
DOI:10.1587/transinf.2023EDP7201

Publicized:2024/06/11

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Evaluating Introduction of Systems by Goal Dependency Modeling

Haruhiko KAIYA†, Nonmember, Shinpei OGATA††, and Shinpei HAYASHI†††, Members

SUMMARY Before introducing systems to an activity in a business or
in daily life, the effects of these systems should first be carefully examined
by analysts. Thus, methods for examining such effects are required at the
early stage of requirements analysis. In this study, we propose and evaluate
an analysis method using a modeling notation for this purpose, called goal
dependency modeling and analysis (GDMA). In an activity, an actor, such
as a person or a system, expects a goal to be achieved. The actor or another
actor will achieve this goal. We focus herein on such a goal and the two
different roles played by the actors. In GDMA, the dependencies in the
roles of the two actors about a goal are mainly represented. GDMA enables
analysts to observe the change of actors, their expectations, and abilities
by using metrics. Each metric is defined on the basis of the GDMA meta-
model. Therefore, GDMA enables them to decide whether the change is
good or bad both quantitatively and qualitatively for the people. We evaluate
GDMA by describing models of the actual system introduction written in the
literatures and explain the effects caused by this introduction. In addition,
CASE tools are crucial in efficiently and accurately performing GDMA.
Hence, we develop its tools by extending an existing UML modeling tool.
key words: Goal-oriented requirements engineering, metrics, CASE tools

1. Introduction

People participate in many activities, such as selling goods
for businesses and taking care of elderly people every day.
When an artificial element like an information system is in-
troduced into these kinds of activity, the system should be
valuable to the humans and the organizations involved in the
activity. One of the goals of the early requirements anal-
ysis is to clarify whether or not such a system is indeed
valuable for the parties involved before developing and in-
troducing it. However, only a few methods can play such
a role in requirements engineering techniques. One excep-
tion is the iStar modeling notation [1] and its variations [2].
iStar contains two novel concepts, that is, goal dependency
and contribution links about quality characteristics. In iS-
tar, a person, an organization or an artificial element (e.g., a
system) is called an actor. The concepts help stakeholders
understand an activity, the actors, and their dependencies.
Although both concepts are important, the concepts make
the iStar and its variation models too complicated to identify
the improvement caused by introducing systems. This issue
is insignificant because the main role of iStar models is to
improve the understanding of stakeholders about their activ-

†The author is a professor in Kanagawa University
††The author is an associate professor in Shinshu University

†††The author is an associate professor in Tokyo Institute of Tech-
nology

ity. Therefore, the concern about many model instances of
iStar and its variations not always rigorously following their
syntax is not a problem.

We want stakeholders to clearly know whether or not
the system introduction is valuable before developing and
introducing that system. To satisfy this requirement, we need
a new modeling notation that is more formal and simple than
iStar and its variations. Thus, in this work, we propose and
evaluate a notation, called goal dependency modeling and
analysis (GDMA), in which the actors in an activity and
these actors’ goals are modeled in the same manner as in
iStar. Four metrics related to people’s gains and losses are
calculated on the basis of the model. The metric changes
let the stakeholders know whether or not the activity will
become better or worse than ever. Introducing new systems
is an example of a change in activity. GDMA systematically
enables analysts to predict whether or not the introduced
systems are valuable. The goals achieved by systems become
the bases of their specifications. To calculate the model
metrics, its syntax is rigorously defined using a meta-model
and several constraints. We develop CASE tools for GDMA
to automatically perform a prediction.

As well as the original iStar [1], GDMA and its tools
are intended to be used in “early-phase requirements activ-
ities” [1]. For example, we expect they will help require-
ments analysts to consider how the intended systems would
meet organizational goals, and to clarify why the systems
are needed. Late-phase requirements engineering tasks such
as specifying requirements documents precisely, completely
and consistently are out of scope in GDMA and its tools.
One or more requirements analysts should develop GDMA
models and analyze them because stakeholders usually do
not have skills to develop models. Example of such stake-
holders are customers of systems to be developed and people
who participate in a business or life activity supported by
the systems. The interaction between the requirements an-
alysts and such stakeholders is of course necessary because
the analysts have to know the stakeholders’ intention and the
activity supported by the system, and to provide analytic re-
sults to the stakeholders for getting further information. How
to perform such interaction is also out of scope in GDMA.

Although GDMA uses goal dependency, which is an
important concept in iStar, the other GDMA concepts are
different from those of iStar in some aspects. First, goal
delegation is rigorously managed, that is, when a goal exists,
it should finally be decomposed into means to achieve the
goal. Second, a quality characteristic is not a first-class

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

object, but a goal attribute.
The contributions of this study are as follows:

1. The ideas of GDMA are proposed.
2. Its meta-model is provided.
3. Its supporting tools are developed and introduced.
4. The tools are explained using the meta-model.
5. Elaborate case studies are presented.

The basic idea of GDMA was informally presented in [3];
however, its meta-model was not defined. Parts of the tools
were presented in [4] and [5] as well, but they were not
explained on the basis of the meta-model.

The rest of this paper is organized as follows: Section
2 introduces the notation of GDMA and its meta-model and
explains the model analysis using metrics, (i.e. CASE tools
are crucial in performing modeling and analysis); Section 3
presents the tools used; Section 4 explains the result of the
GDMA evaluation; Section 5 discusses the method, the tools
and the results of evaluation; Section 6 reviews the related
work; and Section 7 summarizes our results.

2. Goal dependency model and its analysis

2.1 Motivating example

As mentioned in the Introduction section, systems introduced
into an activity should have a contribution to the people
and organizations involved in the activity. GDMA helps
us predict whether or not the introduction of systems offers
such a contribution. As an example, we use the activity
of submitting a paper to a conference to explain GDMA.
We regard this activity of more than 30 years ago as an as-is
activity and the activity today as a to-be activity. Apparently,
the to-be activity is better than the as-is activity with respect
to both contributors and organizers.

First, we will describe an as-is situation in the activity.
More than 30 years ago, we did not have any ICT-based
systems for submitting a paper to a conference and delivering
the paper to the conference organizer. When a professor or
a researcher wants to submit a paper, he/she must put the
paper into print. The printout must then be placed in an
envelope and posted. The postal service will deliver the
envelope to the conference organizer. This process usually
takes approximately 3 days to 1 week from a professor in
Asia to an organizer in Europe. The delivering cost is not
inexpensive, especially for the express delivery option.

Second, we will describe a to-be situation in the activ-
ity. Today, most conferences provide a web-based computer
system for submitting and delivering papers. When a pro-
fessor wants to submit a paper, he/she only needs to prepare
a copy of his/her paper in electronic format (e.g., PDF). The
file is immediately submitted to the system and delivered
to the organizer. In contrast to that of postal services, the
running cost of the system is very inexpensive or available
for free.

2.2 Goal dependency models in iStar-based notation

Fig. 1 shows an as-is goal dependency model when a pro-
fessor submits a paper. As mentioned, we had no computer
systems for paper submission more than 30 years ago. This
model shows this situation. Today, we have many web-based
systems for paper submission. The to-be model in Fig. 2
shows today’s goal dependencies.

Using these models, we will introduce the syntax and
explain the intuitive meaning of the model notation. The
notation outline is based on iStar [1]; therefore, we call
the notation in these figures as the iStar-based notation. A
circle corresponds to an actor (e.g., a person or a system)
in an activity. A stereo-type MACHINE is attached when
an actor is an artificial element like an information system.
The round rectangle between the two actors corresponds to
a goal. Each actor and a goal are connected by an arrow.
Each actor connected to a goal plays a different role in the
goal. The relationship between a goal and two actors shows
the delegation of goal achievement. When an actor wants
the goal to be achieved, the arrow’s direction is from the
actor to the goal. In iStar, the actor pursues the role of
a “Depender.” When an actor will achieve the goal, the
arrow’s direction is from the goal to the actor. In iStar, this
actor plays the role of a “Dependee.” In Fig. 1, the goal G1 “A
paper submitted” is connected to two actors “Professor” and
“Secretary.” The “Professor” wants the goal to be achieved,
and the “Secretary” will achieve the goal. In our meta-model,
the goal between two actors is referred to as “DependGoal.”

Although our notation imports the fundamental concept

Secretary

A paper submitted

just barely on time
cheap

The printed paper provided

quickly

The paper put in an envelope and posted

quickly

The envelope delivered

quickly
cheap

G1

G2

G3

G1

G2 G3 G4

Professor

G1

G2

G3

G4

Post Office

G4

10,10
5,3

5,3

10,10
10

10

7

3

Fig. 1 As-is model of submitting a paper written in the iStar-based nota-
tion

<<MACHINE>>
Submission system

A paper submitted

just barely on time
cheap

The file of the paper provided

quickly

The file delivered

quickly
cheap

G1

G2

G3

G1

G2 G3

Professor

G1

G2

G3

10,10
7,8

5

10,10

10,8

4

Fig. 2 To-be model of submitting a paper written in the iStar-based no-
tation

KAIYA et al.: EVALUATING INTRODUCTION OF SYSTEMS BY GOAL DEPENDENCY MODELING
3

of goal dependency from iStar, the other concepts compris-
ing iStar are not used in the same manner. In particular,
we do not use four different dependency elements between
actors (e.g., goals, tasks, resources and quality.) In addition,
our notation has our own concepts; hence, our notation is
not an extension of iStar [2].

