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PAPER
Deterministic and Probabilistic Certified Defenses for
Content-Based Image Retrieval∗

Kazuya KAKIZAKI†,††a), Kazuto FUKUCHI††,†††, Nonmembers, and Jun SAKUMA††††,†††, Member

SUMMARY This paper develops certified defenses for deep neural net-
work (DNN) based content-based image retrieval (CBIR) against adversarial
examples (AXs). Previous works put their effort into certified defense for
classification to improve certified robustness, which guarantees that no AX
to cause misclassification exists around the sample. Such certified defense,
however, could not be applied to CBIR directly because the goals of ad-
versarial attack against classification and CBIR are completely different.
To develop the certified defense for CBIR, we first define the new certified
robustness of CBIR, which guarantees that no AX that changes the ranking
results of CBIR exists around the input images. Then, we propose computa-
tionally tractable verification algorithms that verify whether a given feature
extraction DNN satisfies the certified robustness of CBIR at given input
images. Our proposed verification algorithms are achieved by evaluating
the upper and lower bounds of distances between feature representations
of perturbed and non-perturbed images in deterministic and probabilistic
manners. Finally, we propose robust training methods to obtain feature
extraction DNNs that increase the number of inputs that satisfy the certified
robustness of CBIR by tightening the upper and lower bounds. We experi-
mentally show that our proposed certified defenses can guarantee robustness
deterministically and probabilistically on various datasets.
key words: adversarial example, certified defense, content-based image
retrieval

1. Introduction

Content-based image retrieval (CBIR) is a task that retrieves
visually similar images to a given query image from a set
of candidate images. Modern CBIR performs retrieval by
ranking the similarity between the query image and candi-
date images based on feature extraction deep neural networks
(DNNs) trained by metric learning [1]. However, recent stud-
ies reveal that such DNN-based CBIR is vulnerable to small
human-imperceptible perturbation to the input data, called
adversarial examples (AXs) [2]–[10]. Such AXs can be in-
put to DNN-based CBIR as the query or candidate images
and maliciously modify the ranking results by manipulat-
ing the output of the feature extraction DNNs. Since the
DNN-based CBIR is often involved in security-critical sys-
tems such as person re-identification [11], defense methods
for DNN-based CBIR against AXs are necessary.
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A great deal of effort has been devoted to empirical
defense methodologies for the classification task. Adversar-
ial training [12], which trains DNNs using AXs as training
data, is one of the most effective empirical defense method-
ologies for classification. Adversarial training has also been
shown to be effective in CBIR empirically [2], [3]. While
these empirical defense methods achieve robustness against
conventional attacks, they often suffer from adaptive attacks
[13], which assume the attacker is aware of the strategy of the
defense method. Since there is no guarantee that these empir-
ical defense methods are effective against adaptive attacks,
defense methods with theoretical guarantees of robustness
are needed to deal with adaptive attacks.

To overcome adaptive attacks, many studies have
worked to establish defense with certified robustness of clas-
sification [14]. Certified robustness means that there is no
AX to cause misclassification within an lp-ball centered on a
given sample. This type of defense is referred to as certified
defense. Certified defense generally consists of (i) a verifi-
cation algorithm to verify whether a given classifier satisfies
certified robustness at a given sample and (ii) robust training
for classifiers to increase the number of samples that can be
verified by the corresponding verification algorithm. Since
exact verification is known to be reduced to an NP-complete
problem [15], [16], the verification algorithms alternatively
evaluate a sufficient condition of certified robustness that
depend on the upper and lower bounds of the classifier’s
predictions against AXs in the lp-ball. Then, the bounds
are computed by computationally tractable deterministic or
probabilistic algorithms [17]–[23]. While using the bounds
makes the verification computationally tractable, the results
can include false negatives, i.e., given samples are deter-
mined to be not robust, even when they actually achieve
certified robustness. Considering that the looseness of the
bounds causes this gap, robust training to make this bound
tighter has been introduced. By training the classifier in this
way, we can expect to reduce the number of cases where
robust samples are misjudged to be non-robust.

1.1 Related Work

Some studies proposed certified defenses for classification,
which guarantee certified robustness deterministically. This
type of certified defense includes a verification algorithm that
computes the upper and lower bounds of logits in a deter-
ministic manner. [20], [24] utilize the Lipschitz constant of
neural networks to calculate the bounds. [17]–[19] calculate
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the bounds by linear relaxations of ReLU activations. [21],
[22] propose a straightforward but effective method called
interval bound propagation (IBP) that propagates the up-
per and lower bounds for each layer. These deterministic
certified defenses can guarantee certified robustness for low-
resolution images such as CIFAR10 (32x32) with small false
negatives. However, they are known to be difficult to scale
to high-resolution images such as ImageNet (224x224) [14]
because the evaluation of the upper and lower bounds is too
loose.

Another line of certified defense for classification is
probabilistic. This type of certified defense is also called
randomized smoothing (RS). RS achieves the verification
for certified robustness by estimating the upper and lower
bounds of the classifier’s prediction in a probabilistic manner.
Concretely, RS smooths the classifier with Gaussian [23],
[25] or Laplace [26] distribution and theoretically derives the
upper and lower bounds on the prediction of the smoothed
model. Then, the bounds are probabilistically estimated by
Monte Carlo estimation and hypothesis testing. As a result,
different from the deterministic verification algorithms, the
result of RS contains not only false negatives but also false
positives with small probability. However, RS can scale
to high-resolution images; RS can provide the meaningful
evaluation of the upper and lower bounds for high-resolution
images.

Although certified defense for classification has been
investigated extensively, less attention has been paid to cer-
tified defense for CBIR. Moreover, the existing certified de-
fenses for classification cannot be directly applied to CBIR
because the goals of the adversarial attack against classifi-
cation and CBIR are completely different. Specifically, the
adversarial attacks against classification aim to change the
predicted class label of the classifier, whereas the adversar-
ial attacks against CBIR aim to change the ranking results
of CBIR calculated by feature extraction DNNs. Thus, new
definitions of certified robustness tailored to CBIR and cer-
tified defense to guarantee it should be considered. Only
[27] have proposed a certified defense for CBIR, named Re-
trievalGuard, which guarantees that no AX changes the top-
1 ranking results of CBIR. However, since RetrievalGuard
does not guarantee the invariance of any ranking result other
than top-1, its use is limited.

