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PAPER
FSAMT: Face Shape Adaptive Makeup Transfer

Haoran LUO†a), Tengfei SHAO†, Shenglei LI†, Nonmembers, and Reiko HISHIYAMA†, Member

SUMMARY Makeup transfer is the process of applying the makeup
style from one picture (reference) to another (source), allowing for the
modification of characters’ makeup styles. To meet the diverse makeup
needs of individuals or samples, the makeup transfer framework should
accurately handle various makeup degrees, ranging from subtle to bold, and
exhibit intelligence in adapting to the source makeup. This paper introduces
a “3-level” adaptive makeup transfer framework, addressing facial makeup
through two sub-tasks: 1. Makeup adaptation, utilizing feature descriptors
and eyelid curve algorithms to classify 135 organ-level face shapes; 2.
Makeup transfer, achieved by learning the reference picture from three
branches (color, highlight, pattern) and applying it to the source picture.
The proposed framework, termed “Face Shape Adaptive Makeup Transfer”
(FSAMT ), demonstrates superior results in makeup transfer output quality,
as confirmed by experimental results.
key words: makeup transfer, GAN, face classification, style transfer

1. Introduction

Despite the pandemic, consumer behavior has expanded the
beauty market. Projections [1] estimate the global makeup
market growing from $41.85 billion in 2022 to $61.34 bil-
lion by 2029. In the retail-beauty nexus, customers often try
makeup at stores. However, this poses issues: 1. Time: Vis-
its and trials consume hours; 2. Expertise: Most consumers
lack professional knowledge on suitable product combina-
tions.

Makeup transfer is a solution which can swiftly display
makeup effects. SCGAN [2] addresses makeup transfer’s
spatial alignment using two extraction and one assignment
modules; BeautyGAN [3] uses pixel-level histogram loss for
quality generation; BeautyGlow [4] decomposes face picture
latent vectors into makeup-specific vectors; PSGAN [5] of-
fers shadow-controllable transfer; CA-GAN [6] presents a
quantitative makeup style analysis; RamGAN’s [7] attention
module permits makeup transfer for varying poses. Yang
et al. [8] introduced an Illumination-Aware image decom-
position method, which can utilize 3D morphable models
through regression-based inverse rendering to extract coarse
materials; With EleGANt [9], a new Sow-Attention mod-
ule is introduced, which utilizes attention within shifted and
overlapping windows to decrease computational expenses.

However, methods above lack extreme-style makeup
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transfer ability. LADN [10] employs local adversarial dis-
criminators for detail transfer; Nguyen [11] uses separate
branches for patterns and color transfer. While effective,
challenges like side profiles, strong lighting, or substantial
source-reference differences can lead to uneven results.

This paper introduces an adaptive makeup transfer
framework adept at steadily handling extreme makeup. We
tackle two main tasks: 1. “Makeup Adaptation” simu-
lates 135 facial classifications based on five face shapes
and 27 eye shapes, using feature descriptors and eyelid
curves. It then adapts professional makeup from match-
ing facial types; 2. For “Makeup Transfer,” three branches
(color, highlights, and patterns) are employed. The color
branch features an adaptive binning method and a refined
discriminator, reducing distortions. The highlight branch
is supported by a new dataset, Highlight Face Dataset
(HFD). The pattern branch utilizes a cutting-edge fea-
ture extractor, Resnet50MultiScale(R50) [12] - Vision Trans-
former(ViT) [13] - Wasserstein Domain Adaptation (W-
DA) [14] (termed RMW). Through this framework, whether
it is stickers, tattoos, metal decorations, or ordinary eye-
shadows, highlights, blushes, and mascaras, they can be
accurately transferred to the target picture. Our frame-
work is named as “Face Shape Adaptive Makeup Transfer”
(FSAMT), consistently outperforms peers in tests and user
survey. Figure 1 depicts the framework, in this pipeline,
the adaptive module selects the most suitable makeup for
the user based on our face shape matching algorithm, while
the makeup transfer module ensures precise, efficient, and
detailed transfer results. These steps not only guarantee op-
timal makeup effects but also significantly reduce makeup
trial costs, making it easily applicable in various commer-
cial scenarios. At the same time, although this model is
outstanding in its ability to transfer heavy style makeup, due
to the improvement of the color migration module, it also
has reliable adaptability to common makeup.

