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PAPER
Lower Bounds for the Thickness and the Total Number of Edge
Crossings of Euclidean Minimum Weight Laman Graphs and
(2,2)-Tight Graphs

Yuki KAWAKAMI†a), Member, Shun TAKAHASHI†b), Nonmember, Kazuhisa SETO†c),
Takashi HORIYAMA†d), Members, Yuki KOBAYASHI††e), Yuya HIGASHIKAWA†††f), Nonmembers,

and Naoki KATOH†††g), Member

SUMMARY We explore the maximum total number of edge crossings
and the maximum geometric thickness of the Euclidean minimum-weight
(k , ℓ)-tight graph on a planar point set P. In this paper, we show that
(10/7 − ϵ ) |P | and (11/6 − ϵ ) |P | are lower bounds for the maximum total
number of edge crossings for any ϵ > 0 in cases (k , ℓ) = (2, 3) and (2, 2),
respectively. We also show that the lower bound for the maximum geometric
thickness is 3 for both cases. In the proofs, we apply the method of arranging
isomorphic units regularly. While the method is developed for the proof in
case (k , ℓ) = (2, 3), it also works for different ℓ.
key words: Laman graph, (k , ℓ)-tight graph, geometric thickness, sparse
graph, k-planarity

1. Introduction

A bar-joint framework is one of the main frameworks studied
in combinatorial rigidity theory. It consists of rigid bars and
rotatable joints. We can discuss the bar-joint framework as
a graph of combinatorial theory by mapping each joint to a
vertex and each bar to a straight-line edge [1]. One of the
most fundamental results in combinatorial rigidity theory
asserts that given a graph G realized on a generic point set
in the plane (i.e., the set of the coordinates is algebraically
independent over the rational field), G is rigid if and only
if G contains a spanning Laman subgraph [2]. A graph
G = (V,E) is a Laman graph if it satisfies |E | = 2|V | −3 and
|E(H)| ≤ 2|V(H)| −3 for any subgraph H of G with E(H) ,
∅. Laman graphs appear in a wide range of applications,
not only statics but also mechanical design such as linkages,
design of CAD systems, analysis of protein flexibility, and
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sensor network localization [3], [4].
The concept of the sparsity condition of a Laman graph

is generalized to a (k, ℓ)-tight graph (see, e.g., [5]). The class
of (k, ℓ)-tight graphs includes important graphs: a Laman
graph is a (2,3)-tight graph, and a spanning tree being studied
in various fields is a (1,1)-tight graph. Furthermore, it is
known that any (k, k)-tight graph can be decomposed into k
edge-disjoint spanning trees [6], [7], and (6,6)-tight graphs
appear in the necessary and sufficient condition of realization
as an infinitesimally rigid body-hinge framework [8].

In two-dimensional generic bar-joint frameworks, the
class of (2, ℓ)-tight graphs, including Laman graphs, plays an
important role. For example, a (2,2)-tight graph is minimally
rigid when the joints are constrained to lie on the surface of
a cylinder (since this surface allows two independent rigid-
body motions) [9].

In this paper, we focus on the edge crossing of Laman
graphs and (2,2)-tight graphs. In order to realize a graph
as a bar-joint framework on the plane in the real world, it
is important to consider its edge crossing. Thus, one of
our concerns is the graphs that maximize the total number of
edge crossings. Another concern is the graphs that maximize
the geometric thickness. The geometric thickness of graph
G is the smallest number of layers necessary to partition the
edge set of G into layers so that no layers have edge crossing
(see, e.g., [10]).

Thus, more specifically, we at first focus on the maxi-
mum total number of edge crossings and the maximum geo-
metric thickness of the Euclidean minimum-weight Laman
graphs. The Euclidean minimum-weight Laman graph on a
point set P, denoted by MLG(P), is the Laman graph with
the minimum total edge length among all Laman graphs
on P. We also focus on those of the Euclidean minimum-
weight (2,2)-tight graphs, where the Euclidean minimum-
weight (k, ℓ)-tight graph on P, denoted by (k, ℓ)-MTG(P), is
defined similarly as a generalization of MLG(P). Interest-
ingly, while the Euclidean minimum-weight spanning tree
on P is always planar (i.e., it has no edge crossings), MLG(P)
may have some edge crossings (see e.g., Fig. 2).

Bereg et al. [11] showed many properties of MLG(P) for
any semi-generic point set P, e.g., 6-planarity, no three edges
cross each other, and the implication MLG(P) ⊆ 1-GG(P) on
the edges of the graphs, where 1-GG(P) is a 1-Gabriel graph.
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From the 6-planarity of MLG(P), they showed that the upper
bound for the maximum total number of edge crossings of
MLG(P) is 6|P | − 9. They also showed that the lower bound
for the maximum total number of edge crossings of MLG(P)
is |P | − 3. Later, Higashikawa et al. [12] improved the upper
and lower bounds for the maximum total number of edge
crossings of MLG(P) to 2.5|P | − 5 and (1.25 − ϵ)|P | for any
ϵ > 0, respectively. Unfortunately, a gap between those
bounds still exists. As for the maximum geometric thickness
of MLG(P), since the geometric thickness of 1-GG(P) is
at most 4 [13], MLG(P) ⊆ 1-GG(P) in [11] implies that
the upper bound for the maximum geometric thickness of
MLG(P) is 4. On the other hand, its lower bound is 2 since
MLG(P) may have some edge crossings. Thus, we also have
a gap in the maximum geometric thickness.