Our first own concept is the rigorous management of the
goal delegation traceability. When an actor wants a Depend-
Goal to be achieved, the actor must contain an OriginGoal
or RefinedGoal that corresponds to the DependGoal. The
correspondence is represented by the identification number
of a goal (e.g., G1, G2, and so on.) An actor sometimes
wants a goal to be achieved within an activity without any
reasons. This goal is called OriginGoal, in which a small
circle is attached to the top-left side. In Figs. 1 and 2, goal
G1 “A paper submitted” is an OriginGoal. Although the
Professor could have a reason or cause to want to submit a
paper outside the activity, these issues are out of the scope
of this model. Therefore, G1 is an OriginGoal. In the same
manner of iStar, a goal delegated to a “Dependee” can be
decomposed into several goals within the actor. The leaf
goals of the decomposed hierarchy are called RefinedGoals.
Each RefinedGoal must be delegated to one of the actors. In
Fig. 1, goal G1 is decomposed into G2, G3, and G4, and each
of which is a RefinedGoal. Each RefinedGoal is delegated
to the “Professor,” “Secretary” and “Post Office.” As shown
in this example, a RefinedGoal in an actor can be delegated
to the actor him/herself.

When an actor will achieve a DependGoal, the actor
must contain a MeansGoal or a RefiningGoal that corre-
sponds to the DependGoal. Nothing will be achieved for-
ever if all actors continue the delegation of achieving goals.
Therefore, some actors must prepare means to achieve a
goal and stop the delegation chain. A MeansGoal in an actor
shows that the actor has the means to achieve a goal. In this
case, the goal does not have to be delegated to another. The
goal of the course does not have to be decomposed into other
goals as well. We do not specify the details of the means
in our modeling. We only clarify that an actor has some
means. In Fig. 1, the “Secretary” has the means to achieve
goal G3 stating “The paper put in an envelope and posted.”
Perhaps, he/she will do them him/herself. As shown in this
example, a hexagon icon is put at the right-bottom part of
the MeansGoal. If a goal is delegated to an actor, but the
actor does not have any means to achieve this goal, the actor
may decompose the goal into several goals such that each
goal can be delegated to an actor. In this case, a decomposed
goal is called a RefiningGoal. And-decomposition and or-
decomposition can be used in this goal decomposition. G1 in
“Secretary” in Fig. 1 and G1 in “Submission system” in Fig. 2
are examples of RefiningGoals. Only and-decomposition is
used in both cases.

Our second own concept touches on the quality charac-
teristics and their quantification. Adverbs expressing quality
characteristics like “efficiently” and “accurately” are used
to qualify the verbs. Although a goal is not a verb, most
goals are represented by using nouns and a verb (e.g., “A

paper submitted”). An adverb is used to specify the degree
of goal achievement in a viewpoint, such as “efficiency”
or “accuracy,” and each goal generally has several different
viewpoints. The meaning of the adverb is unclear when it
is not related to a verb. Therefore, we made an adverb that
expresses a quality characteristic as a goal attribute in our
notation. Figs. 1 and 2 depict a rectangle, which represents
a goal, being vertically divided into two parts. In the upper
part, a goal is specified by using nouns and a verb in the
the past perfect tense form. In the lower part, the quality
characteristics are listed line by line. The two quality char-
acteristics of “just barely on time” and “cheap” qualify goal
G1 “A paper submitted.” The other goals in the figures only
have one quality characteristic. The values attached to the
arrows incoming and outgoing a DependGoal correspond to
the quality characteristics attached to the DependGoal. Each
value takes from 1 to 10 integer values. Each value attached
to an arrow incoming a DependGoal shows the level of how
well an actor wants the DependGoal with respect to the cor-
responding quality characteristic. In this paper, the value
is sometimes referred to as the want-level. The actor really
or supremely wants the goal when the value is 10. Each
value attached to an arrow outgoing a DependGoal shows
the level of how well an actor can achieve the DependGoal
with respect to the corresponding quality characteristic. The
value is sometimes referred to herein as the can-level. In
Fig. 1, the values around DependGoal G4 “The envelop de-
livered” represent the following extents: “a Secretary” wants
G4 to be achieved quickly and inexpensively. However, the
“Post Office” achieves G4 not so quickly and not so late and
expensive.

As shown in the Secretary in the as-is model, G1 is
decomposed into G2, G3 and G4. All these decomposed
goals have a quality characteristic “quickly”. Because Sec-
retary is not a system but human and actors who achieve the
decomposed goals are also human or an organization, the
achievement of such goals and the composition of the goals
are inherently slow. Especially, the achievement of G3 and
G4 is quite slow because it requires physical tasks such as
sending the envelope by air mail. The Secretary thus sets
the want-level of quickly in the decomposed goals to 10 so
that G1 can be achieved as just barely on time as possible.
On the other hand of the to-be model in Fig. 2, Submission
system decomposes G1 into G2 and G3, and G3 is achieved
by itself. Because Submission system is not human but an
information system, the achievement of G3 is quick and the
composition of G1 is also quick. As a result, G2 may be
achieved a little bit slow by Professor although G1 has to be
achieved as just barely on time as possible. Therefore, the
system sets the want-level of G2 to 5 in the to-be model.

2.3 Meta-model and its instance

The previous subsection intuitively introduced our goal de-
pendency models. We then defined its formal syntax by using
a meta-model in Fig. 3. The meta-model was written in a
UML-class diagram; thus, a concrete model corresponding

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

+ name : String
+ id : int

<<abstract>>
Goal

<<abstract>>
GraphNode

RefinedGoal
<<abstract>>
GraphRefine

AndRefine OrRefine

OriginGoal

MeansGoal

DependGoal

<<abstract>>

+ name : String

Actor

Machine

<<abstract>>
CanGoal

RefiningGoal

+ cangoal

1

<<abstract>>
WantGoal

+ wantgoal

1

<<abstract>>
Dependency

Want

Can

+ want

+ actor

0..*

1

+ dependgoal

+ can

1
1

+ name : String

Quality

+ quality

1..*

{ordered}

+ value : int

Level

+ level

1..*

{ordered}
+ want

+ dependgoal

1

1
+ can

+ actor

0..*

1

Human

Fig. 3 Meta-model of the goal dependency modeling notation written in the UML-Class Diagram

name = Professor

: Human

name = Submission system

: Machine

name
id = 1

: OriginGoal

name
id = 2

: MeansGoal

name
id = 3

: MeansGoal

name
id = 1

: RefiningGoal

name
id

: AndRefine

name
id = 2

: RefinedGoal

name
id = 3

: RefinedGoal

name = A paper submitted
id = 1

: DependGoal
: Want : Can

name = just barely on time

: Quality

name = cheap

: Quality

value = 10

: Level

value = 10

: Level

value = 7

: Level

value = 8

: Level

name = The file of the paper provided
id = 2

: DependGoal
: Want: Can

name = quickly

: Quality

value = 4

: Level value = 5

: Level

name = The file delivered
id = 3

: DependGoal

: Want

: Can

value = 10

: Level

value = 10

: Level

value = 10

: Level

value = 8

: Level

name = quickly

: Quality

name = cheap

: Quality

Fig. 4 Model corresponding to the to-be model in Fig. 2 written in the meta-model-based notation
(i.e. an instance of the meta-model in Fig. 3)

to Fig. 1 or 2 is represented in an object diagram (Fig. 4).
We will briefly explain this meta-model here. The

main elements in the meta-model are “Actor” and its sub-
classes and “DependGoal” as represented by the white color
in Fig. 3. An Actor is either “Human” or “Machine.” This
distinction is introduced to clarify the effects of artificial
elements introducing an activity. “Machine” corresponds
to an artificial element, such as an information system or a
hardware element, while “Human” corresponds to an “Ac-
tor” which is not a “Machine”. Therefore, a company or an
organization is a “Human”. The most important structure in
our notation is the relationship between two “Actors” and a
“DependGoal.” This relationship is represented by “Actor”,
“DependGoal”, “Can”, “Want,” and the associations among
them in the meta-model. Each “DependGoal” has more than

one quality characteristics representing in “Quality” classes
in the meta-model. The “Want” and “Can” classes corre-
spond to the arrows incoming and outgoing a “DependGoal”.
Both “Want” and “Can” have to possess several values of a
quality level representing in a class “Level”. As shown in
the meta-model, there is no direct mapping between “Qual-
ity” and “Level”. However, there is an indirect mapping
between them. There is an association between “Quality”
and “DependGoal”, and the “Quality” is ordered. There-
fore, a list of “Quality” instances is like an array of pro-
gramming languages, and a “DependGoal” instance owns
the array. There is one-to-one mapping between “Can” and
“DepandGoal”. There is also one-to-one mapping between
“Want” and “DependGoal”. In addition, both “Can” and
“Want” are subclasses of “Dependency”. In the same way as

KAIYA et al.: EVALUATING INTRODUCTION OF SYSTEMS BY GOAL DEPENDENCY MODELING
5

“DependGoal”, there is an association between “Level” and
“Dependency”, and the “Level” is ordered. Therefore, a list
of “Level” instances is also like an array, and a subclass in-
stance of “Dependency” owns the array. As a result, we can
identify an indirect mapping between “Quality” and “Level”
by using the indices of such arrays. Note that the lengths of
the arrays have to be the same. This constraint is enforced
by the Eq.(2) below.

In addition to the meta-model, we need several con-
straints to specify the valid models. We define these con-
straints in OCL expressions in Eqs. (1)-(4). Note that → in
these equations is not the logical implication, but the acces-
sor in the OCL expressions.

