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PAPER
Enhanced Data Transfer Cooperating with Artificial Triplets for
Scene Graph Generation

KuanChao CHU†a), Satoshi YAMAZAKI††, Nonmembers, and Hideki NAKAYAMA†, Member

SUMMARY This work focuses on training dataset enhancement of in-
formative relational triplets for Scene Graph Generation (SGG). Due to the
lack of effective supervision, the current SGG model predictions perform
poorly for informative relational triplets with inadequate training samples.
Therefore, we propose two novel training dataset enhancement modules:
Feature Space Triplet Augmentation (FSTA) and Soft Transfer. FSTA
leverages a feature generator trained to generate representations of an ob-
ject in relational triplets. The biased prediction based sampling in FSTA
efficiently augments artificial triplets focusing on the challenging ones. In
addition, we introduce Soft Transfer, which assigns soft predicate labels to
general relational triplets to make more supervisions for informative pred-
icate classes effectively. Experimental results show that integrating FSTA
and Soft Transfer achieve high levels of both Recall and mean Recall in
Visual Genome dataset. The mean of Recall and mean Recall is the highest
among all the existing model-agnostic methods.
key words: scene graph, sgg, data transfer, feature space augmentation

1. Introduction

Scene graphs have emerged as a pivotal representation for de-
tailing semantic information within a visual scene, by speci-
fying relationships between object pairs [1], [2]. This repre-
sentation enables reasoning about visual content through the
encoded spatial and logical details of object instances and
their relations. In modern applications, scene graphs have
become foundational for high-level visual tasks like activity
parsing [3], image retrieval [1], visual understanding [4], and
image captioning [5]. This paper delves into the scene graph
generation (SGG) task, aiming to predict objects and their
relations from visual input.

SGG models encounter two primary challenges when
trained on common dataset [6]: first, the distinct long-tailed
distribution of relations [7], [8], and second, the ambiguity
caused by semantically similar relation classes (e.g., on/on
back of/mounted on) [9]–[11]. The latter exacerbates the
issue, as instances within a category may be annotated under
multiple confusing classes. Such complexities often bias
relation predictions in general SGG models, leading to low
recall rates for rare predicate classes. While some unbiased
SGG methods [7], [12]–[14] have addressed this, they often
sacrifices performance on frequent classes. Hence, it is
essential to consider these trade-offs to ensure the model
performance on the majority of data is not compromised.
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Recently, the training data modification approach has
shown promising results for training an unbiased SGG
model [9], [10]. Two major concepts for the modification
are the addition of new predicate labels and reassignment of
existing ones, which can efficiently improve rare class per-
formance. We revisit these concepts through IETrans [10],
a baseline data modification method. IETrans encompasses
two modules: external transfer for label addition and internal
transfer for label reassignment. Notably, the external trans-
fer, while leveraging background triplets for augmentation,
doesn’t fully exploit the available data. Given the composi-
tional nature of relational triplets, inter-triplet augmentation
appears worthwhile. Additionally, predicate reassignments
in the internal transfer are not uniformly reliable. A human
evaluation study [10] reveals that only 76% of transferred
triplets are deemed reliable. The inconsistency in the degree
of semantic confusion, even among identical predicates, sug-
gests that an “entire” transfer strategy might not be optimal.
Guided by these findings, our system seeks to address these
shortcomings by extending the modification concepts in two
key ways: improving upon the data addition process and
enhancing the reassignment efficiency.

Our method introduces two novel modules: Fea-
ture Space Triplet Augmentation (FSTA) and Soft Trans-
fer. FSTA dynamically creates artificial triplets dur-
ing training. We can construct new data by enumerat-
ing triplet combinations subject-predicate-object’
and subject’-predicate-object from a sampled mini-
batch. Here, x ′ denotes data not from the original triplets.
These artificial triplets serve to regularize the relation clas-
sification module in the SGG model. We undersample the
frequent classes in artificial triplets to shape their predi-
cate distribution. Further, a biased prediction-based sampler
selects the class label for x ′. This design aims to often
sample combinations that are hard to be predicted correctly
for a biased model. A pre-trained generator synthesizes
the corresponding features based on class labels. Besides,
Soft Transfer refines label reassignment by implementing an
instance-wise ranking and mapping mechanism. We first
compute a reliability score for each reassigned sample from
biased model predictions, then select low-scoring triplets
for Soft Transfer. Subsequently, a non-binary predicate la-
bel is calculated by mapping the reliability score, allowing
for finer control over semantic confusion by using this label
probability instead of an entire reassignment.

FSTA notably boosts performance on rare classes with
increased sample quantity and diversity. Conversely, Soft
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Fig. 1 Accuracy comparison between FSTA, Soft Transfer, Full, and the
baseline IETrans on Motif (1st row) and RelDN (2nd row). In the scatter
plots (left), a larger dot size and a darker color represent higher F1@100
and AVG@100 scores, respectively. As shown in the bar plots (right),
increased scores in the overall metrics (F1@100 and AVG@100) indicate
the alleviated performance trade-off in our full method, consisting of two
complementary modules.