Furthermore, the maximum total number of edge cross-
ings and the maximum geometric thickness of (k, ℓ)-MTG(P)
for general k and ℓ is in our interest. Bereg et al. [11] showed
that (k, ℓ)-MTG(P) is (6k2 + 4k − 10)-planar. In other words,
each edge of (k, ℓ)-MTG(P) crosses at most (6k2 + 4k − 10)
other edges. According to this result, it is easy to see that the
total number of edge crossings of (k, ℓ)-MTG(P) is at most
(6k2 +4k −10)(k |P | − ℓ)/2. As Bereg et al. told in [11], this
upper bound is not tight. In case k = 2 and ℓ = 3, we can
see the bound is 22|P | − 33. There are many open questions
regarding the maximum total number of edge crossings and
the maximum geometric thickness of the (k, ℓ)-MTG(P). As
a first step for general k and ℓ, we focus on (2,3)-MTG(P)
and (2,2)-MTG(P).

Our contribution is as follows. At first, we improve
the lower bound for the maximum total number of edge
crossings of MLG(P). In other words, we show a semi-
generic point set P that improve the lower bound. Our idea
for the proof is based on the method by Higashikawa et
al. [12]: arrange the same units on a circumference, where
each unit consists of carefully positioned five points. We
extend this method by alternately arranging two types of
units on a circumference. Each of both units consists of
eight points, and their arrangement is well determined so
as to derive isomorphic Euclidean minimum-weight Laman
graphs and not to interfere with each other. By alternately
arranging these two types of units, we derive lower bound
( 10

7 − ϵ)|P | for any ϵ > 0.
Our extended method has the possibility to derive a

lower bound for general cases. To show the power of our
method, we apply it to different ℓ. More precisely, we de-
rive a lower bound for the maximum total number of edge
crossings of (2,2)-MTG(P) by regularly arranging different
units made under the same design: Each unit differs in only
one parameter regarding width, while all other parameters
are the same for all units. By regularly arranging these units,
we derive lower bound ( 11

6 − ϵ)|P | for any ϵ > 0, while no
lower bounds were known. Our results on (2,3)-MTG(P)
and (2,2)-MTG(P) suggest that the maximum total number
of edge crossings depends on parameter ℓ. Recall that the
upper bound by Bereg et al. [11] was with parameter k. Thus,
we can open the door for the discussion with general k and ℓ.

We also address the lower bounds for the maximum
geometric thickness of MLG(P) and (2,2)-MTG(P). We use
the edge-crossing graph (also called crossing dual graph) of
a geometric graph G(P). Each vertex and edge of the edge-
crossing graph corresponds to an edge of G(P) and the edge
crossing of two edges of G(P), respectively. Interestingly,
the chromatic number of the edge-crossing graph is equal
to the geometric thickness of the original geometric graph
G(P) [12]. We show a semi-generic point set P such that
the edge-crossing graph of MLG(P) contains a cycle of odd
length. Since this implies its chromatic number is at least
3, we can improve the lower bound to 3. In a similar way,
we can also derive the same lower bound for the maximum
geometric thickness of (2,2)-MTG(P).

2. Preliminaries

2.1 Minimum-Weight (k,ℓ)-Tight Graphs

A graph G = (V,E) is a (k, ℓ)-sparse graph (0 ≤ ℓ ≤ 2k −1)
if it satisfies |E(H)| ≤ k |V(H)| − ℓ for any subgraph H of G
with E(H) , ∅, where E(H) denotes the set of edges of H.
A (k, ℓ)-sparse graph is a (k, ℓ)-tight graph if it has exactly
k |V(G)| − ℓ edges. In particular, (1,1)-tight graph, i.e., the
graph for the case k = ℓ = 1, is called a spanning tree, and
(2,3)-tight graph is called a Laman graph.

A geometric graph G(P) = (P,Ep) on a planar point set
P is obtained by embedding a graph G = (V,E) into a two-
dimensional Euclidean plane by a bijection p : V → P. Each
vertex vi ∈ V of graph G is mapped to a point p(vi) = pi ,
and each edge (vi, vj) ∈ E is mapped to a line segment
p(vi)p(vj) ∈ Ep. In this paper, we denote pipj as both the
line segment p(vi)p(vj) and the edge (vi, vj). The weight of
edge pipj is defined as the Euclidean distance between two
points pi and pj , denoted by ∥pipj ∥.

The (k, ℓ)-tight graph with the minimum total edge
weight among all (k, ℓ)-tight graphs on P is called the Eu-
clidean minimum-weight (k, ℓ)-tight graph on P, and denoted
by (k, ℓ)-MTG(P). In case k = 2 and ℓ = 3, (2,3)-MTG(P)
is also called the Euclidean minimum-weight Laman graph
on P, and denoted by MLG(P). Throughout the paper, we
assume that no three points in P are collinear and that all
distances between two points in P are distinct, called semi-
generic. From this assumption, given a semi-generic point
set P, we can uniquely obtain MLG(P) and (k, ℓ)-MTG(P).

2.2 (k, ℓ)-Sparsity Matroid

A matroid M is an ordered pair (E,L) consisting of a finite
set E and a family L of subsets of E satisfying the following
conditions:

(C1) ∅ ∈ L.
(C2) If X ∈ L and X ′ ⊆ X , then X ′ ∈ L.
(C3) If A and B are in L and |A| < |B |, then there is an

element e ∈ B \ A satisfying A ∪ {e} ∈ L.

