box, I

(
IoUi ≥ θreg

)
indicates that the

region candidate box is only involved in the calculation of
regression loss when IoUi ≥ θreg, and Ns is the number of
region candidate boxes.

4. Experimental Results and Analysis

4.1 Experimental Settings

The hardware configurations for this study were housed on
the local host, comprised of a 64-bit Linux system (Ubuntu
18.04), an Nvidia RTX2070s graphics card, and 8GB of
video memory. The experimental environment consisted
of pytorch1.8.1, python3.9.13, and CUDA10.2 configura-
tions. The experiment utilized point clouds within range

[0,70.4]m along the X-axis, [−40,40]m along the Y-axis,
and [−3,1]m along the Z-axis, with an input voxel size of
(0.05,0.05,0.1)m. In our study, the network optimizer em-
ployed Adam, with an initial learning rate of 0.01 and an
optimized momentum parameter of 0.9. The experiment
was conducted on a single card with an 80-epoch training
and a batch size of 2.

4.2 Selection and Evaluation in Index of Data Sets

The experiment utilized the KITTI [29] dataset by employ-
ing comprehensive assembly equipment to collect data sam-
ples of vehicles in an actual traffic scenario. The dataset
consisted of 7481 training samples and 7518 testing sam-
ples, partitioned into a training set comprising 3712 samples
and a validation set comprising 3769 samples. The net-
work of our method mainly evaluates the three categories of
Car, Pedestrians, and Cyclist in dataset, and the anchor box
setting of these three categories are Car [3.9,1.6,1.56]m,
Pedestrians [0.8,0.6,1.73]m, Cyclist [1.76,0.6,1.73]m. The
performance was evaluated using the standard KITTI met-
rics, with the average accuracy (AP) used to measure the 3D
and BEV indicators. The evaluation was conducted across
three difficulty levels: easy, moderate, and hard.

4.3 Network Comparison Experiment

This section compares the experimental results of the net-
work model with the results of the mainstream 3D object
detection network, and discusses the effect of network im-
provement, using the average accuracy of 11 recall positions.
Our results are delineated in Table 3 and Table 4, with the
best results highlighted in bold black font.

Given the similarity in the architectural design of the
3D backbone network and the utilization of 2D convolu-
tional layers, both the Voxel-RCNN and SECOND algo-
rithms adopt a common framework. Specifically, they em-
ployed a four-layer convolutional downsampling structure in
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Table 4 The comparison results of the detection indicators of this network in the BEV and the
mainstream network in the KITTI dataset.

Table 5 3D detection average precision of network ablation experiments in KITTI validation set

the 3D network, and incorporated five 2D convolutional lay-
ers within the 2D network. Consequently, we conducted
a supplementary set of comparative experiments with the
SECOND algorithm to investigate the efficacy of the net-
work improvements. From Table 3 and Table 4, in com-
parison with SECOND algorithm, both the 3D detection
accuracy and the accuracy of the BEV perspective have been
improved to a certain extent on the three target categories
of Car, Cyclist, and Pedestrians. Verified that our improved
network architecture enhances the expressive capability of
feature information. It is noticeable that our method out-
performs the baseline network (Voxel-RCNN) as well as
previous methods. Under the 3D detection accuracy index
and the bird’s-eye view index, three difficulty levels have a
certain degree of accuracy improvement compared with the
baseline. On large target objects, the moderate and hard
levels of vehicle category under 3D detection increased by
0.58% and 0.14%, respectively. The improvement effect is
obvious on the small target category. For instance, the 3D
detection metrics for pedestrian categories exhibit improve-
ments of 0.34%, 3.02%, and 2.90%, respectively. Simultane-
ously, BEV detection demonstrates enhancements of 2.29%,
2.68%, and 2.17%, respectively.

4.4 Network Ablation Experiment

In this section, Voxel-RCNN is used as a benchmark to con-
duct ablation research on the improved model. 11 recall
positions are used for average precision calculation. Table 5,
Table 6 and Table 7 give the results of the ablation experi-
ment.