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝐿𝑒𝑣𝑒𝑙

𝑖𝑛𝑣 : 1 ≤ self .value 𝑎𝑛𝑑 self .value ≤ 10
(1)

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝐶𝑎𝑛

𝑖𝑛𝑣 : level → size() = dependgoal.quality → size()
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑊𝑎𝑛𝑡

𝑖𝑛𝑣 : level → size() = dependgoal.quality → size()

(2)

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝐴𝑐𝑡𝑜𝑟

𝑖𝑛𝑣 : wantgoal → forAll(x, y | x <> y implies x.id <> y.id)
𝑖𝑛𝑣 : want → forAll(x, y | x <> y implies

x.dependgoal.id <> y.dependgoal.id)
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑊𝑎𝑛𝑡

𝑖𝑛𝑣 : actor.wantgoal → exists(c | c.id = dependgoal.id)

(3)

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝐴𝑐𝑡𝑜𝑟

𝑖𝑛𝑣 : cangoal → forAll(x, y | x <> y implies x.id <> y.id)
𝑖𝑛𝑣 : can → forAll(x, y | x <> y implies

x.dependgoal.id <> y.dependgoal.id)
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝐶𝑎𝑛

𝑖𝑛𝑣 : actor.cangoal → exists(c | c.id = dependgoal.id)

(4)

In the “Level”, each value should take from 1 to 10
[Eq. (1)]. The number of “Levels” associated to “Can” or
“Want” should be the same as the number of “Quality”.
This constraint is represented in Eq. (2). Each “Actor” can
contain several “OriginGoals” and/or “RefinedGoals” gener-
alized into “WantGoals.” Each “WantGoal” has to be del-
egated to an “Actor” via a “DependGoal.” This constraint
is represented in Eq. (3). In the same manner, each “Actor”
can contain several “MeansGoals” and/or “RefiningGoals”
generalized into “CanGoals.” Each “CanGoal” must be del-
egated from an “Actor” via a “DependGoal.” This constraint
is represented in Eq. (4).

The instance of the meta-model in Fig. 4 corresponds to
the model in Fig. 2. We call the representation in Fig. 4 as the
meta-model-based notation. The model conforms with the
meta-model in Fig. 3 and the abovementioned constraints.
The instance in Fig. 4 shows that only “DependGoal” in-
stances have both “name” and “id” attributes. Therefore,

an “id” attribute becomes a key to access the corresponding
“name” attribute. Thus, the “name” attribute of an “Origi-
nalGoal” or “MeansGoal” is empty. The instances of “Re-
finedGoal” and “RefiningGoal” are intermediate nodes only,
and they are not referred from others; hence, their “name”
attributes are also empty. Considering the constraint of
our prototype tool in Section 3.3, their “name” attributes
are not empty in our prototype tool, but instead are filled
with a dummy name, such as “Class1” or “Class2.” And-
decomposition and or-decomposition are represented in the
instances of “AndRefine” or “OrRefine”, each of which is a
subclass of “Goal”. We want to use a composite pattern to
represent the hierarchical structure. In this figure, the map-
ping between “Quality” and “Level” instances seems to be
expressed only by the placement of objects. However, the
mapping is indirectly specified by the orders of “Quality”
instances and “Level” instances as mentioned at the end of
second paragraph in this subsection.

2.4 Evaluation by using metrics

When the actors and their contributions to an activity are
changed, the activity can be better or worse than ever. We
evaluate whether or not a snapshot of an activity is better
than another by using the models representing each snapshot
during the changes. We set the following criteria for the
evaluation:

1. When the goals of a human are achieved, and the num-
ber of goals is more than ever, we regard this activity to
be better than ever.

2. When the goals of a human are achieved, and the quality
of achieving these goals is better than ever, we regard
this activity to be better than ever.

3. When a human should achieve goals, and the number of
goals is more than ever, we regard this activity as worse
than ever.

4. When a human should achieve goals, and the quality of
achieving these goals is required to be better than ever,
we regard this activity to be worse than ever.

The criteria are constructed following two different view-
points. The first viewpoint is about the quantity of goal
achievement and the quality. The second viewpoint is about
who wants to achieve a goal and who achieves it. The first
and second criteria are obvious, while the other bear some
argument. The last two criteria are based on the position
that people do not want to work and to be depended on by
others. We believe that this position is appropriate at least
in a business activity.

We define the four metrics of Average Number of Wants
(ANW), Average Gain of Wants (AGW), Average Number of
Cans (ANC), and Average Gain of Cans (AGC). Because the
metrics correspond to the abovementioned criteria, ANW
and ANC show the quantity of goals, and AGW and AGC
show the quality. Also, ANW and AGW show the evaluation
by dependers, i.e. actors who want to achieve goals, and
ANC and AGC show the evaluation by dependees, i.e. actors

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

who will achieve goals. ANW and ANC are independent of
AGW and AGC because the quantity is independent of the
quality. All dependers’ goals are achieved by a dependee.
Therefore, ANW completely depends on ANC if all actors
are human. However, non-human actors such as information
systems exist in a model because we describe models so that
we can examine their introduction. In addition, ANW does
not take goals wanted by non-human actors into account.
ANC also does not take goals achieved by non-human actors
into account. As a result, ANW does not completely depend
on ANC, and vice versa. The relationship between AGW
and AGC is the same.

Algorithms 1 to 4 in the Appendix are the formal al-
gorithms used to calculate the metrics. We will show their
informal definitions and their rationale.

1. ANW: We simply count the number of instances of an
“OriginGoal” of a “Human” in average. We do not
consider instances of a “RefinedGoal” because they are
only subcontract goals derived from a goal assigned
by another. We are not so happy when such goals are
achieved. We are rather happy when someone else does
not assign us to his/her goal.

2. AGW: As exemplified in Fig. 4, a “DependGoal” in-
stance is associated to an instance of “Can” and an
instance of “Want.” The level of “Want” corresponds
to the degree of expectation by an actor who want to
achieve the “DependGoal.” The level of “Can” cor-
responds to the degree of ability of an actor who will
achieve the “DependGoal.” Thus, we focus on the value
of the ability divided by the expectation. In the AGW,
we only focus on the instances of “DependGoal” wanted
by human. The average of these values about the in-
stances is the AGW.

3. ANC: We simply count the number of “MeansGoal”
instances of human in average. We regard the means to
achieve a goal to be the main effort.

4. AGC: In the AGC, we only focus on the instances of the
“DependGoal” achieved by human and on the value of
the expectation of an instance divided by the ability to
achieve the instance. The average of these values is the
AGC.

Table 1 presents the results of metrics about the paper
submission activity in Figs. 1 and 2. We briefly explain how
to calculate the metrics in the table. The ANC’s numerator of
the as-is model in Fig. 1 is 1+1+1, i.e. 3. In Fig. 1, Professor,
Secretary and Post Office contain goals with a hexagon mark;
G2, G3 and G4 respectively. The value 3 corresponds to the
number of such goals. Such a hexagon mark indicates that
the actor containing the goal with the mark has the means to
achieve the goal. The denominator of the ANC corresponds
to the number of such actors, that are not a machine or a
system. Algorithm 3 in appendix formally represent how to
calculate the ANC. Because the algorithm only focuses on
the Human actors in the model, the ANC of to-be model in
Fig. 2 is 1/1 as shown in the table. The denominator of the
AGC for the as-is model in Fig. 1 is 1 + (2 + 1) + 2. This

value corresponds to the number of quality characteristics in
G2, G1, G3 and G4 respectively. Professor will achieve G2,
and G2 has one quality characteristic. Secretary will achieve
G1 and G3, and G1 and G3 have two and one characteristics
respectively. Post Office will achieve G4, and G4 has two
characteristics. These numbers of the quality characteristics
are summed up, and the result is put at the denominator.
The line 8 of algorithm 4 in Appendix corresponds to this
summing up. The AGW is also calculated in the similar way
as shown in algorithm 2 in Appendix.

All metrics except ANC proved that the to-be model is
better than the as-is model because the ANW and the AGW
increase, and the AGC decreases. The increase of the ANW
means that the goals of the people in this activity are achieved
more than ever. The increase of the AGW means that the
goals are achieved better than ever. The ANC shows that
people in a to-be model have to achieve the same number
of goals as people in an as-is model do. The decrease of
the AGC means that the people may achieve the goals more
comfortable than ever.

Table 1 Metrics in Figs. 1 and 2

ANW:
Average Number of Wants

AGW:
Average Gain of Wants

ANC:
Average Number of Cans

AGC:
Average Gain of Cans

As-is model in Fig. 1 To-be model in Fig. 2

3. Modeling tools

As mentioned, CASE tools are crucial in performing an anal-
ysis of the system introduction using GDMA. Accordingly,
we developed prototypes of these CASE tools to evaluate our
idea.