A finite set E is a ground set of M. The members of L are
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called independent. On the contrary, a subset of E that is
not in L is called dependent. A maximum independent set
and a minimal dependent set in M are called a basis and a
circuit of M, respectively. It is known that all subsets of a
circuit are independent.

Given a graph G = (V,E), let L be the family of subsets
of E , where each of which induces a (k, ℓ)-sparse subgraph
of G. Then, a pair (E,L) is known to be a matroid, called
the (k, ℓ)-sparsity matroid [14]. Especially, a (k, ℓ)-sparsity
matroid with k = 2 and ℓ = 3 is also called two-dimensional
rigidity matroid. If G is a complete graph, a basis of the
(k, ℓ)-sparsity matroid induces a (k, ℓ)-tight graph.

Lemma 1 (Proposition 5.3 [12]). Consider a matroid with
ground set E whose elements are assigned distinct weights.
Let e∗ be the element with the maximum weight in a circuit
in E . Then, e∗ is not included in any minimum weight basis
of the matroid.

Lemma 2 (Lemma 2.2 [11]). Let P be a semi-generic point
set in the plane, Q ⊆ P, and a, b ∈ Q. Also let Eab(Q) be the
set of edges {pq | p,q ∈ Q, p , q, ∥pq∥ < ∥ab∥}. If there
exists a subset of Eab(Q) that induces a Laman graph on Q,
then ab < E(MLG(P)) holds.

The above Lemma 2 by Bereg et al. [11] is a good tool
for distinguishing whether an edge is in the MLG(P). The
sketch of its proof is as follows. Given a semi-generic point
set P, let K(P) = (P,E) be the geometric complete graph
on P. Lemma 2 is obtained by applying Lemma 1 to a two-
dimensional rigidity matroid, where the ground set is the
edge set E . As P is a semi-generic point set, all elements
(i.e., edges) of E have distinct weights. The assumption of
Lemma 2 says we have a Laman graph on Q that is induced by
some subset E ′ of Eab(Q). For any edge e ∈ E(K(Q))\E ′, if
we add e to E ′, the resulting edge-induced graph (Q,E ′∪{e})
does not satisfy the definition of (2,3)-sparse graph. This
means that edge set E ′ ∪ {e} is not independent, i.e., it is
dependent. Thus, ab ∈ E(K(Q)) \ E ′ implies that E ′ ∪ {ab}
is dependent. As a circuit is a minimal dependent set, there
exists a circuit E ′′∪ {ab} satisfying E ′′ ⊆ E ′. By definition
of Eab(Q) in Lemma 2, ∥e∥ < ∥ab∥ holds for any e ∈
Eab(Q). This means that, as E ′′ ⊆ E ′ ⊆ Eab(Q), edge
ab is the element with the maximum weight in the circuit
E ′′ ∪ {ab}. Therefore, Lemma 1 says ab is not included in
any minimum weight basis. As the minimum weight basis
edge-induces the Euclidean minimum-weight Laman graph
MLG(P), ab < E(MLG(P)) holds.

By a similar argument with Lemma 2, we can extend
the above lemma to the general case, i.e., (k, ℓ)-MTG(P) for
general k and ℓ.

Lemma 3. Let P be a semi-generic point set in the plane,
Q ⊆ P, and a, b ∈ Q. Also let Eab(Q) be the set of edges
{pq | p,q ∈ Q, p , q, ∥pq∥ < ∥ab∥}. If there exists a
subset of Eab(Q) that induces a (k, ℓ)-tight graph on Q, then
ab < E((k, ℓ)-MTG(P)) holds.

We can obtain Lemma 3 by replacing the two-
dimensional rigidity matroid on the edge set of the geometric

complete graph K(P) on P and Laman graphs in Lemma 2
by the (k, ℓ)-sparsity matroid on the edge set of K(P) and
(k, ℓ)-tight graph, respectively. As in Lemma 2, the ground
set is E and all elements of E have distinct weight. The
assumption of Lemma 3 says we have a (k, ℓ)-tight graph on
Q that is induced by some subset E ′ of Eab(Q). For any
edge e ∈ E(K(Q)) \ E ′, if we add e to E ′, the resulting
edge-induced graph (Q,E ′ ∪ {e}) does not satisfy the def-
inition of (k, ℓ)-sparse graph as in Lemma 2. This means
that edge set E ′ ∪ {e} is not independent, i.e., it is depen-
dent. These statements are the same as in Lemma 2 even
if we replace ‘Laman graph’ by ‘(k, ℓ)-tight graph’. Thus,
ab ∈ E(K(Q)) \ E ′ implies that E ′ ∪ {ab} is dependent and
there exists a circuit E ′′ ∪ {ab} satisfying E ′′ ⊆ E ′. By
definition of Eab(Q) in Lemma 3, ∥e∥ < ∥ab∥ holds for
any e ∈ Eab(Q). This means that, as E ′′ ⊆ E ′ ⊆ Eab(Q),
edge ab is the element with the maximum weight in a circuit
E ′′ ∪ {ab}. Therefore, Lemma 1 says ab is not included
in any minimum weight basis. As the minimum weight ba-
sis edge-induces the (k, ℓ)-MTG(P), ab < E((k, ℓ)-MTG(P))
holds. We use this lemma to prove the lower bounds for the
maximum total number of edge crossings of (2,2)-MTG(P).

