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PAPER
Enhanced Data Transfer Cooperating with Artificial Triplets for
Scene Graph Generation

KuanChao CHU†a), Satoshi YAMAZAKI††, Nonmembers, and Hideki NAKAYAMA†, Member

SUMMARY This work focuses on training dataset enhancement of
informative relational triplets for Scene Graph Generation (SGG). Due
to the lack of effective supervision, the current SGG model predictions
perform poorly for informative relational triplets with inadequate training
samples. Therefore, we propose two novel training dataset enhancement
modules: Feature Space Triplet Augmentation (FSTA) and Soft Transfer.
FSTA leverages a feature generator trained to generate representations of
an object in relational triplets. The biased prediction based sampling in
FSTA efficiently augments artificial triplets focusing on the challenging
ones. In addition, we introduce Soft Transfer, which assigns soft predicate
labels to general relational triplets to make more supervisions for informative
predicate classes effectively. Experimental results show that integrating
FSTA and Soft Transfer achieve high levels of both Recall and mean Recall
in Visual Genome dataset. The mean of Recall and mean Recall is the
highest among all the existing model-agnostic methods.
key words: scene graph, sgg, data transfer, feature space augmentation

1. Introduction
Scene graphs have emerged as a pivotal representation for
detailing semantic information within a visual scene, by
specifying relationships between object pairs [1], [2]. This
representation enables reasoning about visual content through
the encoded spatial and logical details of object instances and
their relations. In modern applications, scene graphs have
become foundational for high-level visual tasks like activity
parsing [3], image retrieval [1], visual understanding [4], and
image captioning [5]. This paper delves into the scene graph
generation (SGG) task, aiming to predict objects and their
relations from visual input.

SGG models encounter two primary challenges when
trained on common dataset [6]: first, the distinct long-tailed
distribution of relations [7], [8], and second, the ambiguity
caused by semantically similar relation classes (e.g., on/on
back of/mounted on) [9]–[11]. The latter exacerbates the
issue, as instances within a category may be annotated under
multiple confusing classes. Such complexities often bias
relation predictions in general SGG models, leading to low
recall rates for rare predicate classes. While some unbiased
SGG methods [7], [12]–[14] have addressed this, they often
sacrifices performance on frequent classes. Hence, it is
essential to consider these trade-offs to ensure the model
performance on the majority of data is not compromised.
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Fig. 1: Accuracy comparison between FSTA, Soft Transfer,
Full, and the baseline IETrans on Motif (1𝑠𝑡 row) and RelDN
(2𝑛𝑑 row). In the scatter plots (left), a larger dot size and a
darker color represent higher F1@100 and AVG@100 scores,
respectively. As shown in the bar plots (right), increased
scores in the overall metrics (F1@100 and AVG@100) indi-
cate the alleviated performance trade-off in our full method,
consisting of two complementary modules.

Recently, the training data modification approach has
shown promising results for training an unbiased SGG model
[9], [10]. Two major concepts for the modification are the
addition of new predicate labels and reassignment of existing
ones, which can efficiently improve rare class performance.
We revisit these concepts through IETrans [10], a baseline
data modification method. IETrans encompasses two mod-
ules: external transfer for label addition and internal transfer
for label reassignment. Notably, the external transfer, while
leveraging background triplets for augmentation, doesn’t fully
exploit the available data. Given the compositional nature of
relational triplets, inter-triplet augmentation appears worth-
while. Additionally, predicate reassignments in the internal
transfer are not uniformly reliable. A human evaluation
study [10] reveals that only 76% of transferred triplets are
deemed reliable. The inconsistency in the degree of semantic
confusion, even among identical predicates, suggests that an
“entire” transfer strategy might not be optimal. Guided by
these findings, our system seeks to address these shortcom-
ings by extending the modification concepts in two key ways:
improving upon the data addition process and enhancing the
reassignment efficiency.
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Our method introduces two novel modules: Fea-
ture Space Triplet Augmentation (FSTA) and Soft Trans-
fer. FSTA dynamically creates artificial triplets during
training. We can construct new data by enumerating
triplet combinations subject-predicate-object’ and
subject’-predicate-object from a sampled mini-batch.
Here, 𝑥′ denotes data not from the original triplets. These
artificial triplets serve to regularize the relation classification
module in the SGG model. We undersample the frequent
classes in artificial triplets to shape their predicate distribution.
Further, a biased prediction-based sampler selects the class
label for 𝑥′. This design aims to often sample combinations
that are hard to be predicted correctly for a biased model. A
pre-trained generator synthesizes the corresponding features
based on class labels. Besides, Soft Transfer refines label
reassignment by implementing an instance-wise ranking and
mapping mechanism. We first compute a reliability score for
each reassigned sample from biased model predictions, then
select low-scoring triplets for Soft Transfer. Subsequently,
a non-binary predicate label is calculated by mapping the
reliability score, allowing for finer control over semantic
confusion by using this label probability instead of an entire
reassignment.

FSTA notably boosts performance on rare classes with
increased sample quantity and diversity. Conversely, Soft
Transfer alleviates performance loss in frequent classes, a
typical compromise when elevating rare class performances.
In essence, while FSTA contributes to mean recall (mR) gain,
Soft Transfer leads to the recall (R) gain. Collectively, these
modules bring reduced performance trade-off that shown
in the improved overall metrics, F1@K and Avg@K. Our
model-agnostic method was evaluated on the VisualGenome
dataset [6], using two types of general SGG models: MOTIF
[15] and RelDN [16] with IETrans. In the predcls task, our
system outperforms the baseline IETrans by a 3.1% and 7.0%
relative gain on the F1@100 metric for MOTIF and RelDN,
respectively. Fig. 1 illustrates the balanced performance of
our method.

To sum up, we make the following contributions:

1. We propose a novel, model-agnostic method for training
a R/mR balanced SGG model. It integrates two com-
plementary modules: FSTA and Soft Transfer, which
enhance the baseline IETrans.

2. We conduct extensive experiments and discussions on
VisualGenome and demonstrate the effectiveness of our
system.

2. Related Work

2.1 Biased and Unbiased Scene Graph Generation

Scene Graph Generation (SGG) is first proposed as visual
relation detection (VRD) [17], where each relation is inde-
pendently detected, ignoring the rich contextual information.
Later studies in SGG utilizes advanced techniques, e.g., mes-
sage passing [18], recurrent sequential architectures [15] or

contrastive learning [16]. However the accuracy of relation-
ship detection is far from satisfaction due to the heavily biased
data. Some authors [19], [20] point out that the predictions
of current SGG models often collapse to several general and
trivial predicate classes. Instead of only focusing on recall
metric, hence they propose a new metric named mean recall,
which is the average recall of all predicate classes, as the
unbiased metric. Efforts towards developing unbiased SGG
models have been noted. BGNN and DT2-ACBS [7], [21]
proposes sophisticated re-sampling strategy. Some debiasing
solutions [10], [12], [22] are categorized as biased-model
based strategies that utilize predictions from biased SGG
model. Especially, IETrans[10] adopts triplet-level data trans-
fers over the less precise predicate-level manipulation. Our
proposed method is inspired from IETrans, and focuses on
data augmentation for inadequate training samples.

2.2 Compositional Learning

Recognition-By-Components theory [23] which illustrates
that human representations of concepts are decomposable
is especially influential in object recognition. Based on the
theory, novel concepts from a few samples can be potentially
learnable by composing known primitives. Some authors
apply the compositional deep representation into few-shot
learning for object recognition [24] and Human-Object In-
teraction (HOI) detection [25]–[27]. Visual compositional
learning frameworks [26], [27] proposed for HOI detection
compose HOI training samples from image-pairs and fake
object representations to solve the open long-tail issue in HOI
detection. Our proposed data augmentation method adapts
the compositional learning to SGG task. To overcome the
biased data issue in SGG, our sampling strategy of composed
training samples plays an important role.