3.1 Class diagram-based notation

When describing a model, the iStar-based notation in Figs. 1
and 2 can easily be used by iStar users; howerver, not all
developers are familiar with iStar. In addition, we have to
develop and introduce a specific tool to edit the notation.
The meta-model-based notation, such as the instance of the
meta-model used in Fig. 4, is precise and can be described
using the usual UML modeling tools. However, describing
the models in the notation is complicated. We opted for a
goal dependency model using the UML-class diagram be-
cause instance diagrams, such as those in Fig. 4, are less
familiar to many developers than class diagrams. At least in
classrooms, tool users could operate them smoothly because

KAIYA et al.: EVALUATING INTRODUCTION OF SYSTEMS BY GOAL DEPENDENCY MODELING
7

Table 2 Comparison of the meta-model, iStar-based notation, and class diagram-based notation
Meta-model iStar based-notation Class diagram-based notation
Human Circle Subsystem
Machine Circle with MACHINE Subsystem with MACHINE
Goal Round rectangle with ID number Class with Gi

e.g., G1
DependGoal Goal with its name Class with its name
Can, Want Arrow Association with one navigability
Level Arrow’s annotation Constraint of an association
MeansGoal Small goal in an Actor with hexagon Class in a subsystem with MEANS
RefiningGoal Small goal in an Actor Class in a subsystem
OriginGoal Small goal in an Actor with circle Class in a subsystem with ORIGIN
RefinedGoal Small goal in an Actor Class in a subsystem
AndRefile branching Composition
OrRefile branching with “or” Aggregation
Quality Phrase in a DependGoal Class with its name and QUALITY

The words in capital letters (e.g., MACHINE) are stereotypes. Gi is also a stereotype (e.g., G1 and G2).

they had already used an UML editor, extended to the tools
in other lectures and exercises [4], [5]. In the UML editor,
the powerful APIs enable us to extend functionalities during
editing class diagrams. Hence, we efficiently implement the
modeling tools for GDMA.

Fig. 5 illustrates a model in the class diagram-based
notation corresponding to the models in Figs. 2 and 4. Ta-
ble 2 shows us the correspondence between an element in
the iStar-based notation and that in the class diagram-based
notation. The ID of a goal is very important; hence, it is
represented in a stereotype (e.g., G1 and G2) for emphasis.
The quality characteristics are represented in classes because
they become goal attributes (Fig. 5).

3.2 Functions of the tools

Our tools provide four kinds of functions.

1. Editor: On the basis of the class diagram-based nota-
tion, we can describe the models using the usual UML
modeling editors. However, it is not easy for a de-
veloper to follow the meta-models and constraints in
Section 2.3; hence, we added functions to an existing
modeling editor to check the syntax in the meta-model.
We also added functions to insert specific stereotypes

Professor

<<ORIGIN>>
<<G1>>

Class6

<<MACHINE>>
Submission system

<<G1>>
Class8

<<MEANS>>
<<G2>>

Class7

- attribute1 : cheap
- attribute0 : just barely on time

<<G1>>
A paper submitted

<<G2>>
Class9

{10,10}

<<G3>>
Class10

{7,8}

<<MEANS>>
<<G3>>

Class12
- attribute2 : quickly

<<G2>>
The file of the paper provided

- attribute0 : cheap
- attribute5 : quickly

<<G3>>
The file delivered

{5}

{4}

{10,10}

{10,8}

<<QUALITY>>
just barely on time

<<QUALITY>>
cheap

<<QUALITY>>
quickly

Fig. 5 Model corresponding to the to-be model in Fig. 2 written in the
class diagram-based notation

in Table 2. Fig. 6 shows a snapshot of the editor. In
a manner similar to that of usual editors, we can add
model elements on the pallet at the top of the editor.
The specific stereotypes can be added via another pallet
at the bottom of the editor.

2. Metrics calculator: The metrics in Section 2.4 can be
automatically calculated as exemplified in Fig. 7. The
metrics are automatically updated when a model is mod-
ified, and its syntax is correct. A “No Change” annota-
tion is placed even if a metric is not changed according
to the editting (Fig. 7); otherwise, “better” or “worse” is
placed according the criteria presented in Section 2.4.

3. Delegation tracer: A model mainly contains the trees
of goal delegation. The root goal of each tree is an
“OriginGoal,” and the leaf goals are the “MeansGoals.”
This tool shows such a tree forward and backward, even
from an intermediate goal. Fig. 10 shows a relevant
example. In this example, the delegation tree from goal
G3 “Soap supplied” is traced forward. Using colors,
our tool tells us that goal G3 is finally achieved by the

Fig. 6 Snapshot of Editor

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

“MeansGoal” G1 in “Warehouse” and the “MeansGoal”
G4 in “Sensor.” This function mitigates the sixth issue
in Section 5.

4. Quality tracer: Each goal has several quality attributes,
which are usually inherited during the goal refinement
specified in “GraphNode” in the meta-model. These
attributes are not always inherited because of the ra-
tionale of an actor refining the goal. This tool asks
us whether or not quality attributes should be inherited
when they are not. Fig. 8 shows a relevant example, in
which goal G1 has two attributes (i.e., “just barely on
time” and “cheap”), while its refined goal G2 only has
one (i.e., “quickly”). The tool asks the user whether
or not he/she accepts this refinement. When he/she ac-
cepts it, the tool remembers it and never asks it. This
function mitigates the second issue in Section 5.

3.3 Implementation of the prototype tools

We implemented the tools by extending an existing UML
modeling tool, called astah †. astah is not free of charge, but
it largely inexpensive, especially for academic users. It costs
approximately 400 EUR per year for all the students and
staffs in a department. On the basis of the plugin mechanism
of astah, the additional functions mentioned earlier can be
easily added. Each plugin can be developed using Java

†https://astah.net/

Fig. 7 Metrics calculator

Fig. 8 Quality tracer

because the plugin mechanism is based on OSGi. Note
that the tools are manually implemented according to the
requirements and design. Model transformation techniques
have not been applied to the meta-model in Fig. 3, which is
part of the design. Considering the constraint of astah, all
classes must have their own names. This is the reason why
the goals in the actors have dummy names (e.g., “Class1” and
“Class2”), as exemplified in Figs. 8 and 10. These dummy
names are automatically placed by our tools.

4. Case studies

We validate GDMA by analyzing two different cases of sys-
tem introduction reported in the literatures. The first case is
about stock management using sensors in 2016, which was
reported as successful in the literature [6]. The second one is
about the automated dispatch of ambulances in 1992. This
case is widely famous because of the terrible results [7].
Our modeling and analysis can conclude the same results
reported in the literatures.

4.1 Good system introduction

Table 3 Metrics of Hagleitner’s activity and its evaluation
Metrics As-is To-be To-be is · · ·
ANW 1.00 1.00 The same
AGW 0.56 0.88 Better than as-is
ANC 2.50 2.00 Better than as-is
AGC 1.83 1.23 Better than as-is

A book [6] introduced the case of the stock management
in Hagleitner, an Austrian manufacturer of sanitary products
and their dispensers. One of Hagleitner’s business is sup-
plying liquid soap and paper towels to customers, including
those in the healthcare and catering industries. The demand
for their services on this aspect increased, making the com-
pany fail to supply the necessary soap and towels as soon as
possible. Cleaning staffs manually checked the dispensers
and reported the lack of soap, etc. The company also needed
sufficient stocks in a warehouse because predicting the deliv-
ery amount was not easy. The company decided to introduce
sensors to monitor the dispensers at the customers’ sites.
This system introduction enabled Hagleitner to supply the
soap and other products on time and minimize the amount of
stocks. We modeled the changes they underwent in Figs. 9
and 10.

Fig. 9 shows an as-is model of this activity. Fig. 10
depicts its to-be model. With the help of sensors, the com-
pany is now able to immediately identify shortage of soap
and other products. As a result, the company did not have
to secure a large stock. Table 3 shows the results of the
metrics and their evaluations. No new goals of the company
and the customers were achieved in the to-be model, but
the quality of the existing goals improved. In this business,
both the company and the customers must achieve several
goals. The quality and the quantity of such goals decreased

KAIYA et al.: EVALUATING INTRODUCTION OF SYSTEMS BY GOAL DEPENDENCY MODELING
9

Hagleitner

<<MEANS>>
<<G2>>

Class2

Customer Company

<<ORIGIN>>
<<G9>>

Class6

<<G9>>
Class3

Cleaning Staff

<<MEANS>>
<<G10>>

Class10

<<ORIGIN>>
<<G6>>

Class8

<<G1>>
Class4

- attribute0 : quickly

<<G5>>
Soap ready <<G5>>

Class9

<<MEANS>>
<<G6>>

Class77

<<G4>>
Class10

<<G5>>
Class5

{10}

<<G3>>
Class6

<<G7>>
Class11

{5}

<<G4>>
Class7

<<G3>>
Class12

- attribute0 : quickly

<<G4>>
Shortage notified

<<ORIGIN>>
<<G10>>

Class9

<<G8>>
Class13

{10}

<<MEANS>>
<<G7>>

Class14

{5}

<<MEANS>>
<<G8>>

Class15

- attribute4 : properly

<<G6>>
Salary required

{10}

{7}

Warehouse

<<MEANS>>
<<G1>>

Class0

- attribute1 : plentifully

<<G1>>
Stock stored

<<ORIGIN>>
<<G2>>

Class1

{10}

{7}

- attribute1 : on demand

<<G3>>
Soap supplied

{10}

{5}

- attribute2 : quickly

<<G7>>
Shortage identified

{10}
{5}

- attribute3 : properly

<<G2>>
Rent required

{10}

{7}

- attribute5 : quickly

<<G8>>
Soap dispenser refilled

{10}

{5}

- attribute0 : anytime

<<G9>>
Soap available

{10}{5}

- attribute1 : properly

<<G10>>
Charge required

{10}
{5}

Fig. 9 As-is model of the stock management in Hagleitner

Fig. 10 To-be model of the stock management in Hagleitner, with the result of delegation tracer

10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 4 Metrics of the ambulances dispatch
Metrics As-is To-be To-be is · · ·
ANW 0.14 0.14 The same
AGW 0.79 0.72 Worse than as-is
ANC 2.43 2.00 Better than as-is
AGC 1.31 1.48 Worse than as-is

in the to-be model, that is, the company and the customers
may work less than ever. The metrics can reveal these is-
sues. A “MACHINE” by the form of the “Sensor” was
introduced. Consequently, the obligation of the “HUMAN”
quantitatively and qualitatively decreased. The ANC and
the AGC reflected such results. In the book [6], the authors
emphasized that business “transparency” is important, and
we agree with it. The goal dependency model and the model
traceability are a means of showing transparency.