There are eight different combinations of experimental
settings in Table 5 and Table 6. The design of the 3D inverted
residual network feature fusion module is called 3DFFM, and
the attention-based spatial and semantic feature convolution
module is called SSFE. 3DRes represents the conventional
residual convolution method. SSFA and CBAM represent
use cases in SSFE without using CBAM, as well as methods
using only CBAM. The experiment with sequence number
(a) adopts the same method as the baseline network in 3D
and 2D networks respectively, each set of ablation experi-
ments investigates the impact of the corresponding module
structure on detection accuracy.

Table 7 explores the impact of various improved parts of
the network on model inference time. It can be demonstrated
from the experimental results that both the 3DFFM and SSFE
methods can improve the detection accuracy, and the SSFE
method is used to further shorten the model’s inference time
to 43 ms. Compared with the baseline, the final improved
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Table 6 BEV detection average precision of network ablation experiments in KITTI validation set.

Table 7 The performance of inference time on KITTI validation set. The
results are evaluated with the average precision for car class.

network (method d) shortened the inference time by 2 ms.

4.4.1 Investigate the Influence of Varying the Number of
Convolutional Layers within the 3D Backbone on the
Accuracy of Network-Based Object Detection

In ablation experiment (b), the 3D backbone incorporates a
five-layer structure of sparse convolutional layers, increasing
an layer compared to the baseline network.

The experimental results demonstrate a decrease in both
3D detection accuracy and BEV detection accuracy to a cer-
tain extent. This substantiates the assertion that indiscrimi-
nately increasing the depth of convolutional layers is not an
optimal solution. Consequently, it emphasizes the necessity
of an adaptive convolutional layer structure design.

4.4.2 Experimental Results of 3D Inverted Residual Net-
work Feature Fusion Module

The difference between experiment (c) and experiment (d) is
only that in the 3D backbone network, the residual connec-
tion method is different. Experiment (c) is conventional
residual connection, while experiment (d) is an inverted
residual connection method. The results of experiment (c)
show that the traditional residual connection method has a
certain accuracy improvement in the evaluation scales such
as moderate and hard of the category of pedestrians, but it
has declined in the detection of other categories. It shows
that the residual convolution method can obtain more feature
information of small target categories, but deeper residual
convolution will also lead to the dilution of feature informa-
tion of some categories during the convolution process, such
as Car and Cyclist. In the inverted residual convolutional
connection, more original feature is preserved by expanding
the number of output channels of the feature map. Com-

pared with experiment (c), the detection accuracy has been
significantly improved in both AP3D and BEV indicators.

The experimental model of 3DFFM has a serial number
of (d). The analysis in Table 5 and Table 6 shows that the
three types of 3D detection achieve accuracy rate improve-
ments of 0.13%, 0.65%, and 2.23%, respectively. In the
context of medium difficulty average metrics, the accuracy
of BEV displays increments of 0.34%, 0.86%, and 1.49%,
respectively. Attributable to the architectural incorporation
of the inverted residual convolution module and the appli-
cation of the SoftMax weight function, which facilitates the
network to extract deeper feature information and express
it. Notably, this effect was particularly impressive for small
target categories, including Cyclist, Pedestrians, and signifi-
cantly contributed to the superiority of the proposed module.

4.4.3 Experimental Results of Attention-Based Spatial Se-
mantic Feature Convolution Module

In this section, ablation experiments are categorized into
three distinct groups, denoted as (e), (f), and (g). These
experiments individually investigate the influence of distinct
structural designs within 2D CNN networks on the accuracy
of detection.