1.2 Our Contributions

In this paper, we develop two types of certified defenses for
CBIR that guarantee robustness deterministically or prob-
abilistically. Our contribution is four-fold. First, we de-
fine the new certified robustness of CBIR, named (lp, α, ϵ )-
robustness. (lp, α, ϵ )-robustness means that no AX exists
within lp-balls with radius ϵ ∈ R centered on the query or
candidate images that changes the ranking result of a spe-
cific candidate image more than α ∈ N. Different from the
existing certified robustness of CBIR that guarantees the in-
variance of top-1 ranking results [27], (lp, α, ϵ )-robustness
can guarantee the invariance of any ranking results.

Second, we introduce a tractable sufficient condition
for (lp, α, ϵ )-robustness. To verify whether a given fea-
ture extraction DNN satisfies (lp, α, ϵ )-robustness at given
a query and candidate images, we need to evaluate the ex-
act maximum and minimum distances in the feature space
between AXs in the lp-balls and the benign images. That
makes the verification computationally intractable. To al-
leviate this, we derive the sufficient condition for (lp, α, ϵ )-
robustness using the upper and lower bounds of the distances.
Then, we achieve certified defenses that guarantee (l∞, α, ϵ )-
robustness and (l2, α, ϵ )-robustness by evaluating the upper
and lower bounds of the distances with our proposed deter-
ministic and probabilistic tractable methods, respectively.

Third, we present a certified defense for CBIR, which
guarantees (l∞, α, ϵ )-robustness in a deterministic manner.
To this end, we first propose a tractable verification algo-
rithm, which evaluates the derived sufficient condition by
applying interval bound propagation (IBP) [22] to feature
extraction DNNs. Concretely, we evaluate the upper and
lower bounds of the distances by propagating bounds from
the input space to the feature space. Since the computa-
tional complexity of IBP is equivalent to two forward prop-
agations of DNNs, we can evaluate the derived sufficient
conditions in polynomial time. Moreover, we also propose
robustness training methods of feature extraction DNNs that
attain tighter evaluation of the upper and lower bounds of
the distances. When the bounds are loose, our verification
algorithms can judge truly robust inputs as non-robust. To
decrease such misjudging, we introduce new objective func-
tions to train feature extraction DNNs that encourage tighter
bounds of distances evaluated by IBP. We experimentally
confirmed that the robustness training method can increase
the number of samples verified by our proposed determinis-
tic verification algorithm for MNIST [28], Fashion-MNIST
[29], and CIFAR10 [30].

Fourth, we present a certified defense for CBIR, which
guarantees (l2, α, ϵ )-robustness probabilistically. We experi-
mentally confirmed that our proposed deterministic certified
defense does not scale to high-resolution images such as
CUB (224x224) [31]. To overcome this limitation, inspired
by the success of randomized smoothing (RS) for classifica-
tion setting, we propose a verification algorithm to evaluate
the derived sufficient condition using the upper and lower
bounds of Gaussian smoothed distances, of which input is
smoothed with Gaussian distributions. Specifically, we the-
oretically derive the upper and lower bounds on the Gaussian
smoothed distance and probabilistically estimate them by our
proposed Monte Carlo algorithms. Moreover, we propose to
use Gaussian data augmentation [23], [27] to training data
of feature extraction DNNs for obtaining tighter bounds of
the Gaussian smoothed distances. We theoretically and ex-
perimentally show that our probabilistic certified defense,
different from the deterministic one, includes false positives
as well as false negatives but can scale to higher-resolution
images.

Note that this is an extension of our conference paper
[32]. The main content extended from the conference paper
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is the proposal and experimental evaluations of the proba-
bilistic certified defense.

The paper is organized as follows. Section 2 describes
the background of this study and defines the new certified
robustness of CBIR, (lp, α, ϵ )-robustness. Section 3 derives
the sufficient conditions of (lp, α, ϵ )-robustness using the
upper and lower bounds of the distances. Section 4 proposes
deterministic certified defense: deterministic verification al-
gorithms and their robustness training. Section 5 proposes
probabilistic certified defense: probabilistic verification al-
gorithms and their robustness training. In Section 6, we
evaluate our proposed deterministic and probabilistic certi-
fied defenses. Section 7 provides potential directions for
future research focusing on enhancing the certified defense
for CBIR. Section 8 concludes the paper.

2. Preliminaries

2.1 Content-Based Image Retrieval (CBIR)

CBIR is a task to find images similar to a query image in a
set of candidate images. Let X be the instance space. Let
q ∈ X be a query image and C = {ci |ci ∈ X } |C |

i=1 be a set of
candidate images. Let f : X → Rd be a feature extractor
where d is the feature dimension. Then, CBIR ranks ∀c ∈ C
with distance d( f (q), f (c)) and retrieves the top-k similar
images to q in C. In this paper, Rank(q, c,C) represents the
rank of c ∈ C in terms of the similarity to q. We omit f
from the augments of Rank(q, c,C) for notational simplicity
when it is obvious from the context.

2.2 Adversarial Attacks against CBIR

In recent years, many studies have focused on adversarial
attacks on CBIR [2]–[10]. These attacks can be categorized
into two types of attacks, query attack (QA) and candidate
attack (CA), depending on whether the AX is given as a
query image or a candidate image.

Query Attack (QA). Let Ct ⊂ C be the target candi-
dates in C specified by the adversary. The adversary aiming
at QA perturbs a source query image qs to raise or lower the
rank of the candidates in Ct . When the attacker’s goal is to
raise the rank of the candidates in Ct , adversarial perturbation
δ for QA is obtained by solving the following optimization
problem:

min
δ∈X, ∥δ ∥p ≤ϵ

∑
t∈Ct

Rank(qs + δ, t,C), (1)

where ∥ · ∥p is lp norm and ϵ ∈ R≥0 is a constant that
bounds the size of the perturbation. Eq. (1) cannot be solved
directly due to the discrete nature of Rank(·). Instead, [2],
[3] minimizes the following objective function:

min
δ∈X,
∥δ ∥p ≤ϵ

∑
t∈Ct

∑
c∈C

[d( f (qs+δ), f (t))−d( f (qs+δ), f (c))]+.

(2)

Minimization in Eq. (1) is changed to maximization when
the attacker’s goal is to lower the rank of the candidates in
Ct .

Candidate Attack (CA). Let Qt = {qi ∈ X }M
i=1 be a set

of target query images specified by the adversary. The adver-
sary aiming at CA perturbs a source candidate image cs ∈ C
so that the rank of perturbed cs is raised or lowered when
∀q ∈ Qt is issued as a query. When the attacker’s goal is to
raise the rank of the perturbed cs , adversarial perturbation
for CA is obtained by the following minimization problem
with respect to δ:

min
δ∈X, ∥δ ∥p ≤ϵ

∑
t∈Qt

Rank(t, cs + δ,C). (3)

where ∥ · ∥p is lp norm and ϵ ∈ R≥0 is a constant that
bounds the size of the perturbation. Since optimization in Eq.
(3) is intractable, [2], [3] optimizes the following objective
function instead:

min
δ∈X,
∥δ ∥p ≤ϵ

∑
t∈Qt

∑
c∈C

[
d( f (t), f (cs + δ)) − d( f (t), f (c))

]
+
,

(4)

As well as QA, minimization in Eq. (3) is changed to maxi-
mization when the attacker’s goal is to lower the rank of the
perturbed c.