4.2 Bad system introduction

The second case is about the system introduction to the am-
bulance dispatch activity [7]. This case is called the LAS
because it was a project in the London Ambulance Service.
A detailed report can be obtained from the site †. This intro-
duction caused terrible failures because of the many prob-
lems related to technology and organization. We mainly
focus herein on the technical problems.

Fig. 11 depicts the as-is model of LAS, while Fig. 12
presents its to-be model. Table 4 shows the results of the
metrics and their evaluation. Two systems were introduced
in this case, namely AVLS and MDT. AVLS must man-
age the status of ambulances such that a staff can dispatch
an ambulance to an emergency call. In the as-is situation,
these tasks were manually achieved by staff using papers and
phone calls. The MDT must efficiently send the status of
an ambulance via a computer terminal by ambulance crews.
Phone calls were used for this task in the as-is situation via
the radio operator. These would work well if the technolo-
gies were matured, and the crews were sufficiently trained.
However, the technologies in 1992 were poor, and the crews
were not adequately trained, which were the main reasons
for the terrible results of LAS. A reason is modeled as a goal
dependency about G15 between AVLS and MDT in Fig. 12.
Before introducing the technologies, this goal dependency
was established between the radio operator and the ambu-
lance crew (Fig. 11). The difference of the can-levels in G15
between the two models revealed that G15 was achieved
worse than ever. Basically, this system introduction is the re-
placement of the as-is activity; therefore, no new goals were
achieved in the to-be model. The ANW in Table 4 reflects
this fact. The systems would achieve several goals instead
of human in the to-be model. Hence, the obligation of the
goal achievement by the human quantitatively decreases, and
the ANC reflects this fact. We assumed that this quantita-
tive analysis of the ANC caused a large pitfall. The AGW

†http://ifs.host.cs.st-andrews.ac.uk/Resources/
CaseStudies/LondonAmbulance/LAS-failure-report.pdfLast
accessed Aug. 2021.

(i.e., a result of the qualitative analysis) revealed that the sys-
tem introduction was bad with respect to the quality of the
goals of the human. The AGC also proved the same because
the introduction asks the human to achieve goals better than
ever. In summary, our goal dependency models and their
analysis using metrics can explain the failure of this system
introduction.

5. Discussion, limitation and threats to validity

We will discuss ten issues related to GDMA. The last and
eighth issues are related to the evaluation in the previous
section, and others are related to GDMA and its tools.

The first issue is how to decide on the value of levels
about the quality characteristics. Basically, an analyst must
subjectively decide on the values. He/she may start to decide
on the can-levels about the “MeansGoal” because these can
be predicted on the basis of the ability of the actual means.
He/she then decides on the other levels by tracing the delega-
tion of a goal backward. A want-level may usually take the
value of 10 because most actors want a goal to be achieved
as well as possible. When the expectation of an actor is
downgraded, the corresponding want-level may decrease. In
Fig. 2, the want-level of G2 is five because the “Submission
system” can wait for his/her submission until the deadline.

The second issue is how to decide on the quality char-
acteristics of each goal. For this, the analyst must also make
a subjective decision. When a goal is decomposed into other
goals, the quality characteristics in a goal are usually in-
herited into its refined goals. The refined goals are then
delegated to other actors. These inheritance and delegation
sometimes help the analyst find missing quality characteris-
tics to be attached.

The third issue involves the range of metrics compa-
rability. Metrics are comparable only when the models are
about the same activity because they are used to observe
the changes of actors and their contribution to the activity.
A comparison between the results of the metrics about the
models of different activities is meaningless. The values are
in ordinal scale; hence, we cannot say that a model is twice
or N-times better than another.

The fourth issue is how to decide on the boundary of an
activity. The boundary is expected to be suitably decided.
However, we did not mind it that much because we focused
on the changes of the models about an activity. Even if the
model boundary is unsuitable, the changes of the metrics
caused by those of the elements in the model tell us whether
or not the changes are good.

The fifth issue involves the exploration of an actual
goal. People usually do not know their actual goal; they
simply complain that their immediate tasks do not work well.
Goal-oriented modeling techniques generally contribute to
finding an actual goal from these immediate tasks. However,
our goal dependency modeling does not focus on this issue.
“OriginGoals” should be carefully chosen before our goal
dependency models are developed.