2.3 Geometric Thickness of Geometric Graphs

Our focus is the crossings of the edges in a geometric graph
G(P) = (P,E). Two edges e and e′ (∈ E) are crossing if
and only if they have a common point other than their both
ends. We denote the total number of edge crossings in G(P)
by σ(G(P)). The geometric thickness of G(P) is defined
as the minimum positive integer t satisfying the following
conditions:

• ∪t
i=1Ei = E .

• For any integer i (1 ≤ i ≤ t), geometric graph Gi(P) =
(P,Ei) is non-crossing (i.e., Gi(P) is a plane graph).

Suppose that we are given a geometric graph G(P) with
geometric thickness t, and that we partition E into t −1 edge
sets E1,E2, . . . ,Et−1. Then, at least one geometric graph
Gi(P) = (P,Ei) has edge crossing.

We introduce edge-crossing graphs of geometric graphs
to understand the geometric thickness. Given a geometric
graph G(P) = (P,E), its edge-crossing graph (W,F) is de-
fined as follows: each vertex e ∈ W corresponds to edge
e ∈ E , and edge (e, e′) is in F if and only if edges e and e′

cross each other in G(P). The following relationship exists
between the geometric thickness of a geometric graph and
the chromatic number of the edge-crossing graph.

Lemma 4 ([12]). The geometric thickness of a geometric
graph G(P) is equal to the chromatic number of the edge-
crossing graph of G(P).

3. Lower Bounds

In this section, we show the lower bounds for the maxi-
mum geometric thickness and the maximum total number
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Fig. 1 Arranging U (even) and U (odd) alternately.

of edge crossings of MLG(P) and (k, ℓ)-MTG(P) by giving
semi-generic point sets P, respectively. To improve the lower
bound for the maximum total number of edge crossings, we
use units consisting of several points. For MLG(P), the lower
bound is derived by counting the total number of edge cross-
ings of MLG on a point set with alternately arranged two types
of units. For (2,2)-MTG(P), we consider a point set regularly
arranging different units made under the same design. We
also improve the lower bound for the maximum geometric
thickness by showing that the bounds of both MLG(P) and
(2,2)-MTG(P) is 3. We focus on MLG(P) in Sect. 3.1, and
(2,2)-MTG(P) in Sect. 3.2.

3.1 Minimum-Weight Laman Graph

Higashikawa et al. [12] derived the lower bound by regularly
arranging the same units each of which consists of five points.
The key point of their method is that, by adding one unit, the
number of points increases by 4, and at the same time, the
number of edge crossings increases by 5. Thus, the lower
bound is derived by the ratio 5

4 = 1.25. We improve the
lower bound by extending the idea to arrange two types of
units U(even) and U(odd) alternately, where each unit consists
of eight points. The alternate arrangement of U(even) and
U(odd) is illustrated in Fig. 1. Both of these two units U(even)

and U(odd) are positioned so as to derive the isomorphic
Euclidean minimum-weight Laman graphs in all units. The
alternation of two different types of units instead of the same
type will give two crossings between the neighboring units.
Let t denote the number of units we arrange, and P(t) denote
the point set when t units are arranged. Also, we denote the
i-th unit by Ui (0 ≤ i ≤ t − 1) and the point px in unit Ui by
p(i)x .

First, we describe the details of units U(even) and U(odd),
and show the Euclidean minimum-weight Laman graph on
the point set of a unit U(even). In case i is even, unit Ui is
obtained by translating and rotating the eight points in U(even)

illustrated in Fig. 2, where six parameters d, δ, δ′, τ, τ′ and he
are positive real numbers. (The translation and the rotation
do not change the relative positions among the eight points
in a unit.) Although point set U(even) is not semi-generic, by
moving the points in U(even) infinitesimally, we can obtain
a semi-generic point set without changing the inequalities

Fig. 2 MLG(U (even)).

on the weights of the edges. The infinitesimal move works
on tie-breaking the edges of equal weights. Unit U(odd)

is obtained by replacing the parameter he in U(even) with
ho = he + d + 2τ. We carefully determine the parameters so
that the two Euclidean minimum-weight Laman graphs on
point sets U(even) and U(odd) become isomorphic.

Lemma 5. Suppose that edge p2p5 is infinitesimally shorter
than p1p6 and the parameters d, δ, δ′, τ, τ′ and he or ho
satisfy the following conditions:

(A) δ′ > 3δ, δ + τ′
(B) d > δ + τ,2δ′

(C) d + δ + 2τ + τ′ < he, ho <
δ(δ′−3δ)

2τ′ ,
(d−δ′)2−(δ′−δ)2

2τ

Then, the Euclidean minimum-weight Laman graph on a
point set U(even) is the geometric graph illustrated in Fig. 2,
i.e., the geometric graph edge-induced by {p0p1, p0p2, p1p2,
p1p3, p1p5, p2p3, p2p5, p2p6, p4p5, p4p6, p5p6, p5p7, p6p7}.
The Euclidean minimum-weight Laman graph on U(odd) is
the graph obtained by replacing he in Fig. 2 with ho.

Proof. We prove this lemma by showing that the geometric
graph illustrated in Fig. 2 is a Laman graph and that all edges
not illustrated in Fig. 2 are not included in MLG(U(even)). For
discriminating whether an edge is in MLG(U(even)) or not, we
use Lemma 2.

First, we show the weights of all edges in increasing
order to compare them.