2.3 Certified Robustness

Here, we briefly review the existing definition of the certi-
fied robustness and verification algorithms for classification.
Then, we define two new certified robustness of CBIR.

2.3.1 Certified Robustness of Classification.

The adversarial attacks against the classifier aim to change
the predicted label of the classifier to an untargeted or tar-
geted label by perturbing the input images [12], [33]. The
certified robustness of classification guarantees that pre-
dicted labels are kept invariant when the size of adversarial
perturbation is limited within a specified range:

Definition 1 (Certified Robustness of Classification [14]).
Let x ∈ X be a input image and t ∈ {1, ...,C} be corre-
sponding label to x. Let fc : X → RC and fc (x)j be
the vector of logits and the logit of class j ∈ {1, ...,C}
for x, respectively. Let ϵ ∈ R≥0. Then, classifier
Fc (x) := arg maxj∈{1,...,C } fc (x)j is certified robust at x if
Fc (x + δ) = t for ∀δ ∈ {δ | δ ∈ X, ∥δ∥p ≤ ϵ }.

Verification Algorithms for Classification. When
classifier Fc is DNN with ReLUs, verifying whether given
Fc satisfies certified robustness at given x is reduced to
an NP-complete problem [15], [16]. To make the veri-
fication computationally tractable, existing verification al-
gorithms use the lower bounds of margins between log-
its mi (x) ≤ minδ, ∥δ ∥p ≤ϵ fc (x + δ)t − fc (x + δ)i:i,t or
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class probabilities mi (x) ≤ minδ, ∥δ ∥p ≤ϵ Pr[Fc (x + δ) =
t] − Pr[ fc (x + δ) = i]i:i,t against AXs in the lp-ball. Then,
the bounds are computed by computationally tractable de-
terministic methods such as interval bound propagation [22]
or estimated by probabilistic methods such as randomized
smoothing [23]. Then, if mi (x) > 0, the verification algo-
rithms determine the classifier satisfies certified robustness
at x. In this paper, we call the verification algorithms de-
terministic and probabilistic verification algorithms when
the bounds are computed through deterministic and prob-
abilistic methods, respectively. We remark that the results
of the deterministic verification algorithms do not include
false positives but false negatives because mi (x) > 0 is a
sufficient condition for Definition 1. On the other hand, the
results of the probabilistic verification algorithms include
not only false negatives but also false positives with a certain
probability. However, the probabilistic verification algo-
rithms have the advantage of scaling to large-scale images
such as ImageNet [34], which is difficult to be verified by
the deterministic verification algorithms [23].

2.3.2 Certified Robustness of CBIR.

Definition 1 is not suitable for CBIR because the goals of
adversarial attacks against classification and CBIR are dif-
ferent: the adversarial attacks against classification aim to
change the predicted class label of the classifier, whereas QA
and CA aim to change the rank of the candidates. Thus, in
certified defense for CBIR, we need to consider rank invari-
ance rather than label invariance against AXs. We define the
certified robustness of CBIR against QA and CA as follows,
respectively:

Definition 2 ((lp, α, ϵ )-Robustness against QA). Let f :
X → Rd be a feature extractor. Let q ∈ X and C =
{ci |ci ∈ X }N

i=1 be a query image and a set of candidate
images, respectively. Let α ∈ N0 and ϵ ∈ R≥0. Then, for
∀δ ∈ {δ | δ ∈ X, ∥δ∥p ≤ ϵ }, f satisfies (lp, α, ϵ )-robust
against QA at q, ci ∈ C, and C if

|Rank(q + δ, ci,C) − Rank(q, ci,C) | ≤ α. (5)

Definition 3 ((lp, α, ϵ )-Robustness against CA). Let f :
X → Rd be a feature extractor. Let q ∈ X and C =
{ci |ci ∈ X }N

i=1 be a query image and a set of candidate
images, respectively. Let α ∈ N0 and ϵ ∈ R≥0. Then, for
C̃ = {ci + δi }Ni=1 where ∀δ1, ...,∀δN ∈ {δ | δ ∈ X, ∥δ∥p ≤ ϵ },
f satisfies (lp, α, ϵ )-robust against CA at q, ci ∈ C, and C if

|Rank(q, ci + δi, C̃) − Rank(q, ci,C) | ≤ α. (6)

In both robustness definitions, we introduced α to relax
the strictness of the guarantee because requiring complete
rank invariance can be too strict.

3. Sufficient Conditions for (lp, α, ϵ )-Robustness

Since verifying whether given inputs satisfy (lp, α, ϵ )-
robustness against QA and CA (Definition 2 and Definition

3) are computationally intractable, the key challenge of de-
signing the verification algorithms is to make them relax and
computationally efficient. Our idea to recover tractability is
to introduce computationally tractable sufficient conditions
for them. Unfortunately, the existing sufficient condition
for certified robustness for classifier described in Section
2.3 (mi (x) > 0) cannot be used directly because (lp, α, ϵ )-
robustness against QA and CA depend on the distances in
the feature space rather than the margins of logits or class
probabilities. Thus, in this section, we first derive sufficient
conditions for (lp, α, ϵ )-robustness against QA and CA us-
ing the upper and lower bounds of the distances against AXs
in the lp-ball, assuming that the bounds can be obtained in
a tractable way. Then, in Section 4 and Section 5, we in-
troduce computationally tractable algorithms to obtain the
upper and lower bounds of the distances in a deterministic
and probabilistic manner, respectively.

Let x1, x2 ∈ X and ϵ ∈ R≥0. Then, we define upper
and lower bounds of distance against AXs in the lp-ball as
follows:

dx2 (x1) ≥ max
δ, ∥δ ∥p ≤ϵ

d( f (x1 + δ), f (x2)), (7)

dx2
(x1) ≤ min

δ, ∥δ ∥p ≤ϵ
d( f (x1 + δ), f (x2)). (8)

We omit f from the augments of dx2 (x1) and dx2
(x1) for

notational simplicity when it is obvious from the context.
To derive sufficient conditions for Definition 2 and

Definition 3, we first derive upper and lower bounds of
Rank(q + δ, ci,C) in Eq. (5) and Rank(q, ci + δi, C̃) in
Eq.(6) by comparing dx2 (x1) and dx2

(x1):

Lemma 1 (Upper and Lower Bounds of Rank against QA).
For ∀δ ∈ {δ | δ ∈ X, ∥δ∥p ≤ ϵ }, the following holds:

|C | −
∑
c∈C

1
[
dci (q) < dc (q)

] ≥ Rank(q + δ, ci,C) (9)∑
c∈C

1
[
dc (q) < dci

(q)
]
+ 1 ≤ Rank(q + δ, ci,C).