3. Methodology

A scene graph generation (SGG) model predicts a direct graph
𝐺 for an input image 𝐼 ∈ R3. 𝐺 = {𝑉, 𝐸} contains a set of
predicted objects 𝑉 = {(b𝑖 , 𝑐𝑒𝑖 )}

𝑁𝑉

𝑖=1 and a set of predicted
relationships 𝐸 = {(𝑠 𝑗 , 𝑐𝑟 𝑗 , 𝑜 𝑗 )}𝑁𝐸

𝑗=1. b𝑖 ∈ R4 denotes the
position of an object using bounded box coordinates. 𝑐𝑒𝑖 ∈
C𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 and 𝑐𝑟 𝑗 ∈ C𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 belong to the known object and
relation classes, respectively. 𝑠 𝑗 ∈ 𝑉 and 𝑜 𝑗 ∈ 𝑉 are nodes
connected by the relation 𝑐𝑟 𝑗 . Each element in 𝐸 can also be
depicted as a subject-predicate-object triplet to convey the
intrinsic semantic information.

Conceptually, an SGG model can be seen as a sequence
of modules that includes an object detection backbone fol-
lowed by a relation prediction head. The detection backbone
first outputs a set of Region of Interest (RoIs) containing the
detected object information. These results are then forwarded
to the relation prediction head to refine these detections and
predict the relation between the RoI pairs. This work mainly
focuses on the scenario where a maximum of one predicate,
with the highest score, can be predicted between each RoI
pair. This principle aligns with the graph constraint mode
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Fig. 2: The system overview of our proposed method. The FSTA and Soft Transfer modules are designed to introduce new
concepts to enhance the baseline dataset manipulation module, IETrans. Blocks indicated in blue are prepared during the
pre-processing stage, whereas the blocks in purple are designated for the unbiased SGG model training stage.

described in other research.
Figure 2 illustrates the system overview. In our enhanced

data modification approach, we further leverage predictions
from a pre-trained yet biased SGG model. Sec. 3.1 gives a
brief overview of the baseline modification, IETrans. Sec.
3.2 details our FSTA module, elucidating a strategy for triplet
augmentation in the feature space during the unbiased train-
ing phase. Sec. 3.3 explains Soft Transfer, a method offering
precise control over reassigning predicate labels during the
pre-processing stage, ensuring better handling of per-sample
semantic confusion. Sec. 3.4 has our implementation details.

3.1 Preliminary Introduction: IETrans

IETrans constructs a modified training dataset during pre-
processing. It has two steps: external transfer and internal
transfer. In the external transfer, it acquires new labels from
those no-relation object pairs. By ranking these no-relation
prediction scores from the biased model, some object pairs are
assigned new predicate labels that have the highest probability.
This approach, however, may not fully leverage the available
data. On the other hand, internal transfer shifts general
predicates to informative ones using a ranking and affinity
score filtering method through biased prediction results. For
example, “man-on-horse” becomes “man-sitting on-horse”.
Nevertheless, the level of ambiguity is context-sensitive,
and a binary transfer decision might not effectively capture
semantic confusion across all samples.

These transfer steps explicitly adjust the balance of
the dataset distribution, based on the property that a rare
predicate class is often a more informative version of a
frequent class. Linking general to informative predicate pairs
reduced semantic ambiguity by discovering the confusion
in biased model predictions. The raw frequently prior is
employed to compensate the largely sacrificed performance

on general predicates. We refer readers to the original
publication for more details.

3.2 Feature Space Triplet Augmentation

Given the compositional nature of a relation triplet, it’s
possible to construct a new sample from multiple existing ones.
The interaction between object-predicate representations in
the feature space for SGG models is pivotal. Even though
they can be combined in various ways—be it addition [16],
concatenation [16], or element-wise multiplication [15]—the
upstream feature extractor processes the elements in a triplet
independently. As such, when the object representation in
a triplet is partially changed to form a new semantically
reasonable combination, the relation predictor in the relation
head should be encouraged to produce similar outputs. This
can be represented as:

𝑀 (𝐹 (f𝑠𝑖 , f𝑝𝑖 , f𝑜𝑖 ;𝜃𝐹); 𝜃𝑀 ) ≈
𝑀 (𝐹 (f𝑠𝑖 , f𝑝𝑖 , f𝑜 𝑗

; 𝜃𝐹); 𝜃𝑀 )
(1)

where (f𝑠𝑖 , f𝑝𝑖 , f𝑜𝑖 ) denotes the subject-relation-object in-
termediate representations of the 𝑖𝑡ℎ sample. Given that
𝑖 ≠ 𝑗 and (𝑐𝑠𝑖 , 𝑐𝑝𝑖 , 𝑐𝑜 𝑗

) is a semantically reasonable triplet,
𝑀 (·; 𝜃𝑀 ) is the final predicate classification module, and
𝐹 (·; 𝜃𝐹) symbolizes the transitional layers in between. In
light of this, artificial triplets can serve as augmented data to
regularize the relation predictor during training.

We present feature space triplet augmentation (FSTA)
via artificial triplets. Compared with generating new image
samples, features are more tractable and computationally
efficient without using external knowledge [28], [29]. For an
input mini-batch of size 𝑁𝐵, the detector backbone yields
RoIs of varying numbers with their object prediction results.
We sample 𝑁𝑡 RoI pairs per image from the pool of RoI



4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

s2-p1-o1
s3-p1-o1
s1-p2-o2
s3-p2-o2
s1-p3-o3
s2-p3-o3

…

1

figure2

s1-p1-o1
s2-p2-o2
s3-p3-o3

…

s1-p1-o2
s1-p1-o3
s2-p2-o1
s2-p2-o3
s3-p3-o1
s3-p3-o2

…

candidate pairs

Ts’po

Tspo’

remove: non-exist combination

remove: undersampling

replace: MP-sampler
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pairs that have an overlap score exceeding 𝑠𝑖𝑜𝑢 with any of
the ground-truth triplets in the image. Next, we enumerate
a set T𝑠𝑝𝑜′ of combinations from these 𝑁𝐵 × 𝑁𝑡 triplets
as subject-predicate-object’, where object’ repre-
sents the object features from all other sampled triplets. After
eliminating pairs that are absent from the training set label
space, the remaining feature combinations—deemed to be
reasonable—are forwarded to the same modules in the rela-
tion head. The resulting outputs are employed to compute
a regularization term 𝛼L𝑎𝑡 to foster consistent predicate
predictions on artificial triplets. We use the same loss func-
tion (i.e., cross entropy) as in the origin relation head for
computing L𝑎𝑡 . Figure 3 visualizes our approach to building
combinations for artificial triplets.

Besides generic artificial triplet synthesis, our FSTA
module incorporates two novel features: (1) bi-directional
resampling, and (2) Model prediction-based class sampler.

The bi-directional resampling further expands
the volume of artificial triplets by enumerating
subject’-predicate-object into a new set of combi-
nations T𝑠′ 𝑝𝑜, where sbject’ is sourced from other sampled
triplets. As T𝑠′ 𝑝𝑜 ∩ T𝑠𝑝𝑜′ = ∅, this enhances the richness and
diversity of the artificial triplets. We define an undersampling
parameter 𝑈ℎ ∈ [0, 1] to govern the predicate distribution in
artificial triplets. For triplets of frequent relations (termed
as “head group”), we retain a random 𝑈ℎ fraction of them.
This can effectively achieve a distribution shift toward rare
relations in artificial triplets. Overall, We combine artificial
triplets built from T𝑠𝑝𝑜′ and T𝑠′ 𝑝𝑜.

Moreover, we propose a new sampler based on biased
model predictions (hence, MP-sampler) on training data. It
targets to generate suitable object’ classes rather than mere
swaps. The motivation is straightforward: Combinations
that are difficult to be predicted correctly ought to be sam-
pled more frequently. To begin, we enumerate the candidate
object’ classes as O𝑐𝑎𝑛𝑑 from the dataset label space for a
given sbject-predicate class label pair, (𝑐𝑠 , 𝑐𝑝). Then,
we define a difficulty score function 𝑑 (·) which computes the
mean score discrepancy between the top-1 prediction and the
ground-truth predicate class:

𝑑 (𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜𝑖 ) =𝑚𝑎𝑥(𝑙 (𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜𝑖 ))
− 𝑣(𝑙 (𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜𝑖 ), 𝑐𝑜𝑖 )

(2)

where 𝑜𝑖 ∈ O𝑐𝑎𝑛𝑑 , and 𝑙 (·) ∈ R | C𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 | returns the average
post-softmax predicate prediction vector for the input com-
bination in MP. 𝑣(𝑙, 𝑖) obtains the value of 𝑙 at element 𝑖. If
the correct relation for a combination is often mispredicted,
the difficulty score is positive; otherwise, it is zero. The
MP-sampler then can generate an object’ class following
the probability:

𝑝(𝑐𝑜𝑖 | (𝑐𝑠 , 𝑐𝑝)) =
𝑑 (𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜𝑖 )∑ | O𝑐𝑎𝑛𝑑 |

𝑗=1 𝑑 (𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜 𝑗
)

(3)

In short, our emphasis primarily rests on those hard-to-predict
combinations when building artificial triplets.