2. Related Work

Prior to makeup transfer, selecting appropriate makeup for
a target is crucial. Few studies address makeup transfer
adaptation. Jiang [5] introduced “makeup customization,”
emphasizing transfer flexibility over customization to facial
attributes. Although research has tackled facial shape classi-
fication by extracting facial points and categorizing shapes,
basing makeup adaptability solely on face shape is incom-
plete. Makeup choices also hinge on facial organ charac-
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Fig. 1 Face shape adaptive makeup transfer (FSAMT) pipeline

teristics, with eye makeup being notably intricate. Zhang
Wei [15] identified eyes into four categories considering size,
eyelid form, and corners. Despite varied methodologies in
other studies, eye shape categorization remains narrow.

In makeup adaptation section, we developed SEDNet:
a blend of Squeeze-and-Excitation Network (SENet) and
DenseNet [16] for facial shape classification. The SENet
functions as an attention mechanism. This network pro-
cesses a normalized vector from PRNet to discern five face
shapes. We also categorized 27 eye shapes via three param-
eters: length, roundness, and tilt. Eyelid contours are then
determined mathematically. Combining five face and 27 eye
shapes, we offer 135 organ-level classifications, enriching
makeup adaptation.

In makeup transfer section, we presented an integrated
makeup transfer module. Models such as SCGAN [2], Beau-
tyGAN [3], BeautyGlow [4], PSGAN [5], CA-GAN [6], Ele-
GANt [9] have been verified to have some degree of effect on
the color or pattern of makeup transfer, but unlike all of them,
our input is not manually provided but recommended by the
adaptation module. Here, we emphasized capturing facial
patterns and refined features, like highlights. We produced
pictures with synthetic highlight effects and their respec-
tive binary annotations as training for the highlight branch.
The three transfer branches operated concurrently, converg-
ing into a single output. In addition, by using methods like
modifying the histogram matching function and introducing
adversarial learning to train feature extractors, FSAMT also
has more accurate transfer capabilities compared to other
models.

3. Makeup Adaptation Model

In the Makeup Adaptation model, the categorization of the
source picture PS and the reference picture PR is performed

at the organ-level face shapes. Consequently, the matching
of the source and reference pictures is executed based on their
respective classifications. This procedure encompasses two
parallel modules, namely the classification of face shapes
and eye shapes. Given the existence of 27 eye shapes and 5
face shapes, the number of categories amounts to a total of
135, calculated as the product of 27 and 5.

3.1 Face Shape Classification

In the task of classifying facial and eye shapes, the primary
goal is to extract facial feature points. In this chapter, we
used PRNet [17] to extract the 3D coordinates of the face.
The PRNet input is a 256*256 RGB picture, and the output
is a 3D position map of the same resolution. Each position
has a 3D coordinate (x, y, z), which in this paper is a three-
dimensional feature vector of (256,256,3).

Next, a neural network called SEDNet was constructed
for the purpose of predicting face shape. Following a con-
volution operation, the feature vector obtained from PRNet
will serve as the input for the SED block. Within each SED
block, there are multiple SED layers, which encompass a
dense layer and an SE layer, as depicted in Fig. 2. In the
context of each SED layer, the fundamental unit consist-
ing of BN-ReLU-Conv constitutes the non-linear function of
the dense layer. The computation process is illustrated by
Eq. (1):

xl = Hl(x0, x1, . . . , xl−1) (1)

where Hl is a nonlinear function, xl represents the out-
put of the l-th Dense Block, and x0 represents the input. In
this way, the SED layer uses the feature maps of all previous
layers to help the feature map extraction of the current layer,
which can enhance the feature reuse ability of the model and
make the model more compact and effective.
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Fig. 2 SED layer of SEDNet

In the training phase, due to the lack of a specific dataset
for face shape classification, we utilized Baidu’s cloud-based
face recognition service to assemble 5,000 aligned facial im-
ages from the CelebA dataset [18], evenly distributed across
five face shapes. After manual verification, these images
were divided in a 7:3 ratio for training and testing. Our
SEDNet model demonstrated superior performance, achiev-
ing 95.7% accuracy, outperforming conventional machine
learning and basic neural network approaches in face shape
classification.

3.2 Eye Shape Classification

The basic method of eye shape classification [19], [20] is as
follows: Based on the feature points of human eyelids, the
contour curves of the upper and lower eyelids are fitted, and
different eye shapes are drawn by the eyelid contour curve
equation.

3.2.1 Obtain Eyelid Sampling Points

After retaining 12 key points for a single eye as EFi , we
derive the Eyelid Sampling Points (Pi). We connect these
points sequentially to form an eye contour polygon. Using
the pupil point EF12 as a center, and drawing a line parallel
to the X-axis through it as the 0°reference, we divide the
circle into 48 equal segments, yielding sampling points Pi (i
∈ [0,47]). The line connecting inner corner EF0 and outer
corner EF6 segments the sampling points into upper eyelid
points (i ∈ [0,m]) and lower eyelid points (i ∈ [m+1,47]).
Figure 3 illustrates the sampling points on the upper and
lower eyelids.