(10)

Proof. The proof is shown in Appendix A.1. □

Lemma 2 (Upper and Lower Bounds of Rank against CA).
For C̃ = {ci+δi }Ni=1 where∀δ1, ...,∀δN ∈ {δ | δ ∈ X, ∥δ∥p ≤
ϵ }, the following holds:

|C | −
∑
c∈C

1
[
dq (ci) < dq (c)

] ≥ Rank(q, ci + δi, C̃)

(11)∑
c∈C

1
[
dq (c) < dq (ci)

]
+ 1 ≤ Rank(q, ci + δi, C̃).

(12)

Proof. The proof is shown in Appendix A.2. □

From Theorem 1 and Theorem 2, we can also
immediately obtain the upper and lower bounds of
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|Rank(q+δ, ci,C)−Rank(q, ci,C) | and |Rank(q, ci+δ j, C̃)−
Rank(q, ci,C) | in Eq. (5) and Eq. (6), respectively. We can
derive sufficient condition for Definition 2 and Definition 3
by comparing the bounds with α:

Theorem 1 (Sufficient Condition for (α, ϵ)-Robustness
against QA). Feature extractor f satisfies (lp, α, ϵ )-
robustness against QA at q, ci ∈ C, and C if

α ≥ |C | −
∑
c∈C

1

[
dci (q) < dc (q)

]
− Rank(q, ci,C)

(13)

∧ − α ≤
∑
c∈C

1

[
dc (q) < dci

(q).
]
+ 1 − Rank(q, ci,C).

Proof. The proof is shown in Appendix A.3 □

Theorem 2 (Sufficient Condition for (α, ϵ)-Robustness
against CA). Feature extractor f satisfies satisfies (lp, α, ϵ )-
robust against CA at q, ci ∈ C, and C if

α ≥ |C | −
∑
c∈C

1

[
dq (ci) < dq (c)

]
− Rank(q, ci,C)

(14)

∧ − α ≤
∑
c∈C

1

[
dq (c) < dq (ci)

]
+ 1 − Rank(q, ci,C).

Proof. The proof is shown in Appendix A.4. □

From Theorem 1 and Theorem 2, verifying (lp, ϵ, α)-
robustness against QA and CA is computationally tractable
if the evaluation of dx2 (x1) and dx2

(x1) is computationally
tractable.

4. Deterministic Certified Defense for CBIR

In this section, we propose deterministic certified defenses
for CBIR, which guarantee (l∞, ϵ, α)-robustness against QA
and CA deterministically.

4.1 Deterministic Verification Algorithms

In this subsection, we propose verification algorithms, which
verify whether given inputs satisfy (l∞, ϵ, α)-robustness
against QA and CA in a tractable deterministic manner.
Our deterministic verification algorithms evaluate the de-
rived sufficient conditions Eq. (13) and Eq. (14). Since
they are sufficient conditions, they do not necessarily hold
for inputs truly satisfying (lp, ϵ, α)-robustness against QA
and CA. Whether they can hold depends on the tightness
of dx2 (x1) and dx2

(x1). For this reason, we need to obtain
meaningfully tight evaluation of dx2 (x1) and dx2

(x1). To ob-
tain a meaningfully tight evaluation of dx2 (x1) and dx2

(x1),
we utilize interval bound propagation (IBP) [22], [35]. IBP
is an tractable algorithm for calculating the upper and lower
bounds of logits when a l∞-ball is given as input. IBP is used
for deterministic verification for classification and is known

to give a meaningfully tight bound for this purpose.
Original interval bound propagation (IBP). Given,

x ∈ X , ϵ ∈ R≥0, and L-layer classifier fc , original IBP
evaluates the upper and lower bounds of fc (x + δ) for ∀δ ∈
{δ | δ ∈ X, ∥δ∥∞ ≤ ϵ }. Let zl = W lhl−1 + bl be the l-th
affine layer (e.g. fully connected layer and convolution layer)
and hl−1 = σ(zl−1) be a monotonic activation function (e.g.
ReLU) where l ∈ {1, ..., L} and h0 = x. Then, IBP provides
upper and lower bounds on the outputs of l-th affine layers
as follows:

zl = W l h
l−1
+ hl−1

2
+ |W l |

h
l−1 − hl−1

2
+ bl, (15)

zl = W l h
l−1
+ hl−1

2
− |W l |

h
l−1 − hl−1

2
+ bl, (16)

where | · | represents the element-wise absolute value op-
erator, h

l−1
= σ(zl−1), hl−1 = σ(zl−1), h

0
= x + ϵ1, and

h0 = x − ϵ1.

4.1.1 Evaluation for dx2 (x1) and dx2
(x1) via IBP

We propose tractable methods to evaluate dx2 (x1) and
dx2

(x1) when using Euclidean distance as dx2 (x1). Let f (x)i
be the i-th element of f (x). Let f (x)i and f (x)i be upper
and lower bounds of f (x)i calculated by IBP, respectively.
Then, we can evaluate dx2 (x1) and dx2

(x1) by the following
theorems:

Theorem 3. maxδ∈X, ∥δ ∥∞≤ϵ ∥ f (x1 + δ) − f (x2)∥2 is upper
bounded by√ ∑

i∈{1,..,d }
max
{ | f (x1)i − f (x2)i |, | f (x2)i − f (x1)i |

}2.
(17)

Proof. The proof is shown in A.5. □

Theorem 4. minδ∈X, ∥δ ∥∞≤ϵ ∥ f (x1 + δ) − f (x2)∥2 is lower
bounded by√ ∑

i∈{1,..,d }
min
{
0, f (x1)i − f (x2)i, f (x2)i − f (x1)i

}2.
(18)

Proof. The proof is shown in A.6. □

Evaluating Eq. (17) and Eq. (18) to determine if the
derived sufficient condition Eq. (13)/Eq. (14) is satisfied, we
can obtain our tractable deterministic verification algorithms
to verify (l∞, α, ϵ )-robustness against QA and CA as follows:

Verα,ϵ (q, ci,C) =
True if Eq. (13)/(14) is True

False otherwise.
(19)
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We omit f from the augments of Verα,ϵ (q, ci,C) for nota-
tional simplicity when it is obvious from the context.