Compared with the baseline, the utilization of SSFA
has led to an enhancement in the detection accuracy of the
two smaller target categories, namely Cyclists and Pedes-
trians, but it has slightly decreased in the Car category. It
shows that the spatial and semantic information convolution
group in SSFA can improve the feature extraction ability
of small target objects, but for large target categories, this
method will cause certain feature loss. In experiment (f),
the CBAM method is used to retain more characteristic in-
formation of large target objects while maintaining the ac-
curacy of small target categories. SSFE is a combination
of SSFA and CBAM, and the experiment is labeled as Ex-
periment (g). Under the hard evaluation level, the accuracy
of 3D detection decreases by 0.10% for car but increases by
2.22% and 0.94% for Cyclist and Pedestrians, respectively.
This observation underscores the substantial enhancement
of feature extraction capabilities for small object categories
achieved by the SSFE module, while simultaneously main-
taining the overall accuracy of large object categories with
negligible alterations. The precision of BEV detection im-
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Fig. 6 The visualization of our 3D detection results on the KITTI validation set, there are three
columns in total, divided into A, B, C.

Fig. 7 The visualization on KITTI validation

proved by 0.18%, 2.26%, and 1.13%, correspondingly, in the
hard evaluation tier. In conclusion, these results demonstrate
that the use of channel stacking between the semantic and
spatial convolution layer and CBAM structure in the SSFE
module can focus on clearer channel and spatial information.

4.5 Visualization of Network Results

The enhanced network incorporates six distinct scenario

groups for visualization purposes, with the resulting visu-
alizations presented in Fig. 6 and Fig. 7. Specifically, Fig. 6
encompasses three distinct scenarios: A, B, and C.

In Scenario A, a notable contrast emerges between the
enhanced network and the baseline, highlighted within the
red box. The improved network effectively maintains ac-
curacy in the Car category detection while also exhibiting
enhanced recognition of Pedestrians information, resulting
in an overall improvement in Pedestrian category detection
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accuracy. Scenario B demonstrates the resolution of Car
detection issues observed in the Reinforced Voxel-RCNN
visualization results, along with improved representation of
target object features, a challenge successfully addressed by
our method. In Scenario C, an issue identified in the baseline
where Pedestrians were incorrectly categorized as Cyclist has
been diligently rectified in Reinforced Voxel-RCNN.

In Fig. 7, the green box represents the ground truth and
the red box represents the network predicted value, which
contains the 3D prediction value and the ground truth in
the point cloud and image scenes. It can be seen from the
three sets of scenes in Fig. 7 that the predicted values of
the improved algorithm in this paper are in good agreement
with the real values. High-precision prediction can also
be made for targets without real labels in the scene, and
the target object category can be correctly predicted. In
conclusion, the visualization results from the aforementioned
scenarios effectively prove the rationality and effectiveness
of the network improvement.

5. Conclusion

In this paper, The 3D convolutional backbone extraction net-
work in the benchmark network and the feature information
extraction and expression capabilities from the BEV detec-
tion perspective are not strong, and the hierarchical infor-
mation fades with the deepening of the convolutional layers,
resulting in low detection accuracy and object misdetection.

Our approach (Reinforced Voxel-RCNN) proposes the
design of a 3D inverse residual network feature fusion net-
work and an attention-based spatial semantic feature convo-
lutional network. The design of the inverted residual con-
volutional network preserves a higher quantity of 3D sparse
features, effectively mitigating issues associated with infor-
mation loss stemming from excessively deep convolutional
network layers, and the introduction of the attention-based
spatial semantic feature convolution network enhances the
network’s capability to amalgamate deeper channel and se-
mantic information in BEV detection. The test results on
the public dataset KITTI demonstrate that our method can
further improve the detection accuracy when compared with
the forward state-of-the-art 3D point cloud object detection
methods. In addition, the proposed network improvement
could be transplanted to other algorithms with the same
partial structural design, this hypothesis was verified in the
comparative experiments in Table 3 and Table 4, and also
achieved positive results.

Future work includes the optimization of multi-task de-
tection heads within the network, with a dedicated focus on
reducing anchor box matching time and enhancing real-time
detection efficiency. This undertaking represents a chal-
lenging research endeavor aimed at elevating the network’s
overall detection performance.
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