3.2.2 Divide Eye Shapes

For the eye feature points EFi (i ∈ [0, 11]) defined in the
previous step, each contains a set of coordinate vectors
(XEFi ,YEFi ), the shape parameters of the following four eyes
are obtained:

Fig. 3 Sampling points of upper and lower eyelid curves

Table 1 Classification and range of eye shape parameters

l = XEF0 − XEF6

h = max
(
YEF1, . . . ,YEF5

)
− min

(
YEF7, . . . ,YEF11

)
d =

h
l

α = arctan
[ (

YEF6 − YEF0

)
/
(
XEF0 − XEF6

) ] (2)

In the Eq. (2): XEFi represents the X coordinate of the
i-th feature point EFi representing the eye; YEFi represents
the Y-coordinate of the i-th feature point EFi representing
the eye ; l is the horizontal distance between the outer corner
point and the inner corner point, indicating the length of
the eye; h is the maximum longitudinal distance of the eye,
indicating the height of the eye; d is the ratio of the height
and length of the eye, indicating the degree of ellipse of the
eye; α is the tilt angle of the eyes.

We capture 500 pictures of eyes from the celebA and
calculate four distinct shape parameters for each eye. Simul-
taneously, we divide the semantic description of the three
shape parameters, namely l, d, and α. The parameter li
encompasses the following: short eye (l0), average eye (l1),
and long eye (l2). The parameter d encompasses the follow-
ing: leaf-shaped eye (d0), oval eye (d1), and round eye (d2).
Lastly, αi encompasses the following: drooping eye (α0),
horizontal eye (α1), and upper squint eye (α2). In total, there
are nine shape parameters. Subsequently, the category Ci [li ,
di , αi] (i ∈ [0,2]) to which each eye belongs is determined
through manual judgment. The numerical range for each
shape parameter is obtained by averaging the eye parame-
ters within each category of the nine shape parameters, as
depicted in Table 1. Considering that each eye shape param-
eter is associated with three distinct semantic descriptions, a
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total of 27 different eye shapes can be derived (3*3*3).

3.2.3 Fitting the Eyelid Contour Curve

In this paper, it is stipulated that the set S of human eye
pictures to be predicted is shown in Eq. (3).

S =
©«

S11 S21 . . . Si1
S12 S22 . . . Si2
...

...
...

...
S1j S2j S3j Si j

ª®®®®¬
(3)

Among them, i ∈ [0,26] corresponds to 27 eye shapes;
j ∈ [0,N], N represents the number of pictures of each eye
shape. And for each eye picture Si j to be classified, it can be
expressed in the form of Eq. (4).

Si j = (P0,P1,P2 . . . Pm,Pm + 1, . . . P47) (4)

Among them, P0-Pm represents the feature point of the
upper eyelid, Pm+1-P47 represents the feature point of the
lower eyelid, and for each eyelid feature point Pi , it can be
expressed as Pi = (xi, yi). Among them, xi and yi represent
the abscissa and ordinate of the feature point respectively.

To model the eyelid contour, the least square method
(LSM) is used to fit a horizontal quadratic curve. The basic
functions for fitting both eyelids are represented by: Φ =
span

{
φ0(x) = 1, φ1(x) = x, φ2(x) = x2, · · · , φn(x) = xn

}
.

Given n<m and n<48-m, the eyelid contour equation
is derived. Using upper eyelid sampling points Pi (i = 0 to
m), inner and outer corner points EF0 and EF6, along with
lower eyelid sampling points (i = m+1 to 47) and the same
corner points, we fit the curve to closely match the sampling
points (as in Eq. (5)).

S(x) =
n∑
t=0
βtφt (x) (5)

After experiments, we set the fitting degree as n=4 in
this paper. The curve obtained by fitting satisfies the re-
quirement of passing through the inner and outer corner
points. βt (t = 0, 1, . . . , 4) represents the coefficients of
the curve equation, and φt (x) is the basic function with an
exponential term of t. The βt of each eye shape can be ob-
tained by bringing the inner and outer corner points (EF0
and EF6) and eyelid sampling points of the 27 eye shapes
into the normal equation. Figure 4 shows an example when

Fig. 4 Adjust roundness in long eye

0.305 ≤ α < 0.364 (horizontal eye) is fixed, the fitting result
of adjusting roundness in long eye.

In all source picture sets PS and reference picture sets
PR, based on 135 different organ-level face shape classifica-
tion algorithms, the face shape of each picture in PS and PR

is calculated respectively. Use PSi , PRi (i ∈ [0,134]) to de-
note the picture collections belonging to the i-th face shape
in PS and PR, respectively. Then put PSi , PRi (i ∈ [0,134])
under the directory Fi . Therefore, for each face category Fi ,
there is Fi = (PSi , PRi ).