∥p1p2∥ = ∥p5p6∥ = 2δ

< ∥p4p5∥ = ∥p6p7∥ =
√
(δ′ − δ)2 + τ′2

< ∥p4p6∥ = ∥p5p7∥ =
√
(δ′ + δ)2 + τ′2
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< ∥p4p7∥ = 2δ′

< ∥p0p1∥ = ∥p2p3∥ =
√
(d − δ)2 + τ2

< ∥p0p2∥ = ∥p1p3∥ =
√
(d + δ)2 + τ2

< ∥p0p3∥ = 2d
< ∥p1p5∥ = ∥p2p6∥ = he

< ∥p2p5∥ ⪅ ∥p1p6∥ =
√

4δ2 + he2

< ∥p0p4∥ = ∥p3p7∥ =
√
(d − δ′)2 + (he − τ − τ′)2

< ∥p0p5∥ = ∥p3p6∥ =
√
(d − δ)2 + (he − τ)2

< ∥p0p6∥ = ∥p3p5∥ =
√
(d + δ)2 + (he − τ)2

< ∥p1p4∥ = ∥p2p7∥ =
√
(δ′ − δ)2 + (he − τ′)2

< ∥p1p7∥ = ∥p2p4∥ =
√
(δ′ + δ)2 + (he − τ′)2

< ∥p0p7∥ = ∥p3p4∥ =
√
(d + δ′)2 + (he − τ − τ′)2,

where ∥p2p5∥ ⪅ ∥p1p6∥ =
√

4δ2 + he2 means that ∥p2p5∥ =
∥p1p6∥ =

√
4δ2 + he2 holds if we ignore the infinitesimal

move of the points and that ∥p2p5∥ is infinitesimally smaller
than ∥p1p6∥ by the tie-break of the infinitesimal move.

Next, we focus on each of the edges not illustrated in
Fig. 2. For a given edge e and a point set Q ⊆ U(even), we de-
note Ee(Q) as the set of edges shorter than e in the geometric
complete graph K(Q). For edge p0p3, suppose that we have
a point set Q = {p0, p1, p2, p3}. Then, we can obtain the set
Ep0p3 (Q) of edges shorter than ∥p0p3∥ in K(Q) as Ep0p3 (Q) =
{p0p1, p0p2, p1p2, p1p3, p2p3}. Since graph (Q,Ep0p3 (Q))
is a Laman graph on Q, p0p3 < MLG(U(even)) holds by
Lemma 2. For edge p4p7, suppose Q = {p4, p5, p6, p7}.
Then we can obtain the edge set Ep4p7 (Q). By the same
argument with edge p0p3, p4p7 < MLG(U(even)) holds.

As for the rest of edges not illustrated in Fig. 2, they are
longer than edge p2p5. Let us discuss edge p1p6 as a rep-
resentative among them, and suppose that Q = U(even). We
can obtain an edge set Ep1p6 (Q). Since graph (Q,Ep1p6 (Q))
include the Laman graph on Q illustrated in Fig. 2, p1p6 <
MLG(U(even)) holds by Lemma 2. By a similar argument,
any other edge e longer than edge p2p5 is not included in
MLG(U(even)). As a result, we can prove the first statement
on U(even). From the argument for constructing U(odd), we
can say that the same holds for MLG(U(odd)). □

Next, we consider the point set P(t) obtained by arrang-
ing t units. In case t = 1, P(1) is U(even) itself, and thus the
graph in Fig. 2 is MLG(P(1)). In case t > 1, we alternately
arrange U(even) and U(odd) as in Fig. 1. More precisely, for
integer i (0 ≤ i ≤ t − 1), Ui is U(even) if i is even and U(odd) if
i is odd. We arrange t units U0,U1, . . . ,Ut−1 as P(t) so that
every four points p(i)0 , p

(i)
1 , p

(i)
2 , p

(i)
3 of unit Ui lie on the same

circumference C0. In addition, for all integer i (0 ≤ i ≤ t−2)
two points p(i)3 of unit Ui and p(i+1)

0 of unit Ui+1 are adjusted
to the same position and are regarded as the same point. The
following lemma tells which edge is in MLG(P(t)).

Lemma 6. The set of edges in MLG(P(t)) is a union of the
set of edges in MLG(Ui) for 0 ≤ i ≤ t − 1 and the set of
edges p(i)2 p(i+1)

1 between two neighboring units Ui and Ui+1
for 0 ≤ i ≤ t − 2.

Proof. We can prove this lemma by a similar argument
with Lemma 5. For edges between two points in the same
unit Ui , all edges not included in MLG(Ui) are excluded
from MLG(P(t)) by the same argument. For edges be-
tween different units, only edges p(i)2 p(i+1)

1 are included in
the E(MLG(P(t))) and no other edges are included. For all
integer i (0 ≤ i ≤ t − 1), the weight of edge ∥p(i)2 p(i+1)

1 ∥
can be approximated to 2d by adjusting four parameters
δ, δ′, τ, τ′ very small with satisfying the conditions (A) to
(C) in Lemma 5. For all even x, the weights of the edges
p(x)7 p(x+1)

4 and p(x)7 p(x+1)
1 can be approximated to

√
5d by mak-

ing he a small value with satisfying condition (C) in Lemma 5
(and symmetrically for edges p(x)4 p(x−1)

7 and p(x)4 p(x−1)
3 ). The

weights of the other edges between different units are larger
than those of these edges. Note that all edges included
in MLG(Ui) for each unit Ui are shorter than either edge
p(x)7 p(x+1)