Transfer alleviates performance loss in frequent classes, a
typical compromise when elevating rare class performances.
In essence, while FSTA contributes to mean recall (mR) gain,
Soft Transfer leads to the recall (R) gain. Collectively, these
modules bring reduced performance trade-off that shown
in the improved overall metrics, F1@K and Avg@K. Our
model-agnostic method was evaluated on the VisualGenome
dataset [6], using two types of general SGG models: MO-
TIF [15] and RelDN [16] with IETrans. In the predcls task,
our system outperforms the baseline IETrans by a 3.1% and
7.0% relative gain on the F1@100 metric for MOTIF and
RelDN, respectively. Figure 1 illustrates the balanced per-
formance of our method.

To sum up, we make the following contributions:

1. We propose a novel, model-agnostic method for training
a R/mR balanced SGG model. It integrates two com-
plementary modules: FSTA and Soft Transfer, which
enhance the baseline IETrans.

2. We conduct extensive experiments and discussions on
VisualGenome and demonstrate the effectiveness of our
system.

2. Related Work

2.1 Biased and Unbiased Scene Graph Generation

Scene Graph Generation (SGG) is first proposed as visual
relation detection (VRD) [17], where each relation is inde-
pendently detected, ignoring the rich contextual information.
Later studies in SGG utilizes advanced techniques, e.g., mes-
sage passing [18], recurrent sequential architectures [15] or
contrastive learning [16]. However the accuracy of relation-
ship detection is far from satisfaction due to the heavily

biased data. Some authors [19], [20] point out that the pre-
dictions of current SGG models often collapse to several gen-
eral and trivial predicate classes. Instead of only focusing on
recall metric, hence they propose a new metric named mean
recall, which is the average recall of all predicate classes, as
the unbiased metric. Efforts towards developing unbiased
SGG models have been noted. BGNN and DT2-ACBS [7],
[21] proposes sophisticated re-sampling strategy. Some de-
biasing solutions [10], [12], [22] are categorized as biased-
model based strategies that utilize predictions from biased
SGG model. Especially, IETrans [10] adopts triplet-level
data transfers over the less precise predicate-level manipu-
lation. Our proposed method is inspired from IETrans, and
focuses on data augmentation for inadequate training sam-
ples.

2.2 Compositional Learning

Recognition-By-Components theory [23] which illustrates
that human representations of concepts are decomposable
is especially influential in object recognition. Based on the
theory, novel concepts from a few samples can be potentially
learnable by composing known primitives. Some authors
apply the compositional deep representation into few-shot
learning for object recognition [24] and Human-Object In-
teraction (HOI) detection [25]–[27]. Visual compositional
learning frameworks [26], [27] proposed for HOI detection
compose HOI training samples from image-pairs and fake
object representations to solve the open long-tail issue in
HOI detection. Our proposed data augmentation method
adapts the compositional learning to SGG task. To over-
come the biased data issue in SGG, our sampling strategy of
composed training samples plays an important role.

3. Methodology

A scene graph generation (SGG) model predicts a direct
graph G for an input image I ∈ R3. G = {V,E} contains a set
of predicted objects V = {(bi, cei )}

NV

i=1 and a set of predicted
relationships E = {(sj, crj ,oj)}NE

j=1 . bi ∈ R4 denotes the
position of an object using bounded box coordinates. cei ∈
Cobjects and crj ∈ Crelations belong to the known object and
relation classes, respectively. sj ∈ V and oj ∈ V are nodes
connected by the relation crj . Each element in E can also be
depicted as a subject-predicate-object triplet to convey the
intrinsic semantic information.

Conceptually, an SGG model can be seen as a sequence
of modules that includes an object detection backbone fol-
lowed by a relation prediction head. The detection backbone
first outputs a set of Region of Interest (RoIs) containing
the detected object information. These results are then for-
warded to the relation prediction head to refine these detec-
tions and predict the relation between the RoI pairs. This
work mainly focuses on the scenario where a maximum of
one predicate, with the highest score, can be predicted be-
tween each RoI pair. This principle aligns with the graph
constraint mode described in other research.
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Fig. 2 The system overview of our proposed method. The FSTA and Soft Transfer modules are
designed to introduce new concepts to enhance the baseline dataset manipulation module, IETrans.
Blocks indicated in blue are prepared during the pre-processing stage, whereas the blocks in purple are
designated for the unbiased SGG model training stage.