4. Makeup Transfer Model

In the “Makeup Transfer” section, we divide the learning of
all makeup attributes into three branches (color, highlight,
and pattern). We continue to utilize the PRNet approach for
UV mapping while incorporating bilinear interpolation to
optimize texture sampling. This approach delivers smoother
results during sampling, reducing distortions and blurriness
in edge regions.

The overall architecture of makeup transfer is shown
in Fig. 5. For the input source picture PSi and reference
picture PRi , use “-” and “+” to mark “non-makeup” and
“makeup-applied” respectively. Then P−

Si
and P+Ri

can be
obtained. The objective function M of makeup transfer can
be expressed as Eq. (6):

M
(
P−
Si
,P+Ri

)
= P+Si (6)

P+Si is the source picture of the consistent makeup ef-
fect obtained through migration from the adapted reference.

Fig. 5 Makeup transfer architecture
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P−
Si

and P+Ri
are first converted into UV texture maps UV−

Si
,

UV+Ri
. Then, pass UV−

Si
, UV+Ri

to three parallel branches for
color, highlight and pattern transmission respectively. The
processing results of the three branches UVc

Si
, UVh

Ri
, UV p

Ri

are further combined into an output texture map UV+Si , and
finally through UV−1 operation restores UV+Si to P+Si .

4.1 Color Transfer

In this paper, we propose a novel color transfer approach
for makeup transfer tasks, utilizing an improved GAN archi-
tecture and incorporating additional features to enhance the
performance of the model.

Our approach is derived from the concept behind Beau-
tyGAN, however, we have introduced numerous novel ele-
ments to enhance the outcomes. The primary element of our
methodology is a makeup swapping network C that operates
based on color, facilitating the exchange of makeup colors on
cosmetic regions between the source and reference images,
denoted as UVC

Si
,UVC

Ri
:= C

(
UV−

Si
,UV+Ri

)
. In order to train

network C, we utilize a loss function that is similar to the
one employed in BeautyGAN, but with several innovative
modifications: 1. We replace the VGG-16 [21] model with
a VGG-19 model in order to more effectively capture facial
features during perceptual loss calculation; 2. We develop a
more resilient discriminator to enhance the effectiveness of
the adversarial loss; 3. We improve the histogram matching
function by incorporating adaptive binning, thereby enabling
a more accurate matching of color distributions.

The original paper used Spectral Normalization to im-
prove the discriminator of GAN. This paper further op-
timizes the approach by proposing an improved operational
flow combining Gradient Penalty and Adaptive Spectral Nor-
malization for the discriminator involved in the Adversarial
Loss La. The steps are as follows:

1. Apply spectral normalization after each convolu-
tional layer of the discriminator. To achieve Adaptive Spec-
tral Normalization, the normalization factor needs to be dy-
namically adjusted based on the loss value during the training
process. Specifically, the normalization factor is multiplied
by the reciprocal of the loss value for adaptive adjustment.

2. Calculate the gradient penalty during the training
process. We first generate a random weight θ within the
range of 0 and 1. Then, generate an interpolated sample
using the following Eq. (7):

xinterpolated = θ · xreal + (1 − θ)x f ake (7)

Where xreal is a sample from the real data distribution,
and x f ake is a sample generated by the generator.

3. Calculate the gradient of the interpolated sample
xinterpolated: g = ∇D(xinterpolated), where D denotes the
discriminator.

4. Calculate the gradient penalty: LGP = (∥g∥2 − 1)2,
where ∥g∥2 is the L2 norm of the gradient.

5. Add the gradient penalty term to the loss function of
the discriminator(Eq. (8)):

Latot al
= La + λLGP (8)

Where La is the original discriminator loss, and λ is
the hyperparameter controlling the weight of the gradient
penalty. Finally, train the discriminator with the new total
loss function Latot al

.
Compared with original method, by applying gradi-

ent penalty and adaptive spectral normalization, the risk of
gradient explosion or vanishing in the discriminator output
can be reduced by constraining the gradient. Meanwhile, a
higher convergence rate can be achieved while maintaining
training stability.

In our research, we advanced the conventional his-
togram matching approach by adapting the number of bins
to better capture the color distribution of images, especially
where distributions are non-uniform. Utilizing Contrast
Limited Adaptive Histogram Equalization (CLAHE) [22],
we initially analyze the color histograms of both the source
and reference images for local color adaptation. We then ap-
ply K-means clustering for adaptive binning, grouping colors
based on their distribution. The optimal number of clusters
(K) is determined using the elbow method, confined within
a range of 20 to 40 to balance detail and computational effi-
ciency, as established through extensive testing.