The computational costs of calculating the upper bound
in Eq. (17) and the lower bound in Eq. (18) for a single pair
of (x1, x2) is comparable to three forward propagation of
DNNs. The total number of forwards in evaluating Eq. (13)
and Eq. (14) is equivalent to |C |+3 and 3|C |+1, respectively.

4.2 Robust Training Methods

In this subsection, we propose robustness training methods
that increase the number of samples verified by our deter-
ministic verification algorithms, Eq.(19). We experimentally
confirm that Eq.(13) and Eq.(14) are always not satisfied for
all q, ci , and C used in our experiments when using f trained
by conventional metric learning (See Section 6 for details).
This is because the upper and lower bounds calculated by Eq.
(17) and Eq. (18) can be too loose to satisfy the sufficient
conditions Eq. (13) and Eq. (14). To increase the number
of inputs that satisfy Eq. (13) and Eq. (14), we need to train
f so that attains tighter evaluation of dx2 (x1) and dx2

(x1).
To this end, we propose two new objective functions

to train feature extractor for CBIR. One is training of gen-
eral feature extractor that attains tighter bounds in Eq. (17)
and Eq. (18) without knowledge of query and candidate
images. The other is fine tuning of feature extractor given
that candidate images for the target CBIR are provided. We
remark that both algorithms are independent, and the latter
algorithm can be applied to the feature extractor trained with
the former algorithm.

4.2.1 Training General Feature Extractor for Robust CBIR

Recall that tighter evaluation of the upper bound in Eq. (17)
and the lower bound in Eq. (18) is needed to attain certified
robustness in a meaningful way. Our idea is to train f by
simultaneously minimizing conventional objective function
(e.g., triplet loss [36]) and the regularization term to make
the bounds in Eq. (17) and Eq. (18) tighter.

Let Dtrain = {(a, p, n)i }Mi=1 be a training data set where
p belongs to the same class as a, and n belongs to a different
class than a. Here, the training dataset and query/candidate
images of CBIR are mutually exclusive. Then, our objective
function is given as follows:

min
f

∑
(a,p,n)∈Dtr ain

κ·T(a, p, n)+(1−κ)·
∑

x∈{p,n}
Reg(a, x),

(20)

where Reg(a, x) = max{|d( f (a), f (x)) − dx (a) |, |d( f (a),
f (x)) − dx (a) |} and T(a, p, n) is the triplet loss [36] often
used in metric learning, which affects the performance of
CBIR. Reg(a, x) is a regularization term to encourage that
the upper and lower bound of ∥ f (a + δ) − f (x)∥2 are close
to ∥ f (a) − f (x)∥2. κ ∈ [0, 1] is a hyper parameter to adjust
the trade-off between performance of CBIR and (l∞, α, ϵ)-
robustness of CBIR against QA and CA. We call the training

with Eq. (20) as Tightly Bounding Training (TBT).

4.2.2 Fine-tuning DNNs to Candidate Images

The feature extractor obtained by Eq. (20) is independent
of the CBIR query and candidate set. In this subsection,
assuming that the candidates images for the target CBIR are
given, we show a method to fine tune the feature extractor
to the set of candidate images. The objective of this fine-
tuning is to reduce the gap between Definition 3 and the
corresponding sufficient condition in Eq. (14) by adjusting
f with the given candidate images. To achieve this, we
update f so that tighter evaluation of Eq. (17) and Eq. (18)
is attained with given candidate images while maintaining
the performance of CBIR.

Let C = {ci |ci ∈ X }N
i=1 be the set of candidate images.

Let f0 be the pre-trained feature extractor before fine-tuning.
Then, our objective function for fine-tuning is given as fol-
lows:

min
f

∑
c1,c2∈C

(
κ · d( f0(c1), f (c1))+ (1− κ) ·Reg(c1, c2)

)
.

(21)

The first term maintains the accuracy of the CBIR by en-
suring that the difference between the features calculated
by f and f0 is small. The second term is a regulariza-
tion term to encourage that the upper and lower bound of
∥ f (c1+δ)− f (c2)∥2 are close to ∥ f (c1)− f (c2)∥2. κ ∈ [0, 1]
is a hyperparameter to adjust the trade-off between the per-
formance of CBIR and (l∞, α, ϵ)-robustness against CA. We
call fine-tuning with Eq. (21) as Fine-tuning to Candidates
with Tighter Bounds (FCTB).

5. Probabilistic Certified Defense

In this section, we propose probabilistic certified defenses
for CBIR, which guarantee (l2, ϵ, α)-robustness against QA
and CA probabilistically.

5.1 Probabilistic Verification Algorithms

In this subsection, we propose algorithms to verify whether
given inputs satisfy (l2, ϵ, α)-robustness against QA and CA
in a probabilistic manner. We experimentally confirm that
our deterministic verification algorithms, Eq.(19), can not
verify high-resolution images even if we learn f with our
robust training method, Eq.(20) (See Section 6 for details).
To overcome the limitation, we utilize randomized smooth-
ing (RS) [23], [25] to evaluate dx2 (x1) and dx2

(x1). RS is a
tractable algorithm to estimate the upper and lower bounds
of the class probability of the classifier against AXs in an
l2-ball. RS is used for probabilistic verification algorithms
for classification and is known to scale to high-resolution
images [14].

Original randomized smoothing (RS). Let Fc : X →
[C] be a classifier. Let N (0, σ2I) be a Gaussian distribution
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with mean 0 and standard deviation σ. Gaussian smoothed
classifier GFc (x) : X → [C] is defined as follows:

GFc (x) := arg max
j∈[C]

Pr
ξ∼N (0,σ2I )

(Fc (x + ξ) = j). (22)

Then, randomized smoothing estimates the upper and lower
bounds of the class probability of Gaussian smoothed clas-
sifier Pr[GFc (x + δ) = i] for ∀δ ∈ {δ | δ ∈ X, ∥δ∥2 ≤ ϵ }
with a certain probabilistic guarantee. Precisely, randomized
smoothing uses Monte Carlo sampling and hypothesis testing
to estimate the upper and lower boundsΦ(Φ−1(Pr[GFc (x) =
i]) − ϵ/δ) ≤ Pr[GFc (x + δ) = i] ≤ Φ(Φ−1(Pr[GFc (x) =
i]) + ϵ/δ) theoretically derived by the Lipschitz continuity
of Gaussian smoothed functions:

Theorem 5 (Lipschitz continuity of Gaussian Smoothed
Functions [25], [37]). For any function h : X → [0, 1],
Φ−1(Eξ∼N (0,σ2I )[h(x + ξ)]) is 1

σ -Lipschitz in terms of l2
distance, where Φ−1 is the inverse of standard Gaussian
CDF.