With MP-sampler, we use a generator to synthesize
features for object’, as sampled classes are not assured to
align with the classes from the batch’s swapped features. We
collect the ground-truth object features to train a conditional-
GAN [30]. Following [31], [32], we define its adversarial
loss function as:

min
𝐺

max
𝐷
L𝑤𝑔𝑎𝑛𝑔𝑝 + 𝛽L𝑐𝑙𝑠 + 𝛾L𝑟𝑒𝑐𝑜𝑛 (4)

where L𝑐𝑙𝑠 and L𝑟𝑒𝑐𝑜𝑛 regularize the generator output
via an object classifier and an reconstructor respectively, of
both pre-trained on real data. Having the trained generator
𝐺, it is capable of yielding synthetic object features with MP-
sampler, and we can construct artificial triplets for T𝑠𝑝𝑜′ . The
GAN model detail can be found in the appendix. Algorithm
1 outlines the complete procedures of FSTA.

3.3 Soft Transfer

The IETrans internal transfer reassigns relation labels from
the general (source) ones to the informative (target) ones.
However, some transfers are suboptimal: human evaluation
deems only 76% of general-informative pairs as “reliable”
[10]. While tail performance can benefit from these transfers,
the cost of head performance drop is a concern.

A finer control on individual transfers could improve the
transfer efficiency and thus alleviate the tail-head performance
trade-off. Instead of a complete label transfer from a general
(𝑝 → 0) to an informative predicate (𝑝 → 1), we propose
the Soft Transfer that assigns non-binary probabilities to
source and target predicate classes. Soft Transfer consists of
two steps. Firstly, we rank all the reassigned pairs using a
triplet-wise reliability score, from which pairs are selected
for Soft Transfer. Second, a mapping function converts the
reliability score into probabilities for source and target labels.

Based on the observation that transfer reliability varies
from one combination to another, we define a preliminary
function 𝑟𝑖𝑛𝑡 (·) to estimate the degree of reliability. Given
an transfer decision list, each list item includes a triplet index
𝑖, a source class 𝑐𝑠𝑟𝑐,𝑖𝑝 , and a target class 𝑐𝑡𝑎𝑟 ,𝑖𝑝 . To determine
the reliability score, we use the prediction output difference
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Algorithm 1: FSTA
Input :Biased model predictions 𝑀𝑃, pre-trained extracted

object features and labels {f𝑡 , 𝑦𝑡 }𝑇𝑡=1, batch size 𝑁𝐵,
sampled pair size 𝑁𝑡 , loss coefficient 𝛼

1 MPsampler← build from 𝑀𝑃 based on Eq. (2) and (3);
2 {𝐺, 𝐷}← initialize adversarial modules;
3 for 𝑖 = 1, ..., 𝑘𝑎𝑑𝑣 do
4 {𝐺, 𝐷}← update as Eq. (4) using {f𝑡 , 𝑦𝑡 };
5 end
6 for 𝑖 = 1, ..., 𝑘𝑆𝐺𝐺 do
7 {...}; // Do the general training step for the SGG model
8 cand triplets← [];
9 for 𝑗 = 1, ..., 𝑁𝐵 do

10 pps← sample 𝑁𝑡 valid RoI pairs as shown in Fig. 3;
11 cand triplets← cand triplets + pps;
12 end
13 T𝑠𝑝𝑜′ ← EnumValidCombination (cand triplets);
14 T𝑠′𝑝𝑜 ← EnumValidCombination (cand triplets);
15 T𝑠𝑝𝑜′ ← Undersample (T𝑠𝑝𝑜′ );
16 T𝑠′𝑝𝑜 ← Undersample (T𝑠′𝑝𝑜);
17 gen obj labels← MPsampler (T𝑠𝑝𝑜′ );
18 gen obj features← 𝐺(z, gen obj labels);
19 T𝑠𝑝𝑜′ ← replace object part with {gen obj labels,

gen obj features};
20 L𝑎𝑡 ← CrossEntropy (𝑀(𝐹(ConCat (T𝑠𝑝𝑜′ , T𝑠′𝑝𝑜))),

ground truth relations);
21 update model from 𝛼 L𝑎𝑡 ;
22 end

following

𝑟𝑖𝑛𝑡 (𝑖) = 𝑣(𝑙𝑡𝑟𝑖 𝑝𝑙𝑒𝑡 (𝑖), 𝑐𝑡𝑎𝑟 ,𝑖𝑝 ) − 𝑣(𝑙𝑡𝑟𝑖 𝑝𝑙𝑒𝑡 (𝑖), 𝑐𝑠𝑟𝑐,𝑖𝑝 ) (5)

where 𝑙𝑡𝑟𝑖 𝑝𝑙𝑒𝑡 (𝑖) ∈ R | C𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 | returns the post-softmax
model prediction of triplet 𝑖, and 𝑣(𝑙𝑡𝑟𝑖 𝑝𝑙𝑒𝑡 (·), 𝑗) retrieves the
value of 𝑙𝑡𝑟𝑖 𝑝𝑙𝑒𝑡 (·) at class 𝑗 . We rank the score in ascending
order and pick the top 𝑘𝑠% triplets for Soft Transfer while
the other remains.

For those triplets with low reliability scores, we consider
them as over-transferred. Thus, a positive probability should
be assigned to the source class as the ground-truth label
instead of zero. While achieving this and ensuring that the
sum of the classes for the label is 1, we map the reliability
scores to values within the range [0, 1]. Given a mapping
function 𝑄(·), the post-transferred result for triplet 𝑖 can be

represented as its label probability:

𝑙𝑎𝑏𝑒𝑙𝑖 (𝑐) =


1

1+𝑄 (𝑟𝑖𝑛𝑡 (𝑖) ) , if 𝑐 = 𝑐
𝑡𝑎𝑟 ,𝑖
𝑝

𝑄 (𝑟𝑖𝑛𝑡 (𝑖) )
1+𝑄 (𝑟𝑖𝑛𝑡 (𝑖) ) , if 𝑐 = 𝑐

𝑠𝑟𝑐,𝑖
𝑝

0, otherwise
(6)

we set 𝑄(·) = 1 − 𝑄′ (·), where 𝑄′ (·) is a linear min-max
scaling for the reliability scores.

Soft Transfer is applied on the original relation loss
and needs no changes to it. Table 1 shows an example of
post-transferred annotations. In IETrans, predicates of the
selected triplets are reassigned to more informative ones (red).
Our Soft Transfer evaluates the reliability of these reassigned
predicates and converts them to non-binary values (blue).

Fig. 5: An example training image in VisualGenome.