Figure 2 illustrates the system overview. In our en-
hanced data modification approach, we further leverage pre-
dictions from a pre-trained yet biased SGG model. Sec-
tion 3.1 gives a brief overview of the baseline modification,
IETrans. Section 3.2 details our FSTA module, elucidat-
ing a strategy for triplet augmentation in the feature space
during the unbiased training phase. Section 3.3 explains
Soft Transfer, a method offering precise control over reas-
signing predicate labels during the pre-processing stage,
ensuring better handling of per-sample semantic confusion.
Section 3.4 has our implementation details.

3.1 Preliminary Introduction: IETrans

IETrans constructs a modified training dataset during pre-
processing. It has two steps: external transfer and internal
transfer. In the external transfer, it acquires new labels from
those no-relation object pairs. By ranking these no-relation
prediction scores from the biased model, some object pairs
are assigned new predicate labels that have the highest prob-
ability. This approach, however, may not fully leverage the
available data. On the other hand, internal transfer shifts
general predicates to informative ones using a ranking and
affinity score filtering method through biased prediction re-
sults. For example, “man-on-horse” becomes “man-sitting
on-horse”. Nevertheless, the level of ambiguity is context-
sensitive, and a binary transfer decision might not effectively
capture semantic confusion across all samples.

These transfer steps explicitly adjust the balance of the
dataset distribution, based on the property that a rare predi-
cate class is often a more informative version of a frequent
class. Linking general to informative predicate pairs reduced
semantic ambiguity by discovering the confusion in biased
model predictions. The raw frequently prior is employed

to compensate the largely sacrificed performance on general
predicates. We refer readers to the original publication for
more details.

3.2 Feature Space Triplet Augmentation

Given the compositional nature of a relation triplet, it’s
possible to construct a new sample from multiple existing
ones. The interaction between object-predicate representa-
tions in the feature space for SGG models is pivotal. Even
though they can be combined in various ways—be it ad-
dition [16], concatenation [16], or element-wise multiplica-
tion [15]—the upstream feature extractor processes the ele-
ments in a triplet independently. As such, when the object
representation in a triplet is partially changed to form a new
semantically reasonable combination, the relation predictor
in the relation head should be encouraged to produce similar
outputs. This can be represented as:

M(F(fsi , fpi , foi ; θF ); θM )
≈ M(F(fsi , fpi , fo j ; θF ); θM ) (1)

where (fsi , fpi , foi ) denotes the subject-relation-object in-
termediate representations of the ith sample. Given that
i , j and (csi , cpi , co j ) is a semantically reasonable triplet,
M(·; θM ) is the final predicate classification module, and
F(·; θF ) symbolizes the transitional layers in between. In
light of this, artificial triplets can serve as augmented data to
regularize the relation predictor during training.

We present feature space triplet augmentation (FSTA)
via artificial triplets. Compared with generating new image
samples, features are more tractable and computationally ef-
ficient without using external knowledge [28], [29]. For an
input mini-batch of size NB, the detector backbone yields
RoIs of varying numbers with their object prediction results.
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Fig. 3 Building combinations from batch input proposals. Purple box
pairs are excluded for low IoU with ground-truth relations and red box pairs
are selected as candidates.

We sample Nt RoI pairs per image from the pool of RoI
pairs that have an overlap score exceeding siou with any of
the ground-truth triplets in the image. Next, we enumer-
ate a set Tspo′ of combinations from these NB × Nt triplets
as subject-predicate-object’, where object’ repre-
sents the object features from all other sampled triplets. After
eliminating pairs that are absent from the training set label
space, the remaining feature combinations—deemed to be
reasonable—are forwarded to the same modules in the rela-
tion head. The resulting outputs are employed to compute a
regularization term αLat to foster consistent predicate pre-
dictions on artificial triplets. We use the same loss function
(i.e., cross entropy) as in the origin relation head for com-
puting Lat . Figure 3 visualizes our approach to building
combinations for artificial triplets.

Besides generic artificial triplet synthesis, our FSTA
module incorporates two novel features: (1) bi-directional
resampling, and (2) Model prediction-based class sampler.

The bi-directional resampling further expands the
volume of artificial triplets by enumerating subject’-
predicate-object into a new set of combinations Ts′po,
where sbject’ is sourced from other sampled triplets. As
Ts′po ∩Tspo′ = ∅, this enhances the richness and diversity of
the artificial triplets. We define an undersampling parameter
Uh ∈ [0,1] to govern the predicate distribution in artificial
triplets. For triplets of frequent relations (termed as “head
group”), we retain a random Uh fraction of them. This can
effectively achieve a distribution shift toward rare relations
in artificial triplets. Overall, We combine artificial triplets
built from Tspo′ and Ts′po.