For color mapping, we align the cumulative density
functions (CDF) of both images, modifying the source im-
age ’s pixels to match the reference image’s color profile.
This adaptive binning approach leads to more accurate color
matching, enhancing the realism in makeup transfer. Our
model demonstrates superior performance in both detail and
accuracy, as evidenced in our experimental results.

4.2 Highlight Transfer

A picture’s tonality is shaped by exposure, highlights, shad-
ows, and extremes of white and black. Despite sharing a
color preset, pictures vary in perceived brightness. Thus,
for realistic makeup replication, facial highlights are crucial.
This paper introduces a highlight capture branch. Post UV
mapping, the texture map UV+Ri

is channeled to this branch.
Here, a U-Net discerns and isolates the highlight effect from
both source and reference pictures: UVh

Ri
:= P(UV+Ri

). Ul-
timately, UVh

Ri
is merged pixel-wise with outputs from the

color and pattern branches.
To train our highlight capture branch, we crafted the

Highlight Face Dataset (HFD) using assorted makeup face
pictures from Makeup Datasets and Pixels. After standardiz-
ing their sizes, we utilized facial landmarks to deduce high-
light regions like the nose bridge and cheekbones. We then
superimposed synthetic specular highlights onto these areas,
yielding 2000 enhanced pictures.

For each synthetically highlighted picture, a binary seg-
mentation annotation was created: highlighted regions were
white (value 1), while the rest was black (value 0). These
annotations acted as the “ground truth” for the highlight
capture branch’s training. To streamline labeling, we imple-
mented auto-labeling techniques such as highlight recogni-
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tion, binarization, morphological operations, and Connected
Component Analysis (CCA). The procedure is illustrated in
Fig. 6.

First, we apply a Laplacian filter to compute pixel
second-order derivatives, identifying picture highlight
edges. The filtered pictures are then binarized using Otsu’s
method, retaining key highlight edges. Morphological oper-
ations, specifically dilation, are then employed for data aug-
mentation to refine the highlight regions by reducing noise
and filling gaps. Lastly, using CCA, we label the highlight
regions in the processed binary picture, grouping like-valued
adjacent pixels. We utilized the Two-Pass algorithm for this,
resulting in labeled pictures where each highlight area has a
distinct label. This procedure efficiently produces a binary
segmentation annotation for pictures with highlight effects.

4.3 Pattern Transfer

In the pattern transfer branch, we aim to transfer detailed
patterns, like facial stickers and metal decorations, from ref-
erence to source pictures. To extract the binary segmentation
mask UV p

Ri
from the texture map UV+Ri

, we employ the RMW
model. Central to this is a feature extractor adept at multi-
scale feature fusion and unsupervised domain adaptation.
Through W-DA, the extractor discerns the feature mapping
relationship across various domains, enhancing its analyti-
cal strength. We also used tools like Midjourney to generate
portraits with extreme makeup styles, complementing the
CPM-Synt-1 and CPM-Synt-2 datasets.

Table 2 shows the basic architecture of the RMW model,
which is mainly divided into four functional modules. In

Fig. 6 Overview of highlight transfer

Table 2 Overview of RMW

the branch of pattern migration, their respective uses and
connections with each other are as follows:

1. Resnet50MultiScale: Encoder. Responsible for ex-
tracting multi-scale features from input pictures. This means
extracting multi-scale feature representations from face pic-
tures with certain makeup to capture different levels of de-
tails. In the pattern transfer task, this will help to capture the
“local features” of makeup.

2. MultiScaleViT: This part is based on Vision Trans-
former’s multi-scale feature fusion. We first input the four-
layer feature maps extracted by Resnet50MultiScale into the
pretrained ViT model. The ViT model performs global fea-
ture extraction on the feature maps of each layer. Then,
we concatenate these global features with the previously ex-
tracted feature maps along the channel dimension. This helps
to establish connections between features at different scales,
so that the makeup transfer task can more accurately acquire
and understand the “global features” CFi of makeup.

3. FPN [23]: Decoder. After receiving the feature
representation CFi from the previous layer, for use within the
FPN, we temporarily decompose it into four feature maps of
different scales. After processing through the FPN, a final
1*1 convolutional layer maps M to the output channel count
(number of categories) and a per-pixel sigmoid activation
function is applied to achieve the purpose of generating high-
resolution segmentation masks.