Table 1: The differences in relation annotation among the raw
dataset, the baseline IETrans (excluding External Transfer),
and our proposed Soft Transfer for Figure 5.

config relation annotations
raw man-sitting on-chair laptop-on-table

plant-in-pot person-on-laptop
+IETrans man-sitting on-chair laptop-above-table

plant-in-pot person-looking at-laptop
++SoftTrans man-sitting on-chair
(ours) laptop-(above:0.76, on:0.24)-table

plant-in-pot
person-(looking at:1.0, on:0.0)-laptop
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Table 2: The performance comparison for the predcls task on VG150. Scores for models listed in the first section are cited
from their original papers, while models in subsequent sections use our implementation. “Model++X” is shorthand for
“Model+IETrans+X”. The best overall scores within each section are highlighted in bold. (Unit: %)

Predicate Classification (Predcls)

models R@50 R@100 mR@50(h/b/t) mR@100(h/b/t) F1@50 F1@100 A@50 A@100

Motif+TDE [12] 46.2 51.4 25.5(-) 29.1(-) 32.9 37.2 35.9 40.3
Motif+DLFE [13] 52.5 54.2 26.9(-) 28.8(-) 35.6 37.6 39.7 41.5
Motif+NICE [9] 55.1 57.2 29.9(-) 32.3(-) 38.8 41.3 42.5 44.8
Motif+IETrans [10] 54.7 56.7 30.9(-) 33.6(-) 39.5 42.2 42.8 45.2
Motif+IETrans+rwt [10] 48.6 50.5 35.8(-) 39.1(-) 41.2 44.1 42.2 44.8
Motif+Inf [33] 51.5 55.1 24.7(-) 30.7(-) 33.4 39.4 38.1 42.9

Motif 65.0 67.2 16.1(39.3/9.3/1.2) 17.8(42.3/11.1/1.3) 25.8 28.1 40.6 42.5
Motif+IETrans† 54.8 57.1 29.6(42.2/33.4/14.0) 32.9(45.8/37.2/16.4) 38.4 41.7 42.2 45.0
Motif++FSTA (ours) 54.0 56.2 31.0(42.4/33.2/18.2) 34.8(45.8/37.4/22.0) 39.4 43.0 42.5 45.5
Motif++SoftTrans (ours) 58.6 60.8 28.0(42.5/31.8/10.6) 30.8(46.0/35.1/12.3) 37.9 40.9 43.3 45.8
Motif++Full (ours) 57.1 59.4 29.8(41.6/32.0/16.5) 33.2(45.1/35.8/19.5) 39.2 42.6 43.5 46.3

Motif+IETrans+rwt† 51.5 53.7 34.4(43.2/37.3/23.4) 38.8(46.3/40.5/30.2) 41.3 45.1 43.0 46.2
Motif++FSTA+rwt (ours) 49.0 51.1 35.9(42.0/36.8/29.1) 40.6(45.1/40.1/36.8) 41.4 45.2 42.4 45.8
Motif++SoftTrans+rwt (ours) 55.6 57.8 33.1(43.3/36.1/20.5) 38.3(46.4/39.9/28.9) 41.5 46.0 44.4 48.0
Motif++Full+rwt (ours) 53.4 55.5 34.7(42.4/35.7/26.6) 39.5(45.4/39.1/34.2) 42.1 46.1 44.1 47.5

RelDN 60.7 62.2 13.8(38.5/4.2/0.0) 14.9(40.9/5.3/0.1) 22.5 24.0 37.3 38.6
RelDN+IETrans† 38.6 39.9 29.6(35.4/33.1/20.5) 32.3(37.7/36.2/23.3) 33.5 35.7 34.1 36.1
RelDN++FSTA (ours) 37.0 38.2 31.3(33.7/33.0/27.3) 34.1(35.8/36.0/30.5) 33.9 36.0 34.2 36.2
RelDN++SoftTrans (ours) 52.4 53.8 26.1(37.6/27.6/13.9) 28.1(40.0/29.7/15.3) 34.8 36.9 39.3 41.0
RelDN++Full (ours) 49.2 50.7 28.2(35.8/28.2/21.0) 30.6(37.9/30.8/23.5) 35.9 38.2 38.7 40.7

RelDN+IETrans+rwt† 25.2 26.3 32.1(28.7/35.5/32.0) 34.6(30.7/37.8/35.1) 28.2 29.9 28.7 30.5
RelDN++FSTA+rwt (ours) 24.2 25.3 32.5(28.2/35.6/33.5) 35.8(30.1/38.1/38.8) 27.7 29.6 28.4 30.5
RelDN++SoftTrans+rwt (ours) 36.1 37.4 31.6(34.7/32.7/27.8) 34.8(36.8/34.9/32.7) 33.7 36.1 33.9 36.1
RelDN++Full+rwt (ours) 33.6 34.9 31.7(32.6/32.3/30.2) 35.1(34.6/35.3/35.4) 32.6 35.0 32.7 35.0

3.4 Implementation Details

We build our work upon an open source SGG model imple-
mentation† [34]. We integrate our system into two prevalent
SGG model of distinct types: Motif [15] (which employs
LSTM) and RelDN [16] (which utilizes CNN, multi-modality
fusion, and contrastive losses). These were selected because
they represent a variety of design elements commonly found
in popular models. We use a ResNet50-FPN [35] Faster-
RCNN [36] as the common detector backbone. The detector
backbone is pre-trained on VisualGenome [6] and kept frozen.
Fig. 4 illustrates how to combine our module with these SGG
models. We implement IETrans with the default parameters:
𝑘𝑖 = 70 and 𝑘𝑒 = 100. In the FSTA module, 𝑁𝑡 is set to 2
for Motif and 5 for RelDN to balance the number of artificial
triplets in a mini-batch, considering the smaller batch size
for RelDN. We set 𝑠𝑖𝑜𝑢 = 0.7††, 𝑈ℎ = 0.2 for Motif, and
𝑠𝑖𝑜𝑢 = 0.5, 𝑈ℎ = 0.8 for RelDN. Both models have a loss
coefficient of 𝛼 = 0.1. We omit artificial triplets from T𝑠′ 𝑝𝑜 if
their predicates are not in the tail group. For the soft transfer
module, we set 𝑘𝑠 to 10 for Motif and 70 for RelDN. In the
experiments with a “reweighting” setting, only the original
loss function is applied with reweighting, while L𝑎𝑡 , the loss
for FSTA, does not apply as a standalone module. 𝑘𝑠 also
†https://github.com/microsoft/scene_graph_benchmark
††We follow the implementations in † to compute 𝑠𝑖𝑜𝑢.

changes to 30 for Motif and 90 for RelDN.

4. Experiments

4.1 Dataset and Evaluation Protocol

We evaluated our system on the benchmark VG150 split of
the VisualGenome dataset. This dataset consists of 60,784
training images and 26,446 testing images. It contains 150
object classes and 50 relation classes. Following the approach
of [7], we sorted the predicates by cardinality, grouping the
top 16, middle 17, and bottom 17 into head, body, and tail
groups, respectively.

Our analysis focused on standard SGG tasks: predcls,
sgcls, and sgdet [15], [16], [19]. These tasks evaluate the
model with incrementally higher demands. For instance,
“predcls” only assesses the model’s ability in classifying
relations using given object locations and categories. In
contrast, “sgdet” evaluates both relation classification and
object detection simultaneously. Our primary attention was
on predcls since our proposed modules target improving pred-
icate classification performance. We used the Recall(R)@K
and mean Recall(mR)@K metrics for both full test set
and per-class averaged recall evaluations. It is noteworthy
that Recall@K is dominated by the performance of the top
frequent classes due to the skewed predicate distribution,
whereas mean Recall@K treats all classes equally. Given the
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Table 3: The performance comparison for the sgcls and sgdet task on VG150. “Model++X” is shorthand for “Model+IETrans+X”.
Best overall scores in the section are highlighted in bold. Full results can be found in the appendix. (Unit: %)

Scene Graph Classification (Sgcls) Scene Graph Detection (Sgdet)

models R@100 mR@100(h/b/t) F1@100 A@100 R@100 mR@100(h/b/t) F1@100 A@100

Motif 38.9 10.7(25.2/7.0/0.8) 16.8 24.8 37.7 9.3(23.0/5.6/0.2) 14.9 23.5
Motif+IETrans† 30.1 20.9(25.9/21.2/15.9) 24.7 25.5 29.2 16.5(24.9/18.4/6.8) 21.1 22.9
Motif++FSTA (ours) 30.5 20.6(26.0/21.0/15.1) 24.6 25.6 28.8 17.1(25.1/18.3/8.2) 21.5 23.0
Motif++SoftTrans (ours) 34.1 18.7(26.4/20.8/9.3) 24.2 26.4 32.2 15.8(25.2/18.6/4.1) 21.2 24.0
Motif++Full (ours) 33.3 19.2(25.7/20.5/11.8) 24.4 26.3 32.2 17.0(24.6/18.5/8.3) 22.3 24.6

RelDN 36.9 7.9(22.9/1.6/0.0) 13.0 22.4 38.0 8.2(23.7/1.9/0.0) 13.5 23.1
RelDN+IETrans† 23.3 19.0(22.0/21.2/14.1) 20.9 21.2 22.0 18.4(22.0/20.9/12.4) 20.0 20.2
RelDN++FSTA (ours) 22.8 19.3(21.6/21.2/15.2) 20.9 21.1 21.1 19.1(21.3/21.0/15.1) 20.1 20.1
RelDN++SoftTrans (ours) 32.8 15.5(23.4/16.9/6.7) 21.1 24.2 32.3 15.4(23.8/16.5/6.3) 20.9 23.9
RelDN++Full (ours) 31.1 16.8(22.9/17.4/10.6) 21.8 24.0 29.3 17.2(22.5/17.8/11.5) 21.7 23.3

observed trade-off between Recall@K and mean Recall@K
from earlier studies, we also reported the F1@K (their har-
monic mean) and Avg(A)@K (their arithmetic mean) [9],
[10] as the “overall” metrics in our comprehensive evaluation.
All metrics are the higher the better.