Moreover, we propose a new sampler based on biased
model predictions (hence, MP-sampler) on training data.
It targets to generate suitable object’ classes rather than
mere swaps. The motivation is straightforward: Combi-
nations that are difficult to be predicted correctly ought
to be sampled more frequently. To begin, we enumerate
the candidate object’ classes as Ocand from the dataset
label space for a given sbject-predicate class label pair,
(cs, cp). Then, we define a difficulty score function d(·)
which computes the mean score discrepancy between the
top-1 prediction and the ground-truth predicate class:

d(cs, cp, coi ) = max(l(cs, cp, coi ))
− v(l(cs, cp, coi ), coi )

(2)

where oi ∈ Ocand , and l(·) ∈ R |Crelat ions | returns the av-
erage post-softmax predicate prediction vector for the input
combination in MP. v(l, i) obtains the value of l at element
i. If the correct relation for a combination is often mis-
predicted, the difficulty score is positive; otherwise, it is
zero. The MP-sampler then can generate an object’ class
following the probability:

p(coi |(cs, cp)) =
d(cs, cp, coi )∑ |Ocand |

j=1 d(cs, cp, co j )
(3)

In short, our emphasis primarily rests on those hard-to-
predict combinations when building artificial triplets.

With MP-sampler, we use a generator to synthesize
features for object’, as sampled classes are not assured to
align with the classes from the batch’s swapped features. We
collect the ground-truth object features to train a conditional-
GAN [30]. Following [31], [32], we define its adversarial
loss function as:

min
G

max
D

Lwgangp + βLcls + γLrecon (4)

where Lcls and Lrecon regularize the generator output
via an object classifier and an reconstructor respectively, of
both pre-trained on real data. Having the trained generator
G, it is capable of yielding synthetic object features with MP-
sampler, and we can construct artificial triplets forTspo′ . The
GAN model detail can be found in the appendix. Algorithm 1
outlines the complete procedures of FSTA.

3.3 Soft Transfer

The IETrans internal transfer reassigns relation labels from
the general (source) ones to the informative (target) ones.
However, some transfers are suboptimal: human evalua-
tion deems only 76% of general-informative pairs as “reli-
able” [10]. While tail performance can benefit from these
transfers, the cost of head performance drop is a concern.

A finer control on individual transfers could improve
the transfer efficiency and thus alleviate the tail-head perfor-
mance trade-off. Instead of a complete label transfer from
a general (p → 0) to an informative predicate (p → 1), we
propose the Soft Transfer that assigns non-binary probabil-
ities to source and target predicate classes. Soft Transfer
consists of two steps. Firstly, we rank all the reassigned
pairs using a triplet-wise reliability score, from which pairs
are selected for Soft Transfer. Second, a mapping function
converts the reliability score into probabilities for source and
target labels.

Based on the observation that transfer reliability varies
from one combination to another, we define a preliminary
function rint (·) to estimate the degree of reliability. Given an
transfer decision list, each list item includes a triplet index i,
a source class csrc,ip , and a target class ctar ,ip . To determine
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Fig. 4 The schematic view illustrates the combination of FSTA and SGG models. We visualize only
the flow of Tspo′ with red dotted lines for readability. The green dotted line indicates the point at which
features are collected in the preparation stage.

the reliability score, we use the prediction output difference
following

rint (i) = v(ltriplet (i), ctar ,ip ) − v(ltriplet (i), csrc,ip ) (5)

where ltriplet (i) ∈ R |Crelat ions | returns the post-softmax
model prediction of triplet i, and v(ltriplet (·), j) retrieves the
value of ltriplet (·) at class j. We rank the score in ascending
order and pick the top ks% triplets for Soft Transfer while
the other remains.

For those triplets with low reliability scores, we con-
sider them as over-transferred. Thus, a positive probability
should be assigned to the source class as the ground-truth
label instead of zero. While achieving this and ensuring that
the sum of the classes for the label is 1, we map the reliabil-
ity scores to values within the range [0,1]. Given a mapping

Table 1 The differences in relation annotation among the raw dataset,
the baseline IETrans (excluding External Transfer), and our proposed Soft
Transfer for Fig. 5.

Fig. 5 An example training image in VisualGenome.

function Q(·), the post-transferred result for triplet i can be
represented as its label probability:

labeli(c) =


1
1+Q(rint (i)) , if c = ctar ,ip
Q(rint (i))

1+Q(rint (i)) , if c = csrc,ip

0, otherwise
(6)

we set Q(·) = 1 − Q′(·), where Q′(·) is a linear min-max
scaling for the reliability scores.