5.1.1 Evaluation for dx2 (x1) and dx2
(x1) via RS

We utilize randomized smoothing to estimate dx2 (x1) and
dx2

(x1). Different from the original randomized smooth-
ing, which smooths the classifier, we smooth the distance
with a Gaussian distribution. Precisely, we use the follow-
ing Gaussian smoothed distance sdx2 (x1) as the distance
(i.e., dx1 (x2)) for computing the CBIR ranking results and
estimate the upper and lower bounds of sdx2 (x1):

Definition 4. Let x1, x2 ∈ X be inputs and f : X → [0, 1]d
be a feature extractor normalized so that ∥ f (x)∥2 = 1. Then,
Gaussian smoothed distance sdx2 (x1) is defined as follows:

sdx2 (x1) := Eξ∼N (0,σ2I )
1
2
∥ f (x1 + ξ) − f (x2)∥2. (23)

Upper and lower bound of sdx2 (x1). Since the range
of sdx2 (x1) is [0, 1], Φ−1(sdx2 (x1)) is 1

σ -Lipschitz continu-
ity in terms of l2 distance from Theorem 5. Thus, we can
immediately derive the upper and lower bounds of the Gaus-
sian smoothed distance against AXs in l2-ball (i.e., dx2 (x1)
and dx2

(x1)) as follows:

Φ(Φ−1(sdx2 (x1)) +
ϵ

σ
) ≥ max

δ, ∥δ ∥2≤ϵ
sdx2 (x1 + δ), (24)

Φ(Φ−1(sdx2 (x1)) − ϵ
σ

) ≤ min
δ, ∥δ ∥2≤ϵ

sdx2 (x1 + δ). (25)

Estimation of upper and lower bound of sdx2 (x1).
The upper and lower bound of sdx2 (x1) in Eq.(24) and
Eq.(25) can not be calculated directly because sdx2 (x1) is
not computable in practice. Thus, we estimate Eq.(24) and
Eq.(25) with a certain probabilistic guarantee by estimat-
ing sdx2 (x1) with Monte Carlo sampling. Let ŝdx2 (x1) =
1
N

∑
ξ1,...,ξN

1
2 ∥ f (x1+ξi)− f (x2)∥2 be estimation of sdx2 (x1)

where ξ1, ..., ξN are sampled from N (0, σ2I). Then, given

query image q ∈ X and candidate images C = {ci |ci ∈ X }N
i=1,

for ∀c ∈ C, the gap between sdc (q) and ŝdc (q) (or sdq (c)
and ŝdq (c)) can be guaranteed by utilizing Hoeffding’s in-
equality [38] as follows:

Lemma 3 (Theoretical Guarantee of Gap between sdx2 (x1)
and ŝdx2 (x1)). † Let q ∈ X and C = {ci |ci ∈ X }N

i=1 be a
query image and a set of candidate images, respectively. Let
β ∈ [0, 1]. For ∀c ∈ C, the following holds with at least
probability 1 − β:

ŝdc (q) +

√
1

2N
log(

2|C |
β

) > sdc (q) (26)

ŝdc (q) −
√

1
2N

log(
2|C |
β

) < sdc (q). (27)

Eq. (26) and Eq. (27) also hold if ŝdc (q) and sdc (q) are
replaced with ŝdq (c) and sdq (c), respectively.

Proof. The proof is shown in A.7 □

Combining Eq.(24), Eq.(25), and Lemma 3, we can
estimate the upper and lower bounds of sdc (q)/sdq (c) for
∀c ∈ C with a probability of at least 1 − β as follows:

Corollary 1 (Upper and Lower Bounds of sdx2 (x1)). † Let
q ∈ X and C = {ci |ci ∈ X }N

i=1 be a query image and a set
of candidate images, respectively. Then, for ∀c ∈ C and
∀δ ∈ {δ |δ ∈ X, ∥δ∥2 ≤ ϵ }, with at least probability 1 − β,
the followings hold:

Φ(Φ−1(ŝdc (q) + t) +
ϵ

σ
) > max

δ, ∥δ ∥2≤ϵ
sdc (q + δ), (28)

Φ(Φ−1(ŝdc (q) − t) − ϵ
σ

) < min
δ, ∥δ ∥2≤ϵ

sdc (q + δ), (29)

where t =
√

1
2N log 2 |C |

β . Eq. (28) and Eq. (29) also hold
if ŝdc (q) and sdc (q + δ) are replaced with ŝdq (c + δ) and
sdq (c), respectively.

Proof. The proof is shown in A.8 □

Eq. (28) and Eq. (29) show the upper and lower bounds
converge asymptotically to ŝdx2 (x1) as the sample size of
Gaussian noises N and the standard deviation σ increase.

Estimation of CBIR ranking result with sdx2 (x1).
Since exact sdx2 (x1) is not computable in practice, the exact
CBIR ranking results Rank(q, c,C),∀c ∈ C also cannot be
calculated. To evaluate the sufficient conditions Eq.(13) and
Eq.(14), we estimate Rank(q, c,C),∀c ∈ C instead of the
exact ones. Specifically, we estimate the upper and lower
bounds of Rank(q, ci,C),∀c ∈ C by utilizing Lemma 3. The
following theorems estimate the upper and lower bounds of
ranking results Rank(q, ci,C),∀c ∈ C with a probability of
at least 1− β when we use sdc (q) and sdq (c) for computing
†[37] derives similar results in the proof of Corollary 1 in their

paper. [37] proposes a certified defense for saliency map.
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the CBIR ranking results, respectively:

Theorem 6 (Upper and Lower Bounds of Ranking Results
with sdc (q)). Let q ∈ X and C = {ci |ci ∈ X }N

i=1 be a query
image and a set of candidate images, respectively. Then, for
∀ci ∈ C, with at least probability 1− β, the followings hold:

|C | −
∑
c∈C

1(ŝdci (q) + t < ŝdc (q) − t) ≥ Rank(q, ci,C)

(30)∑
c∈C

1(ŝdc (q) + t < ŝdci (q) − t) + 1 ≤ Rank(q, ci,C),

(31)

where t =
√

1
2N log 2 |C |

β .