4 or p(x)7 p(x+1)
1 . If we consider an edge set E that is

shorter than the weight min(∥p(x)7 p(x+1)
4 ∥, ∥p(x)7 p(x+1)

1 ∥), then
the graph (P(t),E) includes a Laman graph on the point set
P(t). Therefore, edges p(x)7 p(x+1)

4 and p(x)7 p(x+1)
1 are not in-

cluded in E(MLG(P(t))) by Lemma 2. Furthermore, since all
edges between different units except p(i)2 p(i+1)

1 are longer than
either edge p(x)7 p(x+1)

4 or p(x)7 p(x+1)
1 , they are not included in

the E(MLG(P(t))). □

Now let us count the number of edge crossings in
MLG(P(t)). For each unit Ui (0 ≤ i ≤ t − 1), we have
eight crossings in MLG(Ui). In addition, for each neigh-
boring units Ui and Ui+1 (0 ≤ i ≤ t − 2), we have
two crossings (p(i)2 p(i+1)

1 , p(i)1 p(i)3 ) and (p(i)2 p(i+1)
1 , p(i+1)

0 p(i+1)
2 ).

Thus, the total number of edge crossings of MLG(P(t)) is
8t + 2(t − 1) = 10t − 2. And since the number of points is
7t + 1 in this case, we obtain the following equation:

σ(MLG(P(t)))
|P(t)| =

10t − 2
7t + 1

=
10
7

− 24
49t + 7

.

Here, we determine the radius R of circle C0 as

R =

√
((d − δ)2 + τ2)((d + δ)2 + τ2)

2τ
.

By adjusting parameters d, δ, δ′, τ, τ′, he and ho so that they
are satisfying conditions (A) to (C) in Lemma5, ho = he +
d + 2τ and 2πR ≫ 2t(d + δ), the number of units t can
be made arbitrarily large. In other words, for any ϵ > 0,
there exists a point set P such that the total number of edge
crossings σ(MLG(P)) is at least ( 10

7 − ϵ)|P |. Although the
above point set P is not semi-generic, we can obtain a semi-
generic point set P′ such that the topology of MLG(P′) is the
same as MLG(P) by moving each point in P infinitesimally.
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Theorem 1. For any ϵ > 0, there exists a set of semi-
generic points P such that the total number of edge crossings
of MLG(P) is greater than ( 10

7 − ϵ)|P |.

Now, we focus on the maximum geometric thickness
of MLG(P). The graph shown in Fig. 3 is the edge-crossing
graph of MLG(U(even)). Vertex pipj in Fig. 3 corresponds
to edge pipj in MLG(U(even)), and edge (pi1 pj1, pi2 pj2 ) cor-
responds to an edge crossing of edges pi1 pj1 and pi2 pj2
in MLG(U(even)). This graph contains a cycle of length 5.
Hence, this graph is not 2-colorable. In other words, its
chromatic number is 3 or more. Since the geometric thick-
ness of a geometric graph is equal to the chromatic number
of its edge-crossing graph from Lemma 4, the geometric
thickness of MLG of U(even) is 3 or more. Thus, we have the
following theorem.

Theorem 2. There exists a set of semi-generic points P such
that the geometric thickness of MLG(P) is greater than or
equal to 3.

3.2 Minimum-Weight (2,2)-Tight Graph

In Sect. 3.1, we alternately arranged two types of units

Fig. 3 edge-crossing graph of MLG(U (even)).

Fig. 4 Minimum-weight (2, 2)-tight graph on a point set arranging t units.

Fig. 5 (2, 2)-MTG(Ui ).

U(even) and U(odd). In this subsection, we derive a lower
bound for the maximum total number of edge crossings of
Euclidean minimum-weight (2,2)-tight graph by a new ap-
proach: While we arrange mutually different t units, the
position of the points in the units is designed so that the
Euclidean minimum-weight (2,2)-tight graphs on all units
are isomorphic as shown in Fig. 4. As in Sect. 3.1, we first
describe each unit Ui and the rules for arranging t units. Let
P(t) denote the point set with t units. Although point set
P(t) is not semi-generic, by moving the points in P(t) in-
finitesimally, we can obtain a semi-generic point set without
changing the inequalities on the weights of the edges. Then
we discuss the Euclidean minimum-weight (2,2)-tight graph
on the point set with t units, and finally the total number of
edge crossings of the (2,2)-MTG(P(t)).

For each i in 0 ≤ i ≤ t−1, unit Ui consists of six points.
The relative position of the points in each unit is illustrated
in Fig. 5, and is determined by three parameters δ, ϵ and di .
Two parameters δ, ϵ are common for all units, and parameter
di is different in each unit. In each Ui , three points p(i)0 ,
p(i)3 and p(i)4 (respectively, p(i)1 , p(i)2 and p(i)5 ) have the same
x-coordinate. The height of Ui is always ϵ . On the other
hand, as i increases, the width of Ui also increases.

Lemma 7. Suppose that the parameters di, δ and ϵ satisfy
the following conditions:

(i) δ < di
(ii) ϵ < di − δ

Then, the Euclidean minimum-weight (2,2)-tight graph on
point set Ui is the geometric graph illustrated in Fig. 5, i.e.,
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the geometric graph induced by E (i)
MTG = {p(i)0 p(i)1 , p

(i)
0 p(i)2 ,

p(i)1 p(i)2 , p
(i)
1 p(i)3 , p

(i)
1 p(i)4 , p

(i)
2 p(i)3 , p

(i)
2 p(i)4 , p

(i)
3 p(i)4 , p

(i)
3 p(i)5 ,

p(i)4 p(i)5 }.