4. Wasserstein Domain Adaptation (W-DA): Within
makeup transfer tasks, disparities can exist between the
source (makeup-applied faces) and target (non-makeup
faces) domains. We introduce W-DA to bridge this gap,
serving as an auxiliary module to enhance feature extrac-
tion using adversarial learning. This process employs a
domain discriminator, a neural network with several fully
connected layers. During training, feature representations
CFi from both domains are input to the discriminator, which
minimizes the Wasserstein distance between them. A Gra-
dient Reversal Layer (GRL) is used, multiplying gradients
negatively before backpropagation, urging the extractor to
mislead the discriminator and blur domain distinctions.

UV+Si = UV+Ri
⊙ UV p

Ri

+UVc
Si

⊙
(
1 − UV p

Ri

)
+UV+Ri

⊙
(
UVh

Ri

)
(9)

Ims = UV−1
(
PM,UV+Si

)
(10)

To obtain the final picture, we use Eqs. (9)–(10). Equa-
tion (9)’s left side represents the desired combined UV
texture map. The right side has three components: 1.
UV+Ri

⊙ UV p
Ri

: This denotes element-wise multiplication of
the reference makeup pattern with the pattern mask, overlay-
ing the reference pattern onto specific source picture areas;
2. UVc

Si
⊙

(
1 − UV p

Ri

)
: Here, the color-transferred texture

map is applied to the source picture’s remaining areas. The
term (1 − UV p

Ri
) computes the complement of the pattern

mask, indicating areas without the reference makeup pat-
tern; 3. UV+Ri

⊙ UVh
Ri

: This adds the reference makeup’s
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highlight areas to the source picture by multiplying the UV
texture map of the reference makeup with the highlight areas’
binary mask.

Merging these components results in a UV texture map
UV+Si with the transferred makeup and highlights for the
source pictures. Inputting the UV position map PM gives
the final output Ims after the inverse operation (Eq. (10)).

5. Experiment

5.1 Experiment Parameters

We choose to train each branch independently based on the
following two considerations: First, each branch is unique
in its functions and tasks, such as color transfer, highlight
transfer, and pattern transfer. To ensure that each branch
achieves optimal performance on its specific task, we decided
to train them independently. Second, independent training
can avoid the possible adverse effects of the training results
of one branch on another branch. After all three branches are
trained independently, we use an ensemble strategy to inte-
grate the outputs of all branches to achieve the final makeup
transfer.

Due to having three independent makeup transfer
branches, we have configured different training sets and
training parameters for different branches. Ultimately, we
used the no-makeup and makeup-applied pictures produced
in the paper containing the LADN model as test data, and
compared the performance of six models, including Beauty-
GAN, LADN, PSGAN, WMT(the model raised in Nguyen’s
research [11]), EleGANt and the proposed FSAMT in this
paper.

For the color transfer branch, we trained the color
transfer network on the MT dataset. The training param-
eters are kept basically consistent with those in BeautyGAN.
First, all picture pairs are aligned and resized to a resolu-
tion of 256x256. The adversarial loss weight λa = 1, cycle
consistency loss weight λc = 10. Perceptual loss weight
λp = 0.003. Histogram matching loss weight λh = 1. The
learning rates for both the generator and discriminator are
0.0002, with a batch size set to 1. We used the Adam opti-
mizer, with momentum parameters set to (0.5, 0.999).

For the highlight transfer branch, we trained and tested
on our own dataset HFD. We divided the dataset of 2000
pictures into a 7:3 ratio, with 1400 pictures for training and
600 pictures for testing. U-Net was used as the main archi-
tecture, with binary cross entropy loss and Adam optimizer,
with a learning rate of 0.0002. The momentum parameters
(beta1 and beta2) were set to 0.9 and 0.999, respectively. The
batch size was set to 8, and the number of training epochs
was set to 50.

For the pattern transfer branch, we used the augmented
CPM-Synt-1 and CPM-Synt-2 dataset to train our RMW
model. 80% of the data is for training with a batch size of
16. We used the Adam optimizer with a learning rate of 1e-4
and weight decay of 1e-5. The number of training epochs was
set to 350. During training, we monitored the loss functions

for both the feature extractor and the domain discriminator
to ensure model convergence and avoided overfitting. To
ensure the Lipschitz constraint of the domain discriminator
in W-DA, weight clipping was applied.

5.2 Quantitative Experiment

For qualitative analysis, effective ground truth is neces-
sary. The CPM-Synt-2 dataset consists of synthetic pictures
stored in triplets: makeup pictures, non-makeup pictures,
and ground truth. Constructed based on the assumption of
“makeup transfer stability,” where a good makeup transfer
method produces consistent makeup style outputs using the
same reference picture. The dataset creators, Nguyen et al.,
randomly selected two non-makeup pictures from the MT
dataset, transferred them to the same makeup style using
BeautyGAN, and manually added stickers to obtain ground
truth.