Soft Transfer is applied on the original relation loss
and needs no changes to it. Table 1 shows an example of
post-transferred annotations. In IETrans, predicates of the
selected triplets are reassigned to more informative ones
(red). Our Soft Transfer evaluates the reliability of these
reassigned predicates and converts them to non-binary values
(blue).
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3.4 Implementation Details

We build our work upon an open source SGG model imple-
mentation† [34]. We integrate our system into two preva-
lent SGG model of distinct types: Motif [15] (which em-
ploys LSTM) and RelDN [16] (which utilizes CNN, multi-
modality fusion, and contrastive losses). These were se-
lected because they represent a variety of design elements
commonly found in popular models. We use a ResNet50-
FPN [35] Faster-RCNN [36] as the common detector back-
bone. The detector backbone is pre-trained on Visu-
alGenome [6] and kept frozen. Figure 4 illustrates how to
combine our module with these SGG models. We imple-
ment IETrans with the default parameters: ki = 70 and
ke = 100. In the FSTA module, Nt is set to 2 for Motif and
5 for RelDN to balance the number of artificial triplets in
a mini-batch, considering the smaller batch size for RelDN.
We set siou = 0.7††, Uh = 0.2 for Motif, and siou = 0.5,
Uh = 0.8 for RelDN. Both models have a loss coefficient
of α = 0.1. We omit artificial triplets from Ts′po if their
predicates are not in the tail group. For the soft transfer
module, we set ks to 10 for Motif and 70 for RelDN. In the
experiments with a “reweighting” setting, only the original
loss function is applied with reweighting, while Lat , the loss
for FSTA, does not apply as a standalone module. ks also
changes to 30 for Motif and 90 for RelDN.

4. Experiments

4.1 Dataset and Evaluation Protocol

We evaluated our system on the benchmark VG150 split of
the VisualGenome dataset. This dataset consists of 60,784
training images and 26,446 testing images. It contains 150
object classes and 50 relation classes. Following the ap-
proach of [7], we sorted the predicates by cardinality, group-
ing the top 16, middle 17, and bottom 17 into head, body,
and tail groups, respectively.

Our analysis focused on standard SGG tasks: predcls,
sgcls, and sgdet [15], [16], [19]. These tasks evaluate the
model with incrementally higher demands. For instance,
“predcls” only assesses the model’s ability in classifying re-
lations using given object locations and categories. In con-
trast, “sgdet” evaluates both relation classification and ob-
ject detection simultaneously. Our primary attention was on
predcls since our proposed modules target improving predi-
cate classification performance. We used the Recall(R)@K
and mean Recall(mR)@K metrics for both full test set
and per-class averaged recall evaluations. It is notewor-
thy that Recall@K is dominated by the performance of the
top frequent classes due to the skewed predicate distribution,
whereas mean Recall@K treats all classes equally. Given the
observed trade-off between Recall@K and mean Recall@K

†https://github.com/microsoft/scene_graph_benchmark
††We follow the implementations in † to compute siou .

from earlier studies, we also reported the F1@K (their har-
monic mean) and Avg(A)@K (their arithmetic mean) [9],
[10] as the “overall” metrics in our comprehensive evalua-
tion. All metrics are the higher the better.

4.2 Comparing to Other Methods

We compared our results with IETrans and several other re-
cent model-agnostic SGG methods (first section of Table 2).
IETrans serves as the baseline and is currently one of the
best model-agnostic methods available.
Original baseline and our re-implementation. We com-
pared our method with the reproduced baselines (denoted as
†). For Motif+IETrans in the predcls task, the reproduced
version yielded similar scores to those of the original, with
a slightly higher R@100 and lower mR@100. These differ-
ences may due to some implementation variations in the base
SGG model. Therefore, we use the reproduced version as our
standard because it maintains identical implementation set-
tings and IETrans transfer lists, consistent with our proposed
methods. The original IETrans paper did not present results
for RelDN; therefore, we also compared our results with a
reproduced version. In summary, all our implementations
share the basic settings to ensure a fair comparison.
Improved relation prediction over the baseline. Table 2
summarizes the scores for predcls. The results reveal that
our method substantially outperformed the baseline for both
the Motif and RelDN models. Specifically, the F1@100
score rose from 41.7 to 43.0 (a 3.1% relative gain) for Motif,
and from 35.7 to 38.2 (a 7.0% relative gain) for the RelDN
model. The A@100 score also increases. With FSTA, the
standout feature was the mR enhancement in tail classes
(e.g., from 16.4 to 22.0 for Motif). The artificial triplets
generated in FSTA enriched the variation of triplets avail-
able for the relation predictor, aiding especially the sparse
classes. As for frequent classes, the score decline is minor.
On the other hand, Soft Transfer was intended to reduce the
degree of label reassignment for less reliable transfers. This
led to a score trend the opposite of the original IETrans:
while recall scores raised, the tail mean recall scores de-
creased (e.g., R@100 increases from 57.1 to 60.8 for Motif,
and 39.9 to 53.8 for RelDN). In certain cases, Soft Transfer
can slightly reduce the F1 score, because the harmonic mean
prioritizes enhancements in the smaller one. Nonetheless,
the Avg@100 witnessed a notable boost with Soft Transfer.
Combining both modules, the full system leveraged their
complementary benefits, consistently delivering among the
top F1/Avg@100 results for both models, indicating an ef-
fective balance of trade-offs.
Compatible with the reweighting setting. We also adhere
to the original settings described in the IETrans paper to
compare the models when integrated with the “reweighting”
technique (+rwt) [10]. Our method proved efficacious even
under this setting. Both the FSTA and Soft Transfer modules
served their intended purposes, driving improvements across
rare and frequent classes alike. The “Motif++Full+rwt”
method achieves an increase in F1@100 from 45.1 to 46.1,
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Table 2 The performance comparison for the predcls task on VG150. Scores for models listed
in the first section are cited from their original papers, while models in subsequent sections use our
implementation. “Model++X” is shorthand for “Model+IETrans+X”. The best overall scores within
each section are highlighted in bold. (Unit: %)