4.2 Comparing to Other Methods

We compared our results with IETrans and several other
recent model-agnostic SGG methods (first section of Table
2). IETrans serves as the baseline and is currently one of the
best model-agnostic methods available.
Original baseline and our re-implementation. We com-
pared our method with the reproduced baselines (denoted as
†). For Motif+IETrans in the predcls task, the reproduced
version yielded similar scores to those of the original, with
a slightly higher R@100 and lower mR@100. These differ-
ences may due to some implementation variations in the base
SGG model. Therefore, we use the reproduced version as our
standard because it maintains identical implementation set-
tings and IETrans transfer lists, consistent with our proposed
methods. The original IETrans paper did not present results
for RelDN; therefore, we also compared our results with a
reproduced version. In summary, all our implementations
share the basic settings to ensure a fair comparison.
Improved relation prediction over the baseline. Table 2
summarizes the scores for predcls. The results reveal that
our method substantially outperformed the baseline for both
the Motif and RelDN models. Specifically, the F1@100
score rose from 41.7 to 43.0 (a 3.1% relative gain) for Motif,
and from 35.7 to 38.2 (a 7.0% relative gain) for the RelDN
model. The A@100 score also increases. With FSTA, the
standout feature was the mR enhancement in tail classes (e.g.,
from 16.4 to 22.0 for Motif). The artificial triplets generated
in FSTA enriched the variation of triplets available for the
relation predictor, aiding especially the sparse classes. As
for frequent classes, the score decline is minor. On the other
hand, Soft Transfer was intended to reduce the degree of
label reassignment for less reliable transfers. This led to a
score trend the opposite of the original IETrans: while recall
scores raised, the tail mean recall scores decreased (e.g.,

R@100 increases from 57.1 to 60.8 for Motif, and 39.9 to
53.8 for RelDN). In certain cases, Soft Transfer can slightly
reduce the F1 score, because the harmonic mean prioritizes
enhancements in the smaller one. Nonetheless, the Avg@100
witnessed a notable boost with Soft Transfer. Combining
both modules, the full system leveraged their complementary
benefits, consistently delivering among the top F1/Avg@100
results for both models, indicating an effective balance of
trade-offs.
Compatible with the reweighting setting. We also adhere
to the original settings described in the IETrans paper to
compare the models when integrated with the “reweighting”
technique (+rwt) [10]. Our method proved efficacious even
under this setting. Both the FSTA and Soft Transfer modules
served their intended purposes, driving improvements across
rare and frequent classes alike. The “Motif++Full+rwt”
method achieves an increase in F1@100 from 45.1 to 46.1,
and in Avg@100 from 46.2 to 47.5, thereby demonstrating
the mitigation of the performance trade-off. For RelDN with
reweighting, the performance was not as beneficial as for
the Motif models. Although the mR@100 for the tail group
further increased, the impact on R@K cannot be overlooked,
leading to a dip in the overall scores. One possible explanation
for this could be the architecture of the RelDN model, which
already incorporates a frequency prior branch. Consequently,
we did not add the frequency prior values during inference
for the RelDN models, while we did so for the Motif models
following [10]. This leads to a more serious degradation
in head classes, despite having the best performance on tail
classes. However, our method still consistently surpassed the
baseline in the RelDN +rwt setting.
Similar trends observed for sgcls and sgdet. Table 3
showcases the digested results for sgcls and sgdet. Here, we
noticed trends analogous to those in predcls. For RelDN, the
full version achieves the best F1@100 and the second-best
A@100. For the Motif sgdet, the full version outperforms
all the others on both overall metrics (i.e., a 5.7% and 7.4%
relative gain for F1@100 and A@100 over the baseline
method, respectively). However, the FSTA module yields
some unexpected results in the sgcls task. One potential
cause is that we applied identical FSTA settings across all
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tasks. However, sgcls uniquely relies on ground-truth boxes
only for input proposals, which is different from the other
tasks. This difference might result in distinct regularization
effects, as the artificial triplets are constructed from sampled
proposal pairs.

5. Discussions

In this section, we focus on the predcls task results for the
Motif model† to gain a deeper understanding of our methods.
Results for RelDN can be found in appendix.

5.1 Ablation Study

Table 4 presents the components ablated from FSTA to demon-
strate their contributions to the module. The results indicate
that all components positively influence the improvement
of F1@100. Among these, undersampling has the greatest
impact on F1@100, adjusting the proportions of artificial
triplets in the head, body, and tail predicate groups from
0.70, 0.14, and 0.15 to 0.33, 0.32, and 0.35 respectively.
Additionally, incorporating T𝑠′ 𝑝𝑜 effectively introduces new
training combinations. The MP-sampler also plays a crucial
role, further boosting R@100.

Table 5 summarizes the ablation results with reweighting.
A similar trend is observed that the components in FSTA
contribute to the increase in scores for tail relation groups
and the mR@100.

Table 4: The ablation study results for our FSTA module.
For the components, ”us” refers to undersampling, ”+sbj”
denotes adding artificial set T𝑠′ 𝑝𝑜, and MP indicates that the
MP-sampler is applied. (Unit: %)

us +sbj MP R@100 mR@100(h/b/t) F1/Avg@100

55.8 33.4(45.2/38.7/17.1) 41.8/44.6
✓ 55.3 34.4(45.3/39.9/19.6) 42.4/44.9
✓ ✓ 54.8 35.0(44.8/39.1/21.6) 42.7/44.9
✓ ✓ ✓ 56.2 34.8(45.8/37.4/22.0) 43.0/45.5

Table 5: The ablation study results for our FSTA module with
Motif and “reweighting”. Item descriptions are identical to
Table 4. (Unit: %)

us +sbj MP R@100 mR@100(h/b/t) F1/Avg@100

54.7 36.6(45.8/39.2/25.4) 43.9/45.7
✓ 53.1 38.7(45.1/40.8/30.7) 44.8/45.9
✓ ✓ 52.5 39.7(44.5/41.4/33.4) 45.2/46.1
✓ ✓ ✓ 51.1 40.6(45.1/40.1/36.8) 45.2/45.8

5.2 Sensitivity Analysis

We then investigate the choice of percentage 𝑘𝑠 in Soft
Transfer. A “Naı̈ve” setting would simply apply soft transfer
to all reassigned triplets without our ranking and mapping
mechanisms, where both source and target labels are assigned
a value of 0.5. The results are summarized in Table 6.
†Unless specified otherwise, this means “Model+IETrans+X”.

As the number of entirely transferred triplets is reduced,
R@100 recovers as 𝑘𝑠 grows, yet mR@100 decreases. The
“Naı̈ve” setting consistently performs worse than the others
in the F1@100 or even Avg@100 metrics and only be on
par with the baseline IETrans (𝐴𝑣𝑔@100 = 45.0). This
highlights the significance of our devised method.

Table 6: The sensitivity results for our Soft Transfer module.
“∗” indicates the setting applied in our method. (Unit: %)

settings: R@100 mR@100(h/b/t) F1/Avg@100

𝑘𝑠 = 0.1∗ 60.8 30.8(46.0/35.1/12.3) 40.9/45.8
𝑘𝑠 = 0.3 63.1 30.1(45.4/34.5/11.3) 40.7/46.6
𝑘𝑠 = 0.5 64.5 28.4(44.7/31.6/9.8) 39.4/46.4
Naı̈ve 66.5 23.4(43.6/22.6/5.0) 34.6/45.0

5.3 Comparison with Real Data Resampling

We compare the effects of resampling real data with our FSTA.
Although both approaches augment the number of rare predi-
cates, their motivations and methods differ. FSTA aims to
steer the predicate classification layers towards understandind
the inherent concept of the predicate by leveraging combi-
native, yet semantically plausible, artificial triplets. This
also introduces new variations to the training data. In con-
trast, resampling merely duplicates samples from rare classes
to mitigate dataset imbalance; however, it is susceptible to
overfitting.