Proof. The proof is shown in A.9 □

Theorem 7 (Upper and Lower Bounds of Ranking Result
with sdq (c)). Let q ∈ X and C = {ci |ci ∈ X }N

i=1 be a query
image and a set of candidate images, respectively. Then, for
∀ci ∈ C, with at least probability 1− β, the followings hold:

|C | −
∑
c∈C

1(ŝdq (ci) + t < ŝdq (c) − t) ≥ Rank(q, ci,C)

(32)∑
c∈C

1(ŝdq (c) + t < ŝdq (ci) − t) + 1 ≤ Rank(q, ci,C),

(33)

where t =
√

1
2N log 2 |C |

β .

Proof. The proof is shown in A.9 □

Theorem 6 and 7 show the upper and lower bounds of
ranking results can be tighter as the sample size of Gaussian
noises N increases.

Probabilistic evaluation of sufficient conditions. We
evaluate the sufficient conditions Eq.(13) and Eq.(14) with
a probabilistic guarantee by estimating the upper and lower
bounds of sdx2 (x1) and Rank(q, c,C) by Corollary 1 and
Theorem 6 or Theorem 7, respectively:

Theorem 8 (Probabilistic Evaluation of Sufficient Condition
for (l2, α, ϵ)-Robustness against QA). At least probability
1 − β, feature extractor f satisfies (α, ϵ )-robust against QA
at ci ∈ C, q, and C if

α ≥
(
|C | −

∑
c∈C

1

[
sdci (q) < sdc (q)

])
− Rank(q, ci,C)

(34)

∧ α ≥ Rank(q, ci,C) −
(∑
c∈C

1

[
sdc (q) < sdci

(q)
]
+ 1
)
,

where sdc (q) = Φ(Φ−1(ŝdc (q) +
√

(1/2N ) log(2|C |/β)) +
ϵ
σ ), sdc (q) = Φ(Φ−1(ŝdc (q)−

√
(1/2N ) log(2|C |/β))− ϵ

σ ),
Rank(q, c,C) = |C | −∑c∈C 1(ŝdci (q)+t < ŝdc (q)−t), and

Rank(q, c,C) =
∑

c∈C 1(ŝdc (q) + t < ŝdci (q) − t) + 1.

Proof. The proof is shown in A.10. □

Theorem 9 (Probabilistic Evaluation of Sufficient Condition
for (α, ϵ)-Robustness against CA). At least probability 1− β,
feature extractor f satisfies (α, ϵ )-robust against QA at ci ∈
C, q, and C if

α ≥
(
|C | −

∑
c∈C

1

[
sdq (ci) < sdq (c)

])
− Rank(q, ci,C)

(35)

∧ α ≥ Rank(q, ci,C) −
(∑
c∈C

1

[
sdq (c) < sdq (ci)

]
+ 1
)
,

where sdq (ci) = Φ(Φ−1(ŝdq (ci)+
√

(1/2N ) log(2|C |/β))+
ϵ
σ ), sdq (ci) = Φ(Φ−1(ŝdq (ci) −

√
(1/2N ) log(2|C |/β)) −

ϵ
σ ), Rank(q, ci,C) = |C |−∑c∈C 1(ŝdq (ci)+t < ŝdq (c)−t),
and Rank(q, ci,C) =

∑
c∈C 1(ŝdq (c) + t < ŝdq (ci) − t) + 1.

Proof. The proof is shown in Appendix A.11. □

To determine if Eq.(34) or Eq.(35) is satisfied, we can
obtain our probabilistic verification algorithms for CBIR
against QA and CA as follows:

Verα,ϵ,β (q, ci,C) =
True if Eq. (34) or (35) is True

False otherwise.
(36)

We omit f from the augments of Verα,ϵ,β (q, ci,C) for nota-
tional simplicity when it is obvious from the context.

Different from the deterministic verification algorithms,
Eq.(19), the results of probabilistic verification algorithms,
Eq.(36), include not only false negatives but also false posi-
tives with probability at most β. False negatives in Eq.(36)
depend on hyperparameters: β, the sample size of noises
N , and standard deviation σ. The total number of forwards
propagation of DNN in evaluating Eq.(34) and Eq.(35) is
equivalent to N + |C | and 1 + N |C |, respectively. In Section
6, we experimentally confirm that the probabilistic verifica-
tion algorithms, Eq.(35), can verify high-resolution images
(224 × 224) when we use β = 0.01 and N = 100000.

5.2 Robustness Training Methods

In this subsection, we discuss the robust training method
for the feature extractor f , which increases the number of
inputs verified by our probabilistic verification algorithm
Eq.(36). Recall that tighter evaluation of the upper bound
in Eq. (28) and the lower bound in Eq. (29) is needed to
attain certified robustness in a meaningful way. From Eq.
(28) and Eq. (29), we can obtain a tighter evaluation of
the upper and lower bounds when using a larger standard
deviation σ. However, when σ is large, obtaining meaning-
ful CBIR ranking results is difficult because the estimated
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smoothed distances ŝdc (q) or ŝdq (c) become indistinguish-
able for ∀c ∈ C. This is because the distribution difference
between the training images of f and the input images with
Gaussian noises becomes larger. To mitigate the distribution
shift, we can utilize Gaussian data augmentation [23], [27],
which adds sampled Gaussian noise ξ ∼ N (0, σ2I) to the
training data of feature extractor f . In Section 6, we show
that training f with Gaussian data augmentation increases
the number of inputs verified by our probabilistic verification
algorithms.

6. Experiments

In this section, we evaluate our proposed deterministic and
probabilistic certified defenses in terms of CBIR accuracy
on clean images and robustness against QA and CA. The
robustness is evaluated by empirical robustness, which is
the CBIR accuracy on the generated AXs, and certified ro-
bustness, which represents how often given inputs achieve
(l∞, α, ϵ )-robustness and (l2, α, ϵ )-robustness by our pro-
posed deterministic and probabilistic verification algorithms,
respectively.

6.1 Experiments for deterministic certified defenses

6.1.1 Datasets.

We use the following three image datasets, MNIST [28],
Fashion-MNIST (FMNIST) [29], CIFAR10 (CIFAR) [30],
for evaluating our deterministic certified defense.

• MNIST is a gray-scale image dataset with 60, 000 train-
ing images and 10, 000 test images. The size of each
image is 28 × 28 pixels. There are 10 classes.

• Fashion-MNIST is a gray-scale image dataset with
60, 000 training images and 10, 000 test images. The
size of each image is 28 × 28. There are 10 classes.

• CIFAR is an RGB dataset with 50, 000 training samples
and 10, 000 test samples. The size of each image is
32 × 32 pixels. There are 10 classes.

We train feature extractors f on each training set and eval-
uate f using each test set. Let Q = {(qi, yqi )}

|Q |
i=1 and

C = {(ci, yci ) ∈ X } |C |
i=1 be the annotated set of query and

candidate images, respectively. We randomly select Q and
C without duplication from the test set. We set |Q | = 1000
and |C | = 1000 for MNIST, FMNIST, and CIFAR. Pixel
values of images in all datasets are in [0, 1].