Proof. We can confirm that the geometric graph
(Ui,E

(i)
MTG) illustrated in Fig. 5 satisfies the definition of a

(2,2)-tight graph. Then, we prove this lemma by showing
that all edges in K(Ui) \ E (i)

MTG (i.e., the edges not illustrated
in Fig. 5) are not included in (2,2)-MTG(Ui), where K(Ui)
is the geometric complete graph on Ui . For discriminating
whether an edge is in (2,2)-MTG(Ui) or not, we use Lemma 3.

First, we show the weights of all edges in increasing
order to compare them. In this proof, for convenience, we
use pj to denote p(i)j .

∥p1p2∥ = ∥p3p4∥ = δ

< ∥p0p1∥ = ∥p2p3∥ = ∥p4p5∥ =
√

di2 + ϵ2

< ∥p0p2∥ = ∥p1p3∥ = ∥p2p4∥

= ∥p3p5∥ =
√
(di + δ)2 + ϵ2

< ∥p1p4∥ =
√
(2δ + di)2 + ϵ2

< ∥p0p3∥ = ∥p2p5∥ = 2di + δ
< ∥p0p4∥ = ∥p1p5∥ = 2di + 2δ

< ∥p0p5∥ =
√
(3di + 2δ)2 + ϵ2

We focus on edge p0p3 ∈ K(Ui) \ E (i)
MTG. Among the

edges in K(Ui), we can obtain the set Ep0p3 (Ui) of edges
shorter than ∥p0p3∥ as Ep0p3 (Ui) = {p0p1, p0p2, p1p2, p1p3,
p1p4, p2p3, p2p4, p3p4, p3p5, p4p5}. We can confirm the ge-
ometric graph (Ui,Ep0p3 (Ui)) satisfies the definition of a
(2,2)-tight graph on Ui . By Lemma 3, we have p0p3 <
E((2,2)-MTG(Ui)).

Any other edge pxpy ∈ K(Ui) \ E (i)
MTG is longer than

edge p0p3. Thus, Ep0p3 (Ui) is a subset of Epx py (Ui), where
Epx py (Ui) is the set of edges shorter than ∥pxpy ∥. Since
(Ui,Ep0p3 (Ui)) is a (2,2)-tight graph as stated above, we have
pxpy < E((2,2)-MTG(Ui)) by Lemma 3. □

As illustrated in Fig. 4, we vertically arrange t units so
that two points p(i)3 and p(i+1)

1 (respectively, p(i)4 and p(i+1)
2 )

in each of the neighboring units Ui,Ui+1 have the same y-
coordinate. The lengths ∥p(i)3 p(i+1)

1 ∥ and ∥p(i)4 p(i+1)
2 ∥ is fixed

to h for all i’s.

Lemma 8. Suppose that the parameters di, δ, ϵ and h satisfy
the following conditions:

(I) di+1 > 2di + δ
(II) δ < d0

(III) h > 2dt−1 + δ

(IV) ϵ < (d1−d0−δ)2
4h , (d1−2d0−δ)

2h

The set of edges in (2,2)-MTG(P(t)) is a union of E (i)
MTG for

0 ≤ i ≤ t − 1 and the set of edges p(i)3 p(i+1)
1 and p(i)4 p(i+1)

2

between two neighboring units Ui and Ui+1 for 0 ≤ i ≤ t−2,
where E (i)

MTG is the set of edges in (2,2)-MTG(Ui).

Proof. We can prove this lemma by a similar argument
with Lemma 7. For discriminating whether an edge is in
(2,2)-MTG(P(t)) or not, we use Lemma 3. As for the edges
in a unit, by the same argument, we can exclude all edges
in K(Ui) \ E (i)

MTG for all i’s. In other words, the edges not
illustrated in Fig. 5 are excluded.

Now, we discriminate the set Edif of edges between two
different units, where Edif = {p(i)x p(j)y | 0 ≤ x, y ≤ 5, 0 ≤ i <
j ≤ t−1}. Let Ein be a set of edges in Edif that are illustrated
in Fig. 4, i.e., Ein = {p(i)3 p(i+1)

1 , p(i)4 p(i+1)
2 | 0 ≤ i ≤ t−2}. We

focus on edge eex ∈ Edif \Ein (i.e., the edges not illustrated in
Fig. 4), and show that eex is not an edge of (2,2)-MTG(P(t))
by comparing eex with the edges in Ein and E (i)

MTG. By
conditions (I) to (IV) in this lemma, we can confirm that
∀ein ∈ Ein, eex ∈ Edif \ Ein : ∥ein∥ < ∥eex∥ holds. By
condition (III) in this lemma, ∀eMTG ∈ E (i)

MTG, ein ∈ Ein :
∥eMTG∥ < ∥ein∥ holds for 0 ≤ i ≤ t − 1. Thus, we have
∀eMTG ∈ E (i)

MTG, eex ∈ Edif \ Ein : ∥eMTG∥ < ∥eex∥. From
above two inequalities on eex, for all eex ∈ Edif \ Ein we have
Ein ⊆ Eeex(P(t)) and E (i)