For our real data resampling implementation, we altered
the training set by duplicating the image 𝑛 times if it contained
more than one triplet of tail group predicates. We analyzed
the performance difference when applied independently and
the combined for Motif+IETrans on the predcls task. The
scores are listed in Table 7.

Our ”+FSTA” is more effective than ”+resampling”, as it
yields superior overall metrics for both F1 and Avg. Combin-
ing both can boost the mean recall of the tail group. Intensive
resampling improved tail classes but reduced frequent class
recall. We did not observe positive effects when n was larger
than 4.

Table 7: The results of comparing our FSTA with resampling.
(Unit: %)

settings: R@100 mR@100(h/b/t) F1/Avg@100

IETrans 57.1 32.9(45.8/37.2/16.4) 41.7/45.0

+resample(𝑛 = 1) 57.2 33.5(45.5/37.8/18.1) 42.3/45.4
+resample(𝑛 = 2) 55.6 33.5(45.1/37.4/18.8) 41.8/44.5
+resample(𝑛 = 3) 55.5 33.5(44.6/36.8/19.9) 41.8/44.5

+FSTA (ours) 56.2 34.8(45.8/37.4/22.0) 43.0/45.5
+resample+FSTA 54.9 35.8(44.7/37.2/26.1) 43.3/45.3

5.4 Parameter Choices for FSTA

To explore the quality of our 𝑠𝑖𝑜𝑢 and 𝑈ℎ choices, which are
applied across settings, we assess the performance within the
reweighting setting. Table 8 details the results.

Our observations are as follows: (1) Lower values of 𝑈ℎ
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tend to result in higher tail group performance, attribute to
the increased ratio of tail relations in the artificial triplets. (2)
A higher 𝑠𝑖𝑜𝑢 threshold allows only the most precise feature
representations, benefiting the data-sparse tail group while
potentially harming the generalizability in frequent classes.
Overall, we found that the parameters we selected perform
reasonably well, even under such a different setting.

Table 8: The results of parameter choices for FSTA with
Motif and “reweighting”. “∗” indicates the setting applied in
our method. (Unit: %)

Param. Value R@100 mR@100(h/b/t) F1/Avg@100

𝑠𝑖𝑜𝑢

0.5 51.6 39.9(45.8/40.6/33.9) 45.0/45.8
0.6 50.9 39.2(45.8/41.0/31.2) 44.3/45.1
0.7∗ 51.1 40.6(45.1/40.1/36.8) 45.2/45.9
0.8 50.3 40.7(44.7/40.0/37.6) 45.0/45.5
0.9 49.5 40.9(44.4/39.4/39.1) 44.8/45.2

𝑈ℎ

0.2∗ 51.1 40.6(45.1/40.1/36.8) 45.2/45.9
0.4 51.8 40.3(45.4/40.5/35.4) 45.3/46.1
0.5 51.0 40.2(45.3/40.5/35.1) 45.0/45.6
0.6 51.2 39.7(45.8/39.5/34.3) 44.7/45.5
0.8 51.7 39.9(44.5/43.1/32.3) 45.0/45.8

5.5 A Study on MP-sampler

We examine the role of the MP-sampler. In this case, the
count of artificial triplets per predicate class is invariant,
but the distribution of combinations changes. We undertake
a case study focusing on the mR@100 tail group, where
FSTA has shown significant performance gains. Fig. 6 (left)
portrays the per-class recall: 12 of 17 classes either tie or
improve with the MP-sampler. Next, we study the rationale
behind the signal designed in the MP-sampler. It uses the
scores from 𝑑 (·) as the sampling probability, which inversely
correlates with recall. For example, 𝑑 (·) = 0 implies that
the top-1 predicate prediction aligns with the ground-truth,
whereas 𝑑 (·) > 0 does not. We hypothesize that sampling
more object labels of higher 𝑑 (·) scores can make correct
predictions easier for the unbised model. Thus, we analyze the
changes in accumulated 𝑑 (·) scores between the pretrained
and unbiased models, from those object classes where counts
have increased. Fig. 6 (right) visualizes the results computed
on test data. Out of the 17 classes, 14 show non-negative
total reductions scores, confirming that our designed signal
is evident in the test data. We also inspect the relationship
between the reduced score and class recall. The majority
of classes follow a similar trend, with only four exhibiting
the converse pattern (e.g., recall increases while the reduced
score is negative).

5.6 Feature Visualization
We visualize the similarity between the synthesized object
features in artificial triplets and the real ones in the given
classes. Fig. 7 illustrates the sampled classes within the body,
tail, and head groups, separated by different colors. The
neighborhood identity between the real and synthetic features
from the same class suggest the effectiveness of the generator.
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Fig. 6: A case study examining the effects of the MP-sampler.
(Left) The tail group mR@100 comparison between setups
without and with MP-sampler. (Right) The accumulated
𝑑 (·) reduction contributed by objects that are sampled more
frequently.

body tail

head

Fig. 7: The t-SNE plots for object features in the artificial
triplets. We select 10 classes from each group. Real features
are plotted in dots and generated in crosses.

6. Conclusion

In this paper, we introduce two key concepts to enhance the
dataset modification approach for unbiased SGG: a novel data
augmentation strategy via our FSTA module, and improved
predicate reassignment efficiency through Soft Transfer. The
FSTA module substantially boosts tail class recall by gener-
ating additional artificial triplets, while Soft Transfer offers
a more nuanced evaluation of the reliability of individual
transfers, allowing for a continuous degree of transfer and
mitigating the typical decline in frequent class recall during
reassignment. Experimental results confirm that integrating
the complementary modules improves overall performance,
surpassing the baseline IETrans.
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Appendix A: Full Sgcls and Sgdet Tasks Results

The full results for the “sgcls” and “sgdet” tasks are listed in
Table A5 (sgcls) and A6 (sgdet).

Appendix B: Qualitative Results

We visualize the results of predicate prediction in Fig. A1.

Appendix C: Results for Ablation Study (RelDN)

Table A1 and Table A2 summarize the ablation results for
FSTA module under RelDN and RelDN with reweighting,
respectively.

Table A1: The ablation study results for our FSTA module
with RelDN. Item descriptions are identical to Table 4. (Unit:
%)

us +sbj MP R@100 mR@100(h/b/t) F1/Avg@100

38.9 33.4(37.0/38.8/24.5) 35.9/36.2
✓ 39.1 33.9(37.0/38.2/26.7) 36.3/36.5
✓ ✓ 39.0 34.0(37.0/38.9/26.1) 36.3/36.5
✓ ✓ ✓ 38.2 34.1(35.8/36.0/30.5) 36.0/36.2

Table A2: The ablation study results for our FSTA mod-
ule with RelDN and “reweighting”. Item descriptions are
identical to Table 4. (Unit: %)

us +sbj MP R@100 mR@100(h/b/t) F1/Avg@100

25.3 34.9(29.9/39.6/35.0) 29.3/30.1
✓ 25.4 35.1(30.3/39.4/35.4) 29.5/30.3
✓ ✓ 25.5 35.1(30.3/39.8/35.0) 29.5/30.3
✓ ✓ ✓ 25.3 35.8(30.1/38.1/38.8) 29.6/30.5

Appendix D: Results for Sensitivity Analysis (RelDN)

Table A3 lists the Soft Transfer sensitivity results of RelDN
for the predcls task. 𝑘𝑠 = 0.7 actually achieves a better score
on both R@100 and mR@100 over the baseline method (an
improvement of 39.9 to 40.8 for R@100 and 32.3 to 32.5
for mR@100). Nevertheless, modifying 𝑄(·) = 1 −𝑄′ (·) to
𝑄(·) = 𝑄′ (·) leads to stronger overall performance, due to
the larger space for the R@100 score recovery. Again, the
“Naı̈ve” case is inferior to the applied settings.