The sixth issue is about the difficulty of a following

KAIYA et al.: EVALUATING INTRODUCTION OF SYSTEMS BY GOAL DEPENDENCY MODELING
11

Caller

<<ORIGIN>>
<<G1>>

Class16

Control assistant

<<MEANS>>
<<G2>>

Class17

<<G1>>
Class10

- attribute2 : quickly

<<G1>>
Ambulance provided

<<G2>>
Class11

{10}

<<G3>>
Class12

{7}

<<G4>>
Class13

- attribute1 : once
- attribute0 : accurately

<<G2>>
Call made

<<G5>>
Class14

{10,10}

<<MEANS>>
<<G3>>

Class15

{8,6}

<<G10>>
Class36

- attribute4 : quickly
- attribute3 : accurately

<<G3>>
Map referred

{10,10}

{9,6}

- attribute5 : quickly

<<G4>>
Ambulance mobilized

{10}

- attribute7 : suitably
- attribute6 : quickly

<<G5>>
Ambulance selected

{10,10}

Resource allocator

<<G5>>
Class18

Dispatcher

<<G6>>
Class4

<<G4>>
Class19

{7,9}

<<G12>>
Class18

<<G7>>
Class5

{7}

<<G13>>
Class20

<<G8>>
Class6

- attribute1 : accurately
- attribute0 : quickly

<<G6>>
Incident location identified

<<G9>>
Class7

Another CAC staff

<<G6>>
Class11

<<MEANS>>
<<G8>>

Class8

{10,10}

<<G10>>
Class12

<<MEANS>>
<<G7>>

Class9

{8,9}

<<G12>>
Class35

<<G11>>
Class13

- attribute3 : accurately
- attribute2 : quickly

<<G7>>
Ambulance decided

<<MEANS>>
<<G11>>

Class15

{10,10}

{6,9}

- attribute5 : comprehensively
- attribute4 : accurately

<<G8>>
Ambulances stat managed

{10,10}
{9,9}

- attribute7 : accurately
- attribute6 : quickly

<<G9>>
Ambulances current stat provided

{10,10}

Radio operator

<<G9>>
Class27

{6,9}

<<G15>>
Class28

<<G16>>
Class29

<<G13>>
Class30

<<G17>>
Class31

<<G14>>
Class32

- attribute9 : quickly
- attribute8 : accurately

<<G10>>
Call location and detail known <<MEANS>>

<<G16>>

Class33

{10,10}

<<MEANS>>
<<G17>>

Class34

{8,6}

- attribute11 : accurately
- attribute10 : quickly

<<G11>>
Duplicate calls removed{10,10}

{6,9}

- attribute13 : accurately
- attribute12 : quickly

<<G12>>
Selected ambulance known {10,10}

{7,9}

- attribute15 : accurately
- attribute14 : quickly

<<G13>>
Ambulance moved

{10,10}

{8,10}

Ambulance crew

<<MEANS>>
<<G14>>

Class25

- attribute17 : accurately
- attribute16 : quickly

<<G14>>
Ambulance driven

<<MEANS>>
<<G15>>

Class26

{10,10}

{10,10}

- attribute19 : accurately
- attribute18 : quickly

<<G15>>
Each stat provided

{10,10}

{6,9}

- attribute21 : accurately
- attribute20 : quickly

<<G16>>
Message received

- attribute23 : accurately
- attribute22 : quickly

<<G17>>
Message sent

{10,10}

{6,9}

{10,10}
{6,9}

Fig. 11 As-is model of the ambulances dispatch

Caller

<<ORIGIN>>
<<G1>>

Class16

Control assistant

<<MEANS>>
<<G2>>

Class17

<<G1>>
Class10

- attribute2 : quickly

<<G1>>
Ambulance provided

<<G2>>
Class11

{10}

<<G3>>
Class12

{7}

<<G4>>
Class13

- attribute1 : once
- attribute0 : accurately

<<G2>>
Call made

<<G5>>
Class14

{10,10}

<<MEANS>>
<<G3>>

Class15

{8,6}

<<G10>>
Class36

- attribute4 : quickly
- attribute3 : accurately

<<G3>>
Map referred

{10,10} {9,6}

- attribute5 : quickly

<<G4>>
Ambulance mobilized

{10}

- attribute7 : suitably
- attribute6 : quickly

<<G5>>
Ambulance selected

{10,10}

Resource allocator

<<G5>>
Class18

Dispatcher

<<G6>>
Class4

<<G4>>
Class19

{5,6}

<<G12>>
Class18

<<G7>>
Class5

{7}

<<G13>>
Class20

<<G9>>
Class7

- attribute1 : accurately
- attribute0 : quickly

<<G6>>
Incident location identified

<<MEANS>>
<<G7>>

Class9

Another CAC staff

<<G12>>
Class35

<<G6>>
Class11

{10,10}

<<G10>>
Class12

{8,9}

<<G11>>
Class13

- attribute3 : accurately
- attribute2 : quickly

<<G7>>
Ambulance decided

<<MEANS>>
<<G11>>

Class15

{10,10}

{6,9}

- attribute5 : comprehensively
- attribute4 : accurately

<<G8>>
Ambulances stat managed

{10,10}

- attribute7 : accurately
- attribute6 : quickly

<<G9>>
Ambulances current stat provided

{10,10}

Radio operator

<<G13>>
Class30

<<G17>>
Class31

<<G14>>
Class32

<<MEANS>>
<<G17>>

Class34
- attribute9 : quickly
- attribute8 : accurately

<<G10>>
Call location and detail known

{10,10}

{8,6}

- attribute11 : accurately
- attribute10 : quickly

<<G11>>
Duplicate calls removed

{10,10}

{6,9}

- attribute13 : accurately
- attribute12 : quickly

<<G12>>
Selected ambulance known

{10,10}

{5,6}

- attribute15 : accurately
- attribute14 : quickly

<<G13>>
Ambulance moved

{10,10}

{8,10}

Ambulance crew

<<MEANS>>
<<G14>>

Class25

- attribute17 : accurately
- attribute16 : quickly

<<G14>>
Ambulance driven

<<MEANS>>
<<G19>>

Class6

{10,10}

{10,10}

- attribute19 : accurately
- attribute18 : quickly

<<G15>>
Each stat provided

- attribute21 : accurately
- attribute20 : quickly

<<G16>>
Message received

- attribute23 : accurately
- attribute22 : quickly

<<G17>>
Message sent

{10,10}

{6,9}

- attribute0 : correctly

<<G19>>
VDT operated

<<MACHINE>>
MDT

{5,4}

{3}

<<G15>>
Class26

<<G19>>
Class2

{10}

<<G20>>
Class3

<<MEANS>>
<<G20>>

Class5

- attribute2 : accurately
- attribute1 : quickly

<<G20>>
Stat data sent

{10,10}

{5,5}

<<MACHINE>>
AVLS

{10,10}

{10,10}

{10,10}

{5,4}

{9,9}

<<MEANS>>
<<G16>>

Class33

<<G16>>
Class29

<<G15>>
Class28

<<G9>>
Class27 <<MEANS>>

<<G8>>

Class8

<<G8>>
Class6

Fig. 12 To-be model of the ambulances dispatch

12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

goal dependency. Even in the small example in Fig. 1, goal
G1 is delegated and decomposed, and its sub-goals are fi-
nally achieved by three different actors. Such a dependency
must be followed because we must confirm that a goal has
been achieved by suitable actors. However, people are gen-
erally not good at following this dependency. Tool support
is crucial in this issue.

The seventh issue touches on the metrics and the or-
decomposition inside an actor. Some goal dependencies are
not used in operation if the goal hierarchy inside each actor
contains or-decompositions. As shown in the formal algo-
rithms in the Appendix, the hierarchy is not considered when
the metrics are calculated. The metrics consider all the goal
dependencies even if or-decompositions exist. We believe
that this decision is valid because the or-decompositions in
the model allow the actors in operation to choose any goal
decomposition.

The eighth issue is about the effectiveness of the meta-
model and constraints in the case study in the previous sec-
tion. The meta-model and the constraints are the bases for
checking the syntax of GDMA models automatically. The
syntax checker in section 3 is developed on the basis of
the meta-model and the constraints. Therefore, we may re-
gard that the meta-model and the constraints are effective if
the cases using the syntax checker are better than the cases
without the checker. One of authors performed the cases
in the previous section. In [3], other cases were also per-
formed by the same author. Because the author is of course
an expert of GDMA, the quality of GDMA models in both
cases was almost the same. However, the author could de-
velop the models in the previous section faster than he did
in [3]. Although the spending time was not recorded in
both cases, the argument about this comparison is obvious
because of the following reasons. First, the syntax checker
was used in the cases in the previous section, and the checker
automatically finds the syntax errors and notifies its users.
Second, the author should check the syntax errors manually
in cases in [3] by checking the GDMA’s documents such as
the paper [3] itself written in a natural language. We also
introduce the results in an experiment in [4] to show the ef-
fects of the meta-model and the constraints to non-experts.
If non-experts think the syntax checker is useful, we may
regard the meta-model and the constraints are also effective.
In the experiment, nine students developed GDMA models,
and they were non-experts of GDMA. After their develop-
ment, we sent out several questionnaires to the student about
GDMA including the usability of the syntax checker. Six out
of them answered that the checker was useful. We assume
few students could develop the models without the syntax
checker. Two out of them also answered that they could not
understand the error messages of the syntax checker. This
problem was not caused by the meta-model and the con-
straints but by the implementation of the checker. We thus
have to improve the understandability of the messages.

The ninth issue is about the advantages of the meta-
model and the constraints. We show two advantages as
follows. First, anyone can develop case tools of GDMA

in any platforms correctly with the meta-model and the con-
straints. In our previous works [3]–[5], the syntax of GDMA
was just explained in a natural language. This could cause
misunderstanding about the GDMA models, and mistakes
in implementing supporting tools. Second, anyone can cor-
rectly understand how the tools in the previous section work
with the meta-model and the constraints. Users of the tools
could misunderstand or could not correctly understand what
the tools do only the informal explanations in [3]–[5]. As
we mentioned in the previous paragraph, two out of nine stu-
dents reported they could not understand the messages of the
syntax checker in cases in [4]. We assume that such students
could understand them if they had learnt the meta-model and
the constraints beforehand.

The last issue is the threats to the validity of our evalu-
ation. Threat to internal validity can affect the independent
variables of the case studies. The metrics are derived from
the measureable values in each model, such as the number
of the specific type of elements and values attached to an
association between elements. Therefore, such values are
the independent variables. Although the values are decided
on the basis on the reports in the literatures, the decision
was made by the authors subjectively. Threat to internal
validity thus exists. Because only two cases are shown, it
is hard to say the results are general enough. Therefore,
threat to external validity also exists. However, this threat
is mitigated a little bit because two different types of cases
are shown: one is a successful case, and another is failure
case. Construct validity is the degree to which the variables
measure the concepts they are to measure. In this validity,
variables correspond to metrics we defined. Because our
metrics agree with the discussion in the literatures, threat
to construct validity does not exist. Because the number of
cases is a few, it is impossible to use statistical test. Threat
to conclusion validity thus exists.

6. Related work

We regard that a goal between two actors shows the del-
egation of the goal achievement from an actor to another.

Agreeable
(Meeting,Date)

AgreeTo
 Date

Convenient
(Meeting,Date)

Proposed
Date

Agreement

Obtain
Agreement

Obtain
AvailDates

 Find
Agreeable
 Slot

 Merge
AvailDates

Quick MeetingBe
 Scheduled

Schedule
Meeting

 Attend
Meeting

Participate
InMeeting

LetSceduler
Schedule
Meeting

Schedule
Meeting

Meeting
Initiator

Meeting
SchedulerMeetingBe

 Scheduled

FindAgreeable
DateUsing
Scheduler

FindAgreeable
DateByTalking
ToInitiator

Quality
(ProposedDate)

User
Friendly

Arrange
Meeting

Richer
Medium

 Enter
AvailDates

Organize
Meeting

 Meeting
Participant

Attends
Meeting

 Enter
DateRange

D
D

D

D

D
D

D D

DD

D

D

+ −− +
+

−

+

+
− +

+

LEGEND

Goal

Task

Resource

 sition link

Contribution to
 softgoals
Actor

Actor Boundary

+

Low
Effort

Low
Effort

Fig. 13 iStar model in [1]

KAIYA et al.: EVALUATING INTRODUCTION OF SYSTEMS BY GOAL DEPENDENCY MODELING
13

Therefore, a goal in an actor should be the same as that
in another actor when the goal is delegated from the first
actor to the second actor. However, the original iStar [1],
iStar2.0 [8] and its popular variations [9] (e.g., GRL [10]
and Tropos [11]) do not represent a goal dependency in such
a way. This is the main reason why we developed our own
notation in GDMA. In iStar and its variations, the origin of
a goal may be different from the end of the goal for each
dependency. Fig. 13 shows a famous example of the iStar
model in [1]. In the figure, the “Enter AvailDates” task shows
the dependency between an actor “Meeting Scheduler” and
another actor “Meeting Participant.” However, the depen-
dency’s origin of is “Obtain AvailDates,” and the end is “Find
Agreeable Date Using Scheduler.” Both the origin and the
end are different from “Enter AvailDates.” Note that the
goals, tasks, resources, and soft-goals are called intentions,
that play a similar role in iStar and its variations. When a
human examines the model in Fig. 13, he/she is able to guess
the meaning. On the contrary, computer tools cannot guess
it. Therefore, we enforce that a goal in an actor is the same
as that in another actor when the goal is delegated from the
first actor to the second actor, as exemplified in Figs. 1 and
2.

In GDMA, the model of an activity is changed accord-
ing to the changes of the actors, their expectations, and their
abilities (e.g., a change caused by system introduction). Each
mode snapshot during the changes is evaluated using the
metrics. The changes of the metrics revealed whether the
change is good or bad for the people in the activity. Our
approach is a quantitative technique, a kind of reasoning ap-
proach. According to a systematic literature review [2], there
are not so many quantitative approaches (i.e., approximately
15% out of the reviewed papers). Note that we regard a
quantitative approach to be contained either “Mathematical
Formula” and “Algorithm” category in [2]. GRL [10] en-
courages quantitative approaches because they have several
quantitative elements and enable us to develop some met-
rics. However, we cannot find metrics similar to those in
our research. GRL mainly quantifies the goal satisfaction.
Although these results were used to specify the quantitative
evaluation of each goal, the whole activity containing the
actors was not focused on. We can find other several quanti-
tative approaches. In [12], a quantitative technique was used
to select a cloud platform with respect to security and pri-
vacy. In this paper, the satisfaction of security and privacy
goals were modeled and measured. In [13], a risk analysis
was proposed by using goal models. Quantitative values,
such as risk impacts, were derived from the structure of a
goal model and the values annotating that model. In [14], the
KAOS-based goal model of a system was used to assess sys-
tem implementation and operation. In [15], the requirements
were prioritized using a goal model with respect to several
stakeholders. The paper used our previous approach [16].
All these studies had different objectives from our research.