MTG ⊆ Eeex(P(t)) for 0 ≤ i ≤ t − 1,
where Eeex (P(t)) is the set of edges shorter than ∥eex∥. This
means that (∪i E (i)

MTG)∪Ein is a subset of Eeex(P(t)). We can
confirm that the geometric graph induced by (∪i E (i)

MTG)∪Ein
satisfies the definition of a (2,2)-tight graph. By Lemma 3,
we have eex < E((2,2)-MTG(P(t))) for all eex ∈ Edif \Ein. □

Since there are five edge crossings in each unit Ui (0 ≤
i ≤ t−1) and six edge crossings for each neighboring Ui and
Ui+1 (0 ≤ i ≤ t − 2), the total number of edge crossings of
(2,2)-MTG(P(t)) is 5t +6(t −1) = 11t −6. Since the number
of points is 6t in this case, we obtain the following equation:

σ((2,2)-MTG(P(t)))
|P(t)| =

11t − 6
6t

=
11
6

− 1
t
.

Thus, with a sufficiently large t, for any ϵ > 0, there exists
a point set P such that the total number of edge crossings
σ((2,2)-MTG(P)) is at least ( 11

6 − ϵ)|P |. Although the above
point set P is not semi-generic, as in the previous subsec-
tion, we can obtain a semi-generic point set P′ such that the
topology of (2,2)-MTG(P′) is the same as (2,2)-MTG(P) by
moving each point in P infinitesimally.

Theorem 3. For any ϵ > 0, there exists a set of semi-
generic points P such that the total number of edge crossings
of (2,2)-MTG(P) is greater than ( 11

6 − ϵ)|P |.

In the following, we discuss the thickness. We consider
a point set P8 ⊆ P(2) consisting of eight points p(0)2 , p

(0)
3 , p

(0)
4 ,

p(0)5 , p
(1)
0 , p

(1)
1 , p

(1)
2 , and p(1)3 . (2,2)-MTG(P8) is the geometric

graph illustrated in Fig. 6, i.e., the graph induced by {p(0)2 p(0)3 ,

p(0)2 p(0)4 , p
(0)
2 p(0)5 , p

(0)
3 p(0)4 , p

(0)
3 p(0)5 , p

(0)
4 p(0)5 , p

(0)
3 p(1)1 , p

(0)
4 p(1)2 ,

p(1)0 p(1)1 , p
(1)
0 p(1)2 , p

(1)
0 p(1)3 , p

(1)
1 p(1)2 , p

(1)
1 p(1)3 , p

(1)
2 p(1)3 }. We can
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Fig. 6 (2, 2)-MTG(P8).

Fig. 7 Edge-crossing graph of (2, 2)-MTG(P8).

prove it by a similar argument as in the proof of Lemma 8.
The graph shown in Fig. 7 is the edge-crossing graph of
(2,2)-MTG(P8). This graph contains a cycle of length 5.
Therefore, with the same reason as in the case of MLG(P)
and Lemma 4, the geometric thickness of (2,2)-MTG(P8) is
at least 3. Thus, we have the following theorem.

Theorem 4. There exists a set of semi-generic points P such
that the geometric thickness of (2,2)-MTG(P) is greater than
or equal to 3.

4. Concluding Remarks

As for the maximum total number of edge crossings, with the
idea of regularly arranging different units, we improved the
lower bound for Euclidean minimum-weight Laman graphs
and newly derived the lower bound for Euclidean minimum-
weight (2,2)-tight graphs. As for the maximum geometric
thickness, we showed that the lower bounds for Euclidean
minimum-weight Laman and (2,2)-tight graphs are 3 since
we have a cycle of length 5 in each of their edge-crossing
graphs.

A gap, however, still exists between the upper and lower
bounds for the maximum total number of edge crossings of
MLG(P) for a semi-generic point set P. One of the challenges
is to fill this gap. In our view, our technique has potential
for further improvement by applying other units. There is
also a large gap for (2,2)-MTG(P). The reason for this large
gap is due to the difficulty that the technique for the upper
bound of MLG(P) cannot be directly applied to (2,2)-MTG(P)
since it may contain cliques of size 4. Bereg et al. [11]

Fig. 8 Edge p1p4 crosses 7 other edges in (2, 2)-MTG(P).

showed 6-planarity of MLG(P). However, it does not hold in
(2,2)-MTG(P). In fact, there exists a point set P such that an
edge crosses other seven edges in (2,2)-MTG(P). In the point
set P shown in Fig. 8, the parameters d, δ, ϵ , and h are defined
to satisfy the conditions in Lemma 8. We can confirm that
edge p1p4 crosses seven other edges. Thus, new techniques
are necessary to address the upper bound of the maximum
total number of edge crossings of (2,2)-tight graph (and also
for general (k, ℓ)-tight graph). For the lower bound, we be-
lieve that our technique of arranging different units made
under the same design is promising for general k and ℓ.

A gap also exists for the maximum geometric thickness
of MLG(P). Higashikawa et al. [12] gave a suggestion for
improving the upper bound. A planar triangle-free graph
is 3-colorable, and the edge-crossing graph of MLG(P) is
triangle-free for any semi-generic point set P. Thus, if we
prove the planarity of the edge-crossing graphs, the upper
bound becomes 3 (i.e., we have the matching upper and
lower bounds). As for the maximum geometric thickness for
(2,2)-MTG(P), the upper bound is open. Moreover, it is not
known whether the edge-crossing graph of (2,2)-MTG(P) is
triangle-free or not.
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