To assess the overall effectiveness of makeup trans-
fer, we have devised three quantitative evaluation metrics
in order to comprehensively evaluate the capabilities of the
model. These metrics include the Structural Similarity In-
dex (SSIM), the Learned Perceptual picture Patch Similarity
(LPIPS), and the Frechet Inception Distance (FID). By em-
ploying the triplets from the CPM-Synt-2 dataset, we have
applied six models and conducted a quantitative analysis of
the transferred results in comparison to the ground truth us-
ing these four criteria. The detailed experimental findings
can be found in Table 3.

The structural similarity index measure (SSIM) takes
into account the structural information, brightness, and con-
trast of images. A value closer to “1” denotes a higher
degree of similarity between two images. According to the
table, the FSAMT model achieves the highest SSIM value
(0.2527). On the other hand, the Learned Perceptual Im-
age Patch Similarity (LPIPS) serves as an evaluation method
based on disparities in the human visual system. A lower
value implies a closer evaluation to that of the human visual
system. The FSAMT model attains the lowest LPIPS value,
which is approximately 4.6% lower than the average value.
Moving on to the Fréchet Inception Distance (FID) metric, a
lower value signifies better picture quality and finer details.
Remarkably, the FSAMT model outperforms other models
with a significantly lower FID value, approximately 20.1%
lower than the average value. Drawing from the outcomes of
these four evaluation metrics, we can assert that the FSAMT
model exhibits superior overall performance in the makeup
transfer task compared to other models.

Table 3 Results of 4 evaluation methods
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Fig. 7 Comparison of transfer results

Although models such as LADN and WMT, which have
the ability to transfer patterns, may not perform as well as
other models in some evaluation metrics, this could be due to
a trade-off between performance and interpretability. While
models may sacrifice performance in certain evaluation met-
rics to maintain their ability to transfer heavy makeup styles,
models that cannot transfer patterns may focus on optimiz-
ing specific evaluation metrics and perform better in these
metrics. Since makeup transfer is a visually appealing task,
qualitative evaluation and user surveys can effectively com-
plement the limitations of quantitative analysis.

5.3 Qualitative Experiment

Using the LADN model’s makeup-free and made-up pic-
tures as source and reference, we compared the makeup
transfer results of six previously discussed models. While
BeautyGAN, PSGAN, and EleGANt possess limited pattern
transfer capabilities, making a complete comparison chal-
lenging, their contributions to the color transfer branch task
warranted their inclusion in this assessment (Fig. 7).

LADN, WMT, and FSAMT demonstrate varying pat-
tern transfer abilities. Our proposed FSAMT model stands
out by preserving pattern and texture details while maintain-
ing picture clarity. Moreover, its color consistency is com-
mendable. Despite BeautyGAN and PSGAN avoiding color
artifacts, with PSGAN exhibiting accurate color restoration,
they falter in transferring intense makeup styles. EleGANt,
though not fully transferring patterns, discerns and modifies
pattern colors within limits. To delve deeper into FSAMT’s
ability, we juxtaposed its detailed transfer results against
WMT, a model with commendable performance in simi-
lar tasks. Figure 8 reveals issues like color inconsistencies,
fuzzy pattern edges, and detail loss in magnified face pictures
with WMT. Contrarily, FSAMT manifests crisper pattern
edges, distinct textures, and reduced facial color anomalies.

Fig. 8 Comparison of different models

5.4 User Survey

We designed the questionnaire from three aspects: makeup
color, makeup pattern and overall makeup. For the first two,
we ask the respondents to focus on the transfer accuracy,
while for the last item, we suggest them to give an evaluation
intuitively from the perspective of human vision. Each as-
pect consists of ten pictures, and the score range is a discrete
value between 0-10. Therefore, thirty responses are included
in one questionnaire. In order to ensure fairness, we shuf-
fled the pictures generated by the six models, and invited 50
respondents(an equal number of males and females) to fill
out the questionnaire. The results of the survey are shown in
Table 4. The table reveals FSAMT as the top performer in
all three categories. From the survey, we observed: 1. Some
respondents, despite rating high for “color” and “pattern,”
scored lower for “overall”; 2. Some were hesitant to rate
without a reference picture. 3. Overall, men are more likely
to score high. We deduced three reasons: First, accurate
makeup transfer doesn’t always equate to enhanced aesthet-
ics. If reference makeup doesn’t fit the source picture, more
accurate transfers might yield less appealing results. Second,
respondents lacked confidence in their aesthetic judgment,
only feeling sure when comparing two pictures. These in-
sights led to the necessary of the Makeup Adaptation model.
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Table 4 User survey(M-Male, F-Female)

It addresses these issues by selecting optimal makeup for
the source picture and operates end-to-end without needing
comparison. Its value is further discussed in the Ablation
Study chapter. Additionally, female, due to their more accu-
rate recognition and keen insight into makeup compared to
men (also benefiting from familiarity with cosmetics), tend
to be more discerning.