Most goal models contain a goal decomposition hierar-
chy, and some properties of a goal in the hierarchy are propa-
gated according to the hierarchy. Several techniques system-

atically specify such a propagation mechanism. KAOS [17]
used the temporal logic for this mechanism. The approach
seems to be the most rigorous approach. GRL enabled us
to specify this mechanism using qualitative and quantitative
values. The degree of contribution by the sub-goals was
quantified in our previous approach [18]. In GDMA, this
propagation mechanism was maintained in lightweight man-
ner, as shown in the function quality tracer in Section 3.2.

In many goal-oriented modeling approaches, such as
KAOS and iStar and its variations, the conflicts among goals
are handled. The conflict handling mechanism enables us
to describe a realizable model. We want to add this kind of
mechanism in GDMA.

We then reviewed works related to CASE tools. A pro-
file in the UML provided a generic extension mechanism for
customizing UML models for particular domains and plat-
forms. UML profiles for goal-oriented modeling are already
available. In fact, [19] proposed a UML profile for KAOS.
In [20], a UML profile for goal-oriented and use case-driven
representation was proposed. In [21], a profile for iStar was
presented. Although theoretical merits exist for UML pro-
file usage, most CASE tools do not completely accept these
profiles. Therefore, we cannot practically describe models
using the profiles. We did not consider UML profiling when
we started to develop our own CASE tool.

A survey paper of iStar and its variation tools
summarized and compared several tools [22]. In
the paper, six famous tools (i.e., OpenOME[23],
TAOM4E[24], GR-Tool[25], STS-Tool[26], jUCMNav[27],
and DesCARTES[28]) were reviewed with respect to syntac-
tic and semantic viewpoints. According to the review, three
were Java programs, and the remaining were Eclipse plugins.
Therefore, users must learn how to use them from scratch.
Eclipse normally requires very fast machines, and the plugins
based on the Eclipse Modeling Framework (EMF) usually
require additional machine power. Even if a user knows
how to use Eclipse, the user cannot easily know how to use
unfamiliar graphical editors based on the EMF. In contrast,
our CASE tool can be easily introduced if a user already
uses an UML editor, which is the basis of our CASE tools.
The survey paper indicated that the syntax coverage of some
tools was not good. Our tool completely covered our own
syntax rules. The semantic coverage of some tools was also
not good. By contrast, our tool completely covered our own
semantics because it has to calculate the metrics. Another
reason for the good coverage of our tool is the simplicity of
our notation.

We summarize the comparison among modeling nota-
tions including GDMA in Table 5 with respect to the follow-
ing criteria.

1. A goal in depender, a depended goal and a goal in
dependee are the same.

2. Quality is the first class element.
3. Elements in a model are compared quantitatively.
4. Models are compared quantitatively.
5. Goal decomposition is guided.

14
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 5 Comparison among notations (*1: It depends on each variation.
*2: KAOS does not have goal dependency.)

Notation/criteria 1 2 3 4 5 6 7
GDMA Y N Y Y Y N Y
Original Istar N Y N N N Y N
iStar 2.0 N Y N N N Y N
GRL N Y Y N Y Y N
Tropos N Y N N N Y N
Typical IStar N Y N/A∗1 N/A∗1 N/A∗1 Y N
variations
KAOS N/A∗2 Y N N Y Y N

6. Conflicted goals are managed.
7. Tools are familiar to usual software engineers.

The term and the concept of the machine in GDMA
are imported from the problem frames [29]. A goal in
GDMA is specified on the basis of the behavioral goal types
in KAOS [17]. A quality attribute corresponds to the soft
goal in KAOS.

7. Conclusion

The effects of introduced systems should be carefully ex-
amined at the early stage of requirements analysis. In this
study, we proposed and evaluated a modeling notation and
its analysis, called GDMA. We focused on a goal and two
actors who want to achieve the goal and who can achieve
the goal. An actor can either be a human, an organization,
or an artificial element, such as an information system. The
dependencies of the two actors about achieving a goal are
represented in a model. We can observe a change of actors,
their expectations, and abilities by using the model metrics.
We can then decide whether the change is good or bad both
quantitatively and qualitatively for the people. To evaluate
GDMA, we described the models of system introduction for
two cases reported in the literatures and explained the ef-
fects caused by the introduction for each case. CASE tools
are crucial in efficiently and accurately performing the anal-
ysis using the notation. Therefore, we developed tools by
extending an existing UML modeling tool.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
bers 21K11837 and 18K11249.

References

[1] E.S.K. Yu, “Towards modeling and reasoning support for early-phase
requirements engineering,” 3rd IEEE International Symposium on
Requirements Engineering (RE’97), January 5-8, 1997, Annapolis,
MD, USA, pp.226–235, IEEE Computer Society, 1997.

[2] E.J.T. Gonçalves, J. Castro, J. Araújo, and T. Heineck, “A systematic
literature review of istar extensions,” J. Syst. Softw., vol.137, pp.1–
33, 2018.

[3] H. Kaiya, S. Ogata, S. Hayashi, and M. Saeki, “Early requirements
analysis for a socio-technical system based on goal dependencies,”
New Trends in Software Methodologies, Tools and Techniques -
Proceedings of the Fifteenth SoMeT 16, Larnaca, Cyprus, 12-14

September 2016, ed. H. Fujita and G.A. Papadopoulos, Frontiers in
Artificial Intelligence and Applications, vol.286, pp.125–138, IOS
Press, 2016.

[4] H. Kaiya and K. Haga, “A CASE tool for goal dependency model
with attributes based on an existing UML editor,” Knowledge-Based
and Intelligent Information & Engineering Systems: Proceedings
of the 21st International Conference KES-2017, Marseille, France,
6-8 September 2017, ed. C. Zanni-Merk, C.S. Frydman, C. Toro,
Y. Hicks, R.J. Howlett, and L.C. Jain, Procedia Computer Science,
vol.112, pp.1196–1205, Elsevier, 2017.

[5] H. Kaiya, W. Fujita, R. Yamada, A. Hazeyama, S. Ogata, T. Okubo,
N. Yoshioka, and H. Washizaki, “Experimental evaluation of trace-
ability checking tool for goal dependency modeling,” Knowledge-
Based Software Engineering: 2020, Proceedings of the 13th Interna-
tional Joint Conference on Knowledge-Based Software Engineering
(JCKBSE 2020), Larnaca, Cyprus, August 24-26, 2020, ed. M. Vir-
vou, H. Nakagawa, and L.C. Jain, Learning and Analytics in Intelli-
gent Systems, vol.19, pp.70–83, Springer, 2020.

[6] D.R.A. Schallmo and C.A. Williams, Digital Transformation Now!
Guiding the Successful Digitalization of Your Business Model,
Springer, 2018.

[7] A. Finkelstein and J. Dowell, “A comedy of errors: The london
ambulance service case study,” IWSSD ’96, pp.2–, IEEE Computer
Society, 1996.

[8] F. Dalpiaz, X. Franch, and J. Horkoff, “istar 2.0 language guide,”
CoRR, vol.abs/1605.07767, 2016.

[9] E. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, Social Modeling
for Requirements Engineering, MIT Press, 2010.

[10] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton,
and E.S.K. Yu, “Evaluating goal models within the goal-oriented
requirement language,” Int. J. Intell. Syst., vol.25, no.8, pp.841–877,
2010.

[11] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An agent-oriented software development methodology,”
Auton. Agents Multi Agent Syst., vol.8, no.3, pp.203–236, 2004.

[12] H. Mouratidis, S. Islam, C. Kalloniatis, and S. Gritzalis, “A frame-
work to support selection of cloud providers based on security and
privacy requirements,” J. Syst. Softw., vol.86, no.9, pp.2276–2293,
2013.

[13] F.B. Aydemir, P. Giorgini, and J. Mylopoulos, “Multi-objective risk
analysis with goal models,” Tenth IEEE International Conference on
Research Challenges in Information Science, RCIS 2016, Grenoble,
France, June 1-3, 2016, pp.1–10, IEEE, 2016.

[14] C. Ponsard and R. Darimont, “Quantitative assessment of goal
models within and beyond the requirements engineering tool: A
case study in the accessibility domain,” Proceedings of the 10th
International i* Workshop co-located with the 29th International
Conference on Advanced Information Systems Engineering (CAiSE
2017), Essen, Germany, June 12-13, 2017, ed. S. Ghanavati, L. Liu,
and L. López, CEUR Workshop Proceedings, vol.1829, pp.13–18,
CEUR-WS.org, 2017.

[15] M. Lencastre and J. Pimentel, “A metamodel for istar-p: Require-
ments prioritization with goal models,” Proceedings of the 12th Inter-
national i* Workshop co-located with 38th International Conference
on Conceptual Modeling (ER 2019), Salvador, Brazil, November 4th,
2019, ed. J. Pimentel, J.P. Carvallo, and L. López, CEUR Workshop
Proceedings, vol.2490, CEUR-WS.org, 2019.