Table 3 The performance comparison for the sgcls and sgdet task on VG150. “Model++X” is
shorthand for “Model+IETrans+X”. Best overall scores in the section are highlighted in bold. Full
results can be found in the appendix. (Unit: %)

and in Avg@100 from 46.2 to 47.5, thereby demonstrating
the mitigation of the performance trade-off. For RelDN with
reweighting, the performance was not as beneficial as for
the Motif models. Although the mR@100 for the tail group
further increased, the impact on R@K cannot be overlooked,
leading to a dip in the overall scores. One possible explana-
tion for this could be the architecture of the RelDN model,
which already incorporates a frequency prior branch. Con-
sequently, we did not add the frequency prior values during
inference for the RelDN models, while we did so for the
Motif models following [10]. This leads to a more serious

degradation in head classes, despite having the best perfor-
mance on tail classes. However, our method still consistently
surpassed the baseline in the RelDN +rwt setting.
Similar trends observed for sgcls and sgdet. Table 3 show-
cases the digested results for sgcls and sgdet. Here, we no-
ticed trends analogous to those in predcls. For RelDN, the
full version achieves the best F1@100 and the second-best
A@100. For the Motif sgdet, the full version outperforms all
the others on both overall metrics (i.e., a 5.7% and 7.4% rela-
tive gain for F1@100 and A@100 over the baseline method,
respectively). However, the FSTA module yields some un-
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expected results in the sgcls task. One potential cause is that
we applied identical FSTA settings across all tasks. How-
ever, sgcls uniquely relies on ground-truth boxes only for
input proposals, which is different from the other tasks. This
difference might result in distinct regularization effects, as
the artificial triplets are constructed from sampled proposal
pairs.

5. Discussions

In this section, we focus on the predcls task results for the
Motif model† to gain a deeper understanding of our methods.
Results for RelDN can be found in appendix.

5.1 Ablation Study

Table 4 presents the components ablated from FSTA to
demonstrate their contributions to the module. The re-
sults indicate that all components positively influence the
improvement of F1@100. Among these, undersampling has
the greatest impact on F1@100, adjusting the proportions of
artificial triplets in the head, body, and tail predicate groups
from 0.70, 0.14, and 0.15 to 0.33, 0.32, and 0.35 respectively.
Additionally, incorporating Ts′po effectively introduces new
training combinations. The MP-sampler also plays a crucial
role, further boosting R@100.

Table 5 summarizes the ablation results with reweight-
ing. A similar trend is observed that the components in FSTA
contribute to the increase in scores for tail relation groups
and the mR@100.

5.2 Sensitivity Analysis

We then investigate the choice of percentage ks in Soft Trans-
fer. A “Naïve” setting would simply apply soft transfer to all
reassigned triplets without our ranking and mapping mech-
anisms, where both source and target labels are assigned a
value of 0.5. The results are summarized in Table 6.

As the number of entirely transferred triplets is reduced,
R@100 recovers as ks grows, yet mR@100 decreases. The
“Naïve” setting consistently performs worse than the others
in the F1@100 or even Avg@100 metrics and only be on
par with the baseline IETrans (Avg@100 = 45.0). This
highlights the significance of our devised method.

5.3 Comparison with Real Data Resampling

We compare the effects of resampling real data with our
FSTA. Although both approaches augment the number of
rare predicates, their motivations and methods differ. FSTA
aims to steer the predicate classification layers towards under-
standind the inherent concept of the predicate by leveraging
combinative, yet semantically plausible, artificial triplets.
This also introduces new variations to the training data. In
contrast, resampling merely duplicates samples from rare

†Unless specified otherwise, this means “Model+IETrans+X”.

Table 4 The ablation study results for our FSTA module. For the com-
ponents, “us” refers to undersampling, “+sbj” denotes adding artificial set
Ts′po , and MP indicates that the MP-sampler is applied. (Unit: %)

Table 5 The ablation study results for our FSTA module with Motif and
“reweighting”. Item descriptions are identical to Table 4. (Unit: %)

Table 6 The sensitivity results for our Soft Transfer module. “∗” indi-
cates the setting applied in our method. (Unit: %)

Table 7 The results of parameter choices for FSTA with Motif and
“reweighting”. “∗” indicates the setting applied in our method. (Unit:
%)

classes to mitigate dataset imbalance; however, it is suscep-
tible to overfitting.