6. Ablation Study

We conducted three ablation studies to evaluate the contribu-
tion of different components in the makeup transfer pipeline:
1. Validation of the makeup adaptation model; 2. Validation
of the color transfer branch in makeup transfer model; 3.
Validation of the pattern transfer branch in makeup transfer
model. We used a combination of quantitative and qualita-
tive methods to help us determine which models, structures,
or parameters have a greater impact on picture quality.

To assess the Makeup Adaptation Model’s influence,
we conducted an A/B experiment. In group A, without the
adaptation model, we selected 100 source and reference pic-
tures for random, unordered matching, then processed them
through the Makeup Transfer Model. Group B kept the
same source pictures as A but used the adaptation model to
match face shapes before transferring makeup. The proce-
dure is illustrated in Fig. 9. We used a user survey to gauge
satisfaction, showing participants the original and makeup-
transferred pictures and asking them to rate the makeover’s
aesthetics on a 1-10 scale.

Based on the survey questionnaires returned by 30 par-
ticipants, we obtained the following key data: 1. The average
score of Group A is 6.62, and that of Group B is 7.53, in-
dicating that Group B is approximately 13.7% higher than
Group A; 2. The score variance of Group A is 16.27, and that
of Group B is 9.16, showing that Group B is approximately
43% lower than Group A; 3. The probability of obtaining an
extremely low score (less than 3) in Group A is 8%, while it is
only 2% in Group B. Overall, the performance of Group B is
significantly better than that of Group A, with smaller score
differences between each group of pictures, more aestheti-
cally pleasing makeup after transfer, and less occurrence of
unsuitable makeup. Overall, the makeup adaptation model
effectively provides guidance for makeup selection.

In the color transfer module, we first removed the dis-
criminator with Gradient Penalty and Adaptive Spectral Nor-
malization, and instead used the original discriminator (A).
Then, we replaced the adaptive binning method with fixed

Fig. 9 Control group for makeup adaptation model

Fig. 10 Ablation study result

Table 5 Quantitative analysis of four operations

number of bins for histogram matching (B).
In the pattern transfer module, we removed the

Resnet50MultiScale module and replaced it with a sim-
ple feature extractor (C). Then, we removed the Mul-
tiScaleViT module and only used the features output by
Resnet50MultiScale (D). We retrained the model on the
same dataset after each modification and recorded perfor-
mance metrics. Figure 10 shows the changes brought by
each operation during the experimental process as an exam-
ple.

Table 5 shows performance variations across three met-
rics after distinct operations. For analysis, we normalized
FID to a 0-1 range, termed nFID. Notably, D most affects
SSIM and LPIPS, highlighting the significance of the Mul-
tiScaleViT module. A primarily influences nFID at 0.8123,
showing that omitting the discriminator with specific features
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increases differences between generated and actual pictures.
While B moderately impacts SSIM and LPIPS, its lowest
nFID contribution (0.5041) suggests the adaptive binning
method’s efficiency in histogram matching. C has the least
influence on all three metrics. Next, we combine the results
of ablation experiments and the structural features of the
model to explain the reasons why the improvements on the
model work from two aspects of color and pattern transfer.

In color transfer, our method successfully addresses the
challenge of authentic makeup transfer while preserving fa-
cial features, especially in cases of heavy makeup where
eyeshadow blends with skin tones. This is achieved through
the combined use of CLAHE, which enhances local picture
details through histogram equalization in small regions, and
adaptive binning, which adjusts histogram intervals accord-
ing to data distribution. Together, these techniques ensure
accurate color transfer and realistic makeup application.

For pattern transfer, the integration of
Resnet50MultiScale and ViT is crucial. Resnet50MultiScale
effectively captures details from large facial areas to fine
points like eyeliner, as evidenced by the loss of texture clarity
in Group C when omitted. ViT, meanwhile, excels in merg-
ing multi-scale features, crucial for coherent facial makeup
integration and avoiding disjointed effects, as demonstrated
in Group D.

7. Conclusion

This study introduces a end-to-end makeup transfer frame-
work FSAMT . It adaptively adjusts and precisely trans-
fers selected makeup. Experiments demonstrate its efficacy
across quantitative and qualitative analysis. However, it may
obscure parts of eyebrows or eyelashes during pattern trans-
fers. Future work could integrate additional facial parame-
ters to enhance face shape classification granularity.
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