[16] H. Kaiya, H. Horai, and M. Saeki, “AGORA: attributed goal-oriented
requirements analysis method,” 10th Anniversary IEEE Joint Inter-
national Conference on Requirements Engineering (RE 2002), 9-13
September 2002, Essen, Germany, pp.13–22, IEEE Computer Soci-
ety, 2002.

[17] A. van Lamsweerde, Requirements Engineering: From System Goals
to UML Models to Software Specifications, Wiley, 2009.

[18] S. Hayashi, D. Tanabe, H. Kaiya, and M. Saeki, “Impact analysis on
an attributed goal graph,” IEICE Trans. Inf. Syst., vol.95-D, no.4,
pp.1012–1020, 2012.

KAIYA et al.: EVALUATING INTRODUCTION OF SYSTEMS BY GOAL DEPENDENCY MODELING
15

[19] W. Heaven and A. Finkelstein, “UML profile to support requirements
engineering with KAOS,” IEE Proceedings - Software, vol.151, no.1,
pp.10–28, 2004.

[20] S. Supakkul and L. Chung, “A UML profile for goal-oriented and use
case-driven representation of nfrs and frs,” Third ACIS International
Conference on Software Engineering, Research, Management and
Applications (SERA 2005), 11-13 August 2005, Mt. Pleasant, MI,
USA, pp.112–121, 2005.

[21] D. Amyot, J. Horkoff, D. Gross, and G. Mussbacher, “A lightweight
GRL profile for i* modeling,” Advances in Conceptual Modeling
- Challenging Perspectives, ER 2009 Workshops CoMoL, EThe-
CoM, FP-UML, MOST-ONISW, QoIS, RIGiM, SeCoGIS, Gramado,
Brazil, November 9-12, 2009. Proceedings, pp.254–264, 2009.

[22] C. Almeida, M. Goulão, and J. Araújo, “A systematic comparison
of i* modelling tools based on syntactic and well-formedness rules,”
Proceedings of the 6th International i* Workshop 2013, Valencia,
Spain, June 17-18, 2013, pp.43–48, 2013.

[23] J. Horkoff, Y. Yu, and E.S.K. Yu, “Openome: An open-source goal
and agent-oriented model drawing and analysis tool,” Proceedings of
the 5th International i* Workshop 2011, Trento, Italy, August 28-29,
2011, pp.154–156, 2011.

[24] M. Morandini, D.C. Nguyen, L. Penserini, A. Perini, and A. Susi,
“Tropos modeling, code generation and testing with the taom4e tool,”
Proceedings of the 5th International i* Workshop 2011, Trento, Italy,
August 28-29, 2011, pp.172–174, 2011.

[25] R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and minimum-
cost satisfiability for goal models,” Advanced Information Systems
Engineering, 16th International Conference, CAiSE 2004, Riga,
Latvia, June 7-11, 2004, Proceedings, pp.20–35, 2004.

[26] E. Paja, F. Dalpiaz, M. Poggianella, P. Roberti, and P. Giorgini,
“Sts-tool: Specifying and reasoning over socio-technical security
requirements,” Proceedings of the 6th International i* Workshop
2013, Valencia, Spain, June 17-18, 2013, pp.131–133, 2013.

[27] D. Amyot, G. Mussbacher, S. Ghanavati, and J. Kealey, “GRL model-
ing and analysis with jucmnav,” Proceedings of the 5th International
i* Workshop 2011, Trento, Italy, August 28-29, 2011, pp.160–162,
2011.

[28] Y. Wautelet and M. Kolp, “Mapping i* within UML for business mod-
eling,” Requirements Engineering: Foundation for Software Quality
- 19th International Working Conference, REFSQ 2013, Essen, Ger-
many, April 8-11, 2013. Proceedings, pp.237–252, 2013.

[29] M. Jackson, Problem Frames, Analyzing and structuring software
development problems, Addison-Wesley, 2000.

Appendix A: Algorithms of metrics

Algorithm 1 Calculate the ANW
Require: Meta-model in Fig. 3, Eqs. (1) to (4)
1: ℎ𝑠𝑒𝑡 = Set of all instances of Human in a model
2: 𝑛𝑢𝑚𝑒𝑟 = 0
3: 𝑑𝑒𝑛𝑜𝑚 = ℎ𝑠𝑒𝑡.𝑠𝑖𝑧𝑒 ()
4: for (Human ℎ : ℎ𝑠𝑒𝑡) do
5: for (WantGoal 𝑤𝑔 : ℎ.𝑤𝑎𝑛𝑡𝑔𝑜𝑎𝑙) do
6: if 𝑤𝑔 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 OriginGoal then
7: 𝑛𝑢𝑚𝑒𝑟 + +
8: end if
9: end for

10: end for
11: ANW = 𝑛𝑢𝑚𝑒𝑟/𝑑𝑒𝑛𝑜𝑚

Algorithm 2 Calculate the AGW
Require: Meta-model in Fig. 3, Eqs. (1) to (4)
1: ℎ𝑠𝑒𝑡 = Set of all instances of Human in a model
2: 𝑛𝑢𝑚𝑒𝑟 = 0
3: 𝑑𝑒𝑛𝑜𝑚 = 0
4: for (Human ℎ : ℎ𝑠𝑒𝑡) do
5: for (Want 𝑤 : ℎ.𝑤𝑎𝑛𝑡) do
6: 𝑤𝑠 = 𝑤.𝑙𝑒𝑣𝑒𝑙

7: 𝑐𝑠 = 𝑤.𝑑𝑒𝑝𝑒𝑛𝑑𝑔𝑜𝑎𝑙.𝑐𝑎𝑛.𝑙𝑒𝑣𝑒𝑙

8: 𝑑𝑒𝑛𝑜𝑚+ = 𝑤𝑠.𝑠𝑖𝑧𝑒 ()
9: 𝑖 = 0

10: while 𝑖 < 𝑤𝑠.𝑠𝑖𝑧𝑒 () do
11: 𝑛𝑢𝑚𝑒𝑟+ = 𝑐𝑠[𝑖]/𝑤𝑠[𝑖]
12: 𝑖 + +
13: end while
14: end for
15: end for
16: AGW = 𝑛𝑢𝑚𝑒𝑟/𝑑𝑒𝑛𝑜𝑚

Algorithm 3 Calculate the ANC
Require: Meta-model in Fig. 3, Eqs. (1) to (4)
1: ℎ𝑠𝑒𝑡 = Set of all instances of Human in a model
2: 𝑛𝑢𝑚𝑒𝑟 = 0
3: 𝑑𝑒𝑛𝑜𝑚 = ℎ𝑠𝑒𝑡.𝑠𝑖𝑧𝑒 ()
4: for (Human ℎ : ℎ𝑠𝑒𝑡) do
5: for (CanGoal 𝑤𝑔 : ℎ.𝑐𝑎𝑛𝑔𝑜𝑎𝑙) do
6: if 𝑤𝑔 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑜 𝑓 MeansGoal then
7: 𝑛𝑢𝑚𝑒𝑟 + +
8: end if
9: end for

10: end for
11: ANC = 𝑛𝑢𝑚𝑒𝑟/𝑑𝑒𝑛𝑜𝑚

Algorithm 4 Calculate the AGC
Require: Meta-model in Fig. 3, Eqs. (1) to (4)
1: ℎ𝑠𝑒𝑡 = Set of all instances of Human in a model
2: 𝑛𝑢𝑚𝑒𝑟 = 0
3: 𝑑𝑒𝑛𝑜𝑚 = 0
4: for (Human ℎ : ℎ𝑠𝑒𝑡) do
5: for (Can 𝑐 : ℎ.𝑐𝑎𝑛) do
6: 𝑐𝑠 = 𝑐.𝑙𝑒𝑣𝑒𝑙

7: 𝑤𝑠 = 𝑐.𝑑𝑒𝑝𝑒𝑛𝑑𝑔𝑜𝑎𝑙.𝑤𝑎𝑛𝑡.𝑙𝑒𝑣𝑒𝑙

8: 𝑑𝑒𝑛𝑜𝑚+ = 𝑐𝑠.𝑠𝑖𝑧𝑒 ()
9: 𝑖 = 0

10: while 𝑖 < 𝑐𝑠.𝑠𝑖𝑧𝑒 () do
11: 𝑛𝑢𝑚𝑒𝑟+ = 𝑤𝑠[𝑖]/𝑐𝑠[𝑖]
12: 𝑖 + +
13: end while
14: end for
15: end for
16: AGC = 𝑛𝑢𝑚𝑒𝑟/𝑑𝑒𝑛𝑜𝑚

16
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Haruhiko Kaiya is a professor at Kanagawa
University, Yokohama, Japan.

Shinpei Ogata is an Associate Professor at
Shinshu University, Japan. He received his BE,
ME, and PhD from Shibaura Institute of Tech-
nology in 2007, 2009, and 2012 respectively.
From 2012 to 2020, he was an Assistant Profes-
sor, and since 2020, he has been an Associate
Professor at Shinshu University. He is a mem-
ber of IEEE, ACM, IEICE, IPSJ, and JSSST. His
current research interests include model-driven
engineering for software development.

Shinpei Hayashi is an associate professor in
School of Computing at Tokyo Institute of Tech-
nology. He received a B.E. degree in information
engineering from Hokkaido University in 2004.
He also respectively received M.E. and D.E. de-
grees in computer science from Tokyo Institute
of Technology in 2006 and 2008. His research
interests include software evolution and software
development environment.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