Table A3: The sensitivity results with RelDN for our Soft
Transfer module. “∗” indicates the setting applied in our
method. “⋄” stands for a modified 𝑄(·). (Unit: %)

settings: R@100 mR@100(h/b/t) F1/Avg@100

𝑘𝑠 = 0.5⋄ 50.8 29.9(39.5/32.4/18.3) 37.6/40.4
𝑘𝑠 = 0.7 ⋄ ∗ 53.8 28.1(40.0/29.7/15.3) 36.9/40.9
𝑘𝑠 = 0.7 40.8 32.5(38.0/36.2/23.8) 36.2/36.7
Naı̈ve 56.3 25.0(40.9/25.5/9.6) 34.7/40.7

Appendix E: Results for FSTA Parameter Choices
(RelDN)

Table A4 describes the results of FSTA parameter study for
RelDN.

Table A4: The results of parameter choices for FSTA with
RelDN and “reweighting”. “∗” indicates the setting applied
in our method. (Unit: %)

Param. Value R@100 mR@100(h/b/t) F1/Avg@100

𝑠𝑖𝑜𝑢

0.5∗ 25.3 35.8(30.1/38.1/38.8) 29.6/30.5
0.6 24.8 35.0(29.5/38.2/36.9) 29.0/29.9
0.7 25.2 34.4(29.4/38.5/35.0) 29.1/29.8
0.8 24.3 34.0(29.2/36.8/35.7) 28.3/29.2
0.9 24.5 36.3(29.3/37.8/41.4) 29.3/30.4

𝑈ℎ

0.2 24.6 35.7(29.5/38.1/39.0) 29.1/30.2
0.4 24.3 36.8(29.1/37.5/43.3) 29.3/30.5
0.5 25.4 36.1(30.0/37.7/40.1) 29.8/30.8
0.6 24.5 35.8(29.3/38.1/39.5) 29.1/30.2
0.8∗ 25.3 35.8(30.1/38.1/38.8) 29.6/30.5

Appendix F: Randomness of FSTA

The resource of randomness: Including the undersampling
step and the generator pretraining. We selected a fixed check-
point for the generator based on the classification accuracies
observed in the validation data.
The reproducibility of randomness: In the SGG
model training, we followed the open-source SGG model
implementation† to set the seed for the libraries and switch
to deterministic mode for the cudnn library.
The impact of randomness: We measured the standard de-
viation of R@100 and mR@100 under “Motif++FSTA+rwt”
in the predcls task, using five different runs. The values are
0.23 for R@100 and 0.31 for mR@100. Note that these
include randomness from both the Motif model and the FSTA
module.

Appendix G: Object Generator

We exploit a conditional-GAN based model to synthesize
object’ features, due to its lightweight and low additional
computational cost. In the pre-processing step, we collect the
real features from model predictions on training data (See
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Table A5: The full performance comparison for the sgcls task on VG150. Scores for models listed in the first section are
cited from their original papers, while models in subsequent sections use our implementation. “Model++X” is shorthand for
“Model+IETrans+X”. The best overall scores within each section are highlighted in bold. (Unit: %)

Scene Graph Classification (Sgcls)

models R@50 R@100 mR@50(h/b/t) mR@100(h/b/t) F1@50 F1@100 A@50 A@100

Motif+TDE [12] 27.7 29.9 13.1(-) 14.9(-) 17.8 19.9 20.4 22.4
Motif+DLFE [13] 32.3 33.1 15.2(-) 15.9(-) 20.7 21.5 23.8 24.5
Motif+NICE [9] 33.1 34.0 16.6(-) 17.9(-) 22.1 23.5 24.9 26.0
Motif+IETrans [10] 32.5 33.4 16.8(-) 17.9(-) 22.2 23.3 24.7 25.7
Motif+IETrans+rwt [10] 29.4 30.2 21.5(-) 22.8(-) 24.8 26.0 25.5 26.5
Motif+Inf [33] 32.2 33.8 14.5(-) 17.4(-) 20.0 23.0 23.4 25.6

Motif 38.1 38.9 10.0(23.9/6.3/0.6) 10.7(25.2/7.0/0.8) 15.8 16.8 24.1 24.8
Motif+IETrans† 29.1 30.1 18.0(24.5/19.7/10.3) 20.9(25.9/21.2/15.9) 22.2 24.7 23.6 25.5
Motif++FSTA (ours) 29.5 30.5 18.3(24.5/19.4/11.5) 20.6(26.0/21.0/15.1) 22.6 24.6 23.9 25.6
Motif++SoftTrans (ours) 33.0 34.1 17.2(24.9/19.1/8.1) 18.7(26.4/20.8/9.3) 22.6 24.2 25.1 26.4
Motif++Full (ours) 32.2 33.3 17.7(24.2/18.7/10.5) 19.2(25.7/20.5/11.8) 22.8 24.4 25.0 26.3

Motif+IETrans+rwt† 28.1 28.6 18.9(24.1/20.2/12.6) 21.0(25.0/20.9/17.4) 22.6 24.2 23.5 24.8
Motif++FSTA+rwt (ours) 26.1 26.6 19.6(23.3/20.2/15.4) 21.6(24.2/20.9/20.0) 22.4 23.8 22.9 24.1
Motif++SoftTrans+rwt (ours) 30.9 31.5 18.0(24.2/19.2/10.9) 20.4(25.0/20.0/16.3) 22.7 24.8 24.5 26.0
Motif++Full+rwt (ours) 29.3 29.9 18.5(23.6/19.3/13.1) 21.0(24.4/20.0/18.7) 22.7 24.7 23.9 25.5

RelDN 36.0 36.9 7.4(21.8/1.3/0.0) 7.9(22.9/1.6/0.0) 12.3 13.0 21.7 22.4
RelDN+IETrans† 22.4 23.3 17.8(20.8/20.0/12.7) 19.0(22.0/21.2/14.1) 19.8 20.9 20.1 21.2
RelDN++FSTA (ours) 21.9 22.8 17.9(20.4/19.9/13.6) 19.3(21.6/21.2/15.2) 19.7 20.9 19.9 21.1
RelDN++SoftTrans (ours) 31.8 32.8 14.6(22.2/15.9/6.2) 15.5(23.4/16.9/6.7) 20.0 21.1 23.2 24.2
RelDN++Full (ours) 30.1 31.1 15.6(21.7/16.3/9.4) 16.8(22.9/17.4/10.6) 20.5 21.8 22.9 24.0

RelDN+IETrans+rwt† 17.7 18.5 19.3(18.7/21.0/18.1) 20.6(19.9/22.1/19.7) 18.5 19.5 18.5 19.6
RelDN++FSTA+rwt (ours) 16.6 17.4 19.0(18.0/21.4/17.4) 20.8(19.1/22.5/20.5) 17.7 18.9 17.8 19.1
RelDN++SoftTrans+rwt (ours) 23.7 24.6 18.4(21.6/18.6/15.3) 21.1(22.8/19.5/21.0) 20.7 22.7 21.0 22.9
RelDN++Full+rwt (ours) 22.6 23.5 18.7(20.6/19.0/16.5) 21.6(21.8/20.0/23.1) 20.5 22.5 20.7 22.6

Fig.4 in the manuscript). The adversarial loss function for
the GAN model consist of three parts: L𝑤𝑔𝑎𝑛𝑔𝑝, L𝑐𝑙𝑠, and
L𝑟𝑒𝑐𝑜𝑛.
L𝑤𝑔𝑎𝑛𝑔𝑝 is a standard WGAN loss with gradient penalty

[37] as Eq.(A1).

L𝑤𝑔𝑎𝑛𝑔𝑝 =Ex∼𝑟𝑒𝑎𝑙 [𝐷 (x, s𝑐)] − Ex̃∼𝑔𝑒𝑛 [𝐷 (x̃, s𝑐)]
− 𝜆E[( | |∇x̂𝐷 (x̂, s𝑐) | |2 − 1)2]

(A1)

where x ∈ R𝑑 is the feature sampled from real data, x̃ =

𝐺 (z, s𝑐) ∈ R𝑑 is the synthesized feature from generator 𝐺. 𝑑
is the size of object feature. x̂ = 𝛼x+(1−𝛼)x̃ is an interpolated
feature with 𝛼 sampled from a uniform distribution. z is an
initial vector sampled from normal distribution, and s𝑐 is a
condition vector represents the object class. We collect s𝑐
from the pre-trained CLIP [38] text encoder. We use the
basic template “a photo of a [OBJECT NAME].” as the input
prompt to text encoder, then the output vector as the class
representation.
L𝑐𝑙𝑠 is a regularization loss for the generator 𝐺. It uti-

lizes a softmax classifier pre-trained on real data to encourage
the generator to output features with enhanced discriminabil-
ity. That is, the synthetic features can be better classified.
Eq.(A2) describes its loss function.