For our real data resampling implementation, we al-
tered the training set by duplicating the image n times if it
contained more than one triplet of tail group predicates. We
analyzed the performance difference when applied indepen-
dently and the combined for Motif+IETrans on the predcls
task. The scores are listed in Table 7.

Our “+FSTA” is more effective than “+resampling”,
as it yields superior overall metrics for both F1 and Avg.
Combining both can boost the mean recall of the tail group.
Intensive resampling improved tail classes but reduced fre-
quent class recall. We did not observe positive effects when
n was larger than 4.

5.4 Parameter Choices for FSTA

To explore the quality of our siou and Uh choices, which are
applied across settings, we assess the performance within
the reweighting setting. Table 8 details the results.
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Table 8 The results of parameter choices for FSTA with Motif and
“reweighting”. “∗” indicates the setting applied in our method. (Unit:
%)

Fig. 6 A case study examining the effects of the MP-sampler. (Left)
The tail group mR@100 comparison between setups without and with MP-
sampler. (Right) The accumulated d(·) reduction contributed by objects
that are sampled more frequently.

Our observations are as follows: (1) Lower values of Uh

tend to result in higher tail group performance, attribute to
the increased ratio of tail relations in the artificial triplets. (2)
A higher siou threshold allows only the most precise feature
representations, benefiting the data-sparse tail group while
potentially harming the generalizability in frequent classes.
Overall, we found that the parameters we selected perform
reasonably well, even under such a different setting.

5.5 A Study on MP-Sampler

We examine the role of the MP-sampler. In this case, the
count of artificial triplets per predicate class is invariant, but
the distribution of combinations changes. We undertake a
case study focusing on the mR@100 tail group, where FSTA
has shown significant performance gains. Figure 6 (left)
portrays the per-class recall: 12 of 17 classes either tie or
improve with the MP-sampler. Next, we study the ratio-
nale behind the signal designed in the MP-sampler. It uses
the scores from d(·) as the sampling probability, which in-
versely correlates with recall. For example, d(·) = 0 implies
that the top-1 predicate prediction aligns with the ground-
truth, whereas d(·) > 0 does not. We hypothesize that
sampling more object labels of higher d(·) scores can make
correct predictions easier for the unbised model. Thus, we
analyze the changes in accumulated d(·) scores between the
pretrained and unbiased models, from those object classes
where counts have increased. Figure 6 (right) visualizes the
results computed on test data. Out of the 17 classes, 14 show
non-negative total reductions scores, confirming that our de-

Fig. 7 The t-SNE plots for object features in the artificial triplets. We
select 10 classes from each group. Real features are plotted in dots and
generated in crosses.

signed signal is evident in the test data. We also inspect
the relationship between the reduced score and class recall.
The majority of classes follow a similar trend, with only four
exhibiting the converse pattern (e.g., recall increases while
the reduced score is negative).

5.6 Feature Visualization

We visualize the similarity between the synthesized object
features in artificial triplets and the real ones in the given
classes. Figure 7 illustrates the sampled classes within the
body, tail, and head groups, separated by different colors.
The neighborhood identity between the real and synthetic
features from the same class suggest the effectiveness of the
generator.

6. Conclusion

In this paper, we introduce two key concepts to enhance the
dataset modification approach for unbiased SGG: a novel
data augmentation strategy via our FSTA module, and im-
proved predicate reassignment efficiency through Soft Trans-
fer. The FSTA module substantially boosts tail class recall by
generating additional artificial triplets, while Soft Transfer
offers a more nuanced evaluation of the reliability of individ-
ual transfers, allowing for a continuous degree of transfer and
mitigating the typical decline in frequent class recall during
reassignment. Experimental results confirm that integrating
the complementary modules improves overall performance,
surpassing the baseline IETrans.
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Appendix A: Full Sgcls and Sgdet Tasks Results

The full results for the “sgcls” and “sgdet” tasks are listed in
Table A· 5 (sgcls) and A· 6 (sgdet).

Appendix B: Qualitative Results

We visualize the results of predicate prediction in Fig. A· 1.

Appendix C: Results for Ablation Study (RelDN)

Table A· 1 and Table A· 2 summarize the ablation results for
FSTA module under RelDN and RelDN with reweighting,
respectively.

Appendix D: Results for Sensitivity Analysis (RelDN)

Table A· 3 lists the Soft Transfer sensitivity results of RelDN

Table A· 1 The ablation study results for our FSTA module with RelDN.
Item descriptions are identical to Table 4. (Unit: %)

Table A· 2 The ablation study results for our FSTA module with RelDN
and “reweighting”. Item descriptions are identical to Table 4. (Unit: %)

Table A· 3 The sensitivity results with RelDN for our Soft Transfer
module. “∗” indicates the setting applied in our method. “⋄” stands for a
modified Q(·). (Unit: %)

for the predcls task. ks = 0.7 actually achieves a better score
on both R@100 and mR@100 over the baseline method (an
improvement of 39.9 to 40.8 for R@100 and 32.3 to 32.5
for mR@100). Nevertheless, modifying Q(·) = 1 − Q′(·) to
Q(·) = Q′(·) leads to stronger overall performance, due to
the larger space for the R@100 score recovery. Again, the
“Naïve” case is inferior to the applied settings.

Appendix E: Results for FSTA Parameter Choices
(RelDN)

Table A· 4 describes the results of FSTA parameter study for
RelDN.

Appendix F: Randomness of FSTA

The resource of randomness: Including the undersampling
step and the generator pretraining. We selected a fixed check-
point for the generator based on the classification accuracies
observed in the validation data.
The reproducibility of randomness: In the SGG
model training, we followed the open-source SGG model
implementation† to set the seed for the libraries and switch
to deterministic mode for the cudnn library.
The impact of randomness: We measured the standard de-
viation of R@100 and mR@100 under “Motif++FSTA+rwt”
in the predcls task, using five different runs. The values are
0.23 for R@100 and 0.31 for mR@100. Note that these in-
clude randomness from both the Motif model and the FSTA
module.

Appendix G: Object Generator

We exploit a conditional-GAN based model to synthesize
object’ features, due to its lightweight and low additional
computational cost. In the pre-processing step, we collect
the real features from model predictions on training data (See
Fig. 4 in the manuscript). The adversarial loss function for
the GAN model consist of three parts: Lwgangp , Lcls , and
Lrecon.

Lwgangp is a standard WGAN loss with gradient
penalty [37] as Eq. (A· 1).

Table A· 4 The results of parameter choices for FSTA with RelDN and
“reweighting”. “∗” indicates the setting applied in our method. (Unit: %)
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Table A· 5 The full performance comparison for the sgcls task on VG150. Scores for models listed
in the first section are cited from their original papers, while models in subsequent sections use our
implementation. “Model++X” is shorthand for “Model+IETrans+X”. The best overall scores within
each section are highlighted in bold. (Unit: %)

Lwgangp = Ex∼real[D(x, sc)] − Ex̃∼gen[D(x̃, sc)]
− λE[(| |∇x̂D(x̂, sc)| |2 − 1)2] (A· 1)

where x ∈ Rd is the feature sampled from real data,
x̃ = G(z, sc) ∈ Rd is the synthesized feature from gener-
ator G. d is the size of object feature. x̂ = αx+ (1−α)x̃ is an
interpolated feature with α sampled from a uniform distribu-
tion. z is an initial vector sampled from normal distribution,
and sc is a condition vector represents the object class. We
collect sc from the pre-trained CLIP [38] text encoder. We
use the basic template “a photo of a [OBJECT NAME].” as
the input prompt to text encoder, then the output vector as
the class representation.

Lcls is a regularization loss for the generator G. It uti-
lizes a softmax classifier pre-trained on real data to encourage
the generator to output features with enhanced discriminabil-
ity. That is, the synthetic features can be better classified.
Equation (A· 2) describes its loss function.

Lcls = −Ex̃∼gen[logP(y | x̃; θcls)] (A· 2)

where θcls is the weights of the softmax classifier. y is the
corresponding class label. During the adversarial training,
the pre-trained classifier is frozen.

Lrecon is another regularization term for the class con-
sistency between generator output and its condition input. A
reconstructor R(·) is pre-trained on real data to infer the class
condition vector from the feature. Equation (A· 3) describes

its loss function.

Lrecon = Ex̃∼gen[∥R(x̃) − sc ∥2] (A· 3)

the reconstructor is also frozen in the adversarial training.
The overall loss function is as below and identical to

Eq. (4) in the main paper.

min
G

max
D

Lwgangp + βLcls + γLrecon (A· 4)

We list the model architecture for training the object
generator in Table A· 7.

Appendix H: Hyperparameter Details

We list the parameter choices for training SGG models and
the generator model in Table A· 8.
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Table A· 6 The full performance comparison for the sgdet task on VG150. Scores for models listed
in the first section are cited from their original papers, while models in subsequent sections use our
implementation. “Model++X” is shorthand for “Model+IETrans+X”. The best overall scores within
each section are highlighted in bold. (Unit: %)

Table A· 7 The model architecture. Table A· 8 The parameter choices for training Motif-based SGG models
(section 1), RelDN-based SGG models (section 2), and the genertor model
(section 3).
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Fig. A· 1 Qualitative results of our method for the predcls task under the Motif+rwt setting: (Left)
Images with bounding boxes, (Middle) Ground-truth scene graphs, and (Right) Predicted results. Isolated
nodes have been omitted from the visualized scene graphs. The relations in red indicate discrepancies
with the ground truth.
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