L𝑐𝑙𝑠 = −Ex̃∼𝑔𝑒𝑛 [log𝑃(𝑦 |𝑥; 𝜃𝑐𝑙𝑠)] (A2)

where 𝜃𝑐𝑙𝑠 is the weights of the softmax classifier. 𝑦 is the
corresponding class label. During the adversarial training,
the pre-trained classifier is frozen.
L𝑟𝑒𝑐𝑜𝑛 is another regularization term for the class con-

sistency between generator output and its condition input. A
reconstructor 𝑅(·) is pre-trained on real data to infer the class
condition vector from the feature. Eq.(A3) describes its loss
function.

L𝑟𝑒𝑐𝑜𝑛 = Ex̃∼𝑔𝑒𝑛 [∥𝑅(x̃) − s𝑐 ∥2] (A3)

the reconstructor is also frozen in the adversarial training.
The overall loss function is as below and identical to

Eq.(4) in the main paper.

min
𝐺

max
𝐷
L𝑤𝑔𝑎𝑛𝑔𝑝 + 𝛽L𝑐𝑙𝑠 + 𝛾L𝑟𝑒𝑐𝑜𝑛 (A4)

We list the model architecture for training the object
generator in Table A7.

Appendix H: Hyperparameter Details

We list the parameter choices for training SGG models and
the generator model in Table A8.
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Table A6: The full performance comparison for the sgdet task on VG150. Scores for models listed in the first section are
cited from their original papers, while models in subsequent sections use our implementation. “Model++X” is shorthand for
“Model+IETrans+X”. The best overall scores within each section are highlighted in bold. (Unit: %)

Scene Graph Detection (Sgdet)

models R@50 R@100 mR@50(h/b/t) mR@100(h/b/t) F1@50 F1@100 A@50 A@100

Motif+TDE [12] 16.9 20.3 8.2(-) 9.8(-) 11.0 13.2 12.5 15.1
Motif+DLFE [13] 25.4 29.4 11.7(-) 13.8(-) 16.0 18.8 18.6 21.6
Motif+NICE [9] 27.8 31.8 12.2(-) 14.4(-) 17.0 19.8 20.0 23.1
Motif+IETrans [10] 26.4 30.6 12.4(-) 14.9(-) 16.9 20.0 19.4 22.8
Motif+IETrans+rwt [10] 23.5 27.2 15.5(-) 18.0(-) 18.7 21.7 19.5 22.6
Motif+Inf [33] 23.9 27.1 9.4(-) 11.7(-) 13.5 16.3 16.7 19.4

Motif 32.7 37.7 7.7(19.4/4.4/0.1) 9.3(23.0/5.6/0.2) 12.5 14.9 20.2 23.5
Motif+IETrans† 24.7 29.2 13.8(20.9/15.5/5.3) 16.5(24.9/18.4/6.8) 17.7 21.1 19.3 22.9
Motif++FSTA (ours) 24.3 28.8 13.9(21.2/15.7/5.3) 17.1(25.1/18.3/8.2) 17.7 21.5 19.1 23.0
Motif++SoftTrans (ours) 27.4 32.2 13.1(21.1/15.5/3.2) 15.8(25.2/18.6/4.1) 17.7 21.2 20.3 24.0
Motif++Full (ours) 27.5 32.2 14.0(20.8/15.7/5.8) 17.0(24.6/18.5/8.3) 18.6 22.3 20.8 24.6

Motif+IETrans+rwt† 23.8 28.5 15.6(22.5/18.3/6.3) 18.8(26.5/21.1/9.4) 18.8 22.7 19.7 23.7
Motif++FSTA+rwt (ours) 22.1 26.4 17.3(21.3/18.7/12.0) 20.1(25.2/21.1/14.2) 19.4 22.8 19.7 23.3
Motif++SoftTrans+rwt (ours) 27.0 31.8 15.0(22.1/17.6/5.8) 19.4(26.1/20.4/12.0) 19.3 24.1 21.0 25.6
Motif++Full+rwt (ours) 25.5 30.1 16.3(21.4/18.2/9.5) 19.5(25.2/20.8/12.9) 19.9 23.7 20.9 24.8

RelDN 32.7 38.0 6.7(19.7/1.1/0.0) 8.2(23.7/1.9/0.0) 11.1 13.5 19.7 23.1
RelDN+IETrans† 18.4 22.0 14.9(18.3/16.8/9.7) 18.4(22.0/20.9/12.4) 16.5 20.0 16.7 20.2
RelDN++FSTA (ours) 17.5 21.1 15.5(17.8/17.0/11.7) 19.1(21.3/21.0/15.1) 16.4 20.1 16.5 20.1
RelDN++SoftTrans (ours) 27.3 32.3 12.5(19.9/13.3/4.7) 15.4(23.8/16.5/6.3) 17.1 20.9 19.9 23.9
RelDN++Full (ours) 24.6 29.3 14.4(19.0/14.7/9.8) 17.2(22.5/17.8/11.5) 18.2 21.7 19.5 23.3

RelDN+IETrans+rwt† 12.2 14.7 16.5(14.9/19.8/14.8) 19.7(17.8/23.2/17.9) 14.0 16.8 14.4 17.2
RelDN++FSTA+rwt (ours) 11.2 13.8 16.6(14.8/19.0/15.8) 19.5(17.7/22.5/18.2) 13.4 16.2 13.9 16.7
RelDN++SoftTrans+rwt (ours) 18.0 21.6 15.9(18.6/18.3/11.1) 18.9(22.1/21.5/13.5) 16.9 20.2 17.0 20.3
RelDN++Full+rwt (ours) 16.0 19.5 16.5(17.3/18.0/14.2) 19.9(20.5/21.4/17.7) 16.2 19.7 16.3 19.7

Table A7: The model architecture.
module input and the forward flow

𝐺 Input: (z, sc)
out = concat(Input)
out = linear1(in=1024+512, out=4096)(out)
out = LeakyReLU(slope=-0.2)(out)
x̃ = linear2(in=4096, out=1024)(out)

𝐷 Input: (x̃, sc) or (x, sc)
out = concat(Input)
out = linear1(in=1024+512, out=4096)(out)
out = LeakyReLU(slope=-0.2)(out)
out = linear2(in=4096, out=1)(out)

classifier Input: x̃
out = linear(in=1024, out=150)(out)
out = softmax(out)

reconstructor Input: x̃
out = linear(in=1024, out=4096)(out)
out = LeakyReLU(slope=-0.2)(out)
out = linear(in=4096, out=512)(out)

KuanChao Chu He is currently pursuing
the doctoral degree with the Nakayama Labora-
tory, Graduate School of Information Science
and Technology, The University of Tokyo. His
research interests include novel object detection,
data augmentation, scene graph detection, and
deep learning.

Table A8: The parameter choices for training Motif-based
SGG models (section 1), RelDN-based SGG models (section
2), and the genertor model (section 3).

Parameter Value Description

MOTIF IMS PER BATCH 16 batch size
MOTIF BASE LR 0.015 learning rate
MOTIF MAX ITER 40,000 iterations

RELDN IMS PER BATCH 2 batch size
RELDN BASE LR 0.005 learning rate
RELDN MAX ITER 150,000 iterations

𝑑𝑧 1024 dim of input 𝑧
BATCH FG 128 batch size (adv. training)
D TRAIN ITER 5 D-over-G update iters
MAX ITER FG 55,000 iterations
GAN LR 0.0001 learning rate
𝜆 10.0 the coef. for gp
𝛽 0.1 the coef. for loss L𝑐𝑙𝑠

𝛾 0.1 the coef. for loss L𝑟𝑒𝑐𝑜𝑛
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search interests include object tracking, person
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deep learning.
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Fig. A1: Qualitative results of our method for the predcls task under the Motif+rwt setting: (Left) Images with bounding boxes,
(Middle) Ground-truth scene graphs, and (Right) Predicted results. Isolated nodes have been omitted from the visualized scene
graphs. The relations in red indicate discrepancies with the ground truth.
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