6.1.2 Evaluation Measures.

Performance of CBIR. To evaluate the performance of
CBIR, we use Recall@K, which is one of the evaluation
measures for CBIR [39], [40]. Recall@K evaluates whether
how often any of the top K candidates is similar to the query
image. For evaluation purpose, images belonging to the
same class are regarded as similar images. Then, Recall@K
is defined as follos:

1
|Q |

∑
(qi, yqi )∈Q


1 if ∃(c, yc) ∈ C s.t.

Rank(qi, c,C) ≤ K ∧ yc = yqi
0 otherwise.

(37)

Empirical Robustness. To evaluate the empirical ro-
bustness against QA and CA, we extend recall@K and define
empirical robust Recall@K (ER-Recall@K) against QA and
CA. ER-Recall@K against QA represents how often any of
the top K candidates is similar to the query image under QA:

1
|Q |

∑
(qi, yqi )∈Q


1 if ∃(c, yc) ∈ C s.t.

Rank(qi + δi, c,C) ≤ K ∧ yc = yqi
0 otherwise

(38)

where δ1, ..., δ |Q | are adversarial perturbations generated
with Eq.(2). We randomly select a single target candidate
image Ct = {(ct, yct )} ⊂ C such that yct , yqi for each
(qi, yqi ) ∈ Q. We minimize Eq.(2) by using PGD [12] with
the step size of ϵ

10 and the number of updates of 100, where
ϵ ∈ {0.1, 0.2} for MNIST and FMNIST and ϵ ∈ { 2

255,
3

255 }
for CIFAR10, respectively.

ER-Recall@K against CA represents how often any of
the top K candidates is similar image to the query image
under CA:

1
|Q |

∑
(qi, yqi )∈Q


1 if ∃(c, yc) ∈ C̃ s.t.

Rank(qi, c, C̃) ≤ K ∧ yc = yqi
0 otherwise,

(39)

where C̃ = C\Cs∪C̃s and Cs ⊂ C is a set of source candidate
images, and C̃s = {(ci + δi, yci ) |(ci, yci ) ∈ Cs } |Cs |

i=1 is the
set of images obtained by adding adversarial perturbation
δ1, ..., δ |Cs | to each image in Cs with Eq.(4). We randomly
select 100 source candidate images Cs = {(ci, yci )}100

i=1 such
that yci , yqi for each (qi, yqi ) ∈ Q. We minimize Eq.(4)
using PGD with the same step and perturbation size as the
QA.

Certified Robustness. To evaluate the certified robust-
ness, we define an extension of recall@K, certified robust
Recall@K (CR-Recall@K). Given a set of query images,
this measure evaluates how often (i) the retrieved candidate
image by the query image has certified robustness against
QA or CA, and (ii) are similar to the query image:

1
|Q |

∑
(q, yq )∈Q


1 if ∃(c, yc) ∈ C s.t. yc = yq ∧

Rank(qi, c,C) ≤ K ∧ Verα,ϵ (q, c,C)
0 otherwise,

(40)

where Verα,ϵ (q, c,C) is deterministic verification algorithms
defined by Eq. (19). We use α = K −Rank(q, c,C) for each
c ∈ C. Then, Verα,ϵ (q, c,C) verifies whether c still satisfies
Rank(qi, c,C) ≤ K under QA and CA.
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Table 1 Comparison of Recall@K for deterministic certifed defense. Each value is rounded off to
two decimal places.

MNIST FMNIST CIFAR10
K 1 10 40 1 10 40 1 10 40

Triplet 0.99 1.00 1.00 0.89 0.98 0.99 0.58 0.93 0.99
ACT 0.99 1.00 1.00 0.83 0.97 0.99 0.63 0.93 0.99
C-IBP 0.97 0.99 1.00 0.75 0.96 0.99 0.39 0.87 0.98
TBT 0.94 0.98 0.99 0.62 0.93 0.98 0.18 0.81 0.97
TBT+FCTB 0.93 0.98 0.99 0.64 0.94 0.98 0.19 0.82 0.97

Table 2 Comparison of empirical robust (ER) Recall@K and certified robust (CR) Recall@K for
deterministic certified defense. QA and CA represent query and candidate attack, respectively. Each
value is rounded off to two decimal places.

ER-Recall@K (QA) CR-Recall@K (QA) ER-Recall@K (CA) CR-Recall@K (CA)
K 1 10 40 1 10 40 1 10 40 1 10 40

MNIST

Triplet 0.00 0.12 0.27 0.00 0.00 0.00 0.25 0.60 0.81 0.00 0.00 0.00
ACT 0.99 1.00 1.00 0.00 0.00 0.00 0.99 1.00 1.00 0.00 0.00 0.00

ϵ = 0.1 C-IBP 0.97 0.99 1.00 0.00 0.04 0.29 0.96 0.99 1.00 0.00 0.01 0.29
TBT 0.94 0.98 0.99 0.15 0.66 0.89 0.94 0.98 0.99 0.12 0.92 0.98

TBT+FCTB 0.93 0.98 0.99 0.16 0.66 0.89 0.93 0.98 0.99 0.12 0.92 0.98

Triplet 0.00 0.05 0.14 0.00 0.00 0.00 0.21 0.38 0.58 0.00 0.00 0.00
ACT 0.97 0.99 1.00 0.00 0.00 0.00 0.98 0.99 1.00 0.00 0.00 0.00

ϵ = 0.2 C-IBP 0.97 0.99 1.00 0.00 0.00 0.01 0.96 0.99 1.00 0.00 0.00 0.00
TBT 0.92 0.98 0.99 0.03 0.31 0.65 0.93 0.98 0.99 0.01 0.42 0.95

TBT+FCTB 0.92 0.97 0.99 0.03 0.30 0.64 0.92 0.98 0.99 0.02 0.48 0.96

FMNIST

Triplet 0.00 0.11 0.22 0.00 0.00 0.00 0.03 0.09 0.17 0.00 0.00 0.00
ACT 0.80 0.97 0.99 0.00 0.00 0.00 0.72 0.96 0.99 0.00 0.00 0.00

ϵ = 0.1 C-IBP 0.72 0.97 0.99 0.01 0.16 0.42 0.71 0.96 0.99 0.00 0.06 0.49
TBT 0.61 0.93 0.98 0.11 0.44 0.71 0.59 0.93 0.98 0.01 0.49 0.94

TBT+FCTB 0.63 0.93 0.99 0.11 0.47 0.70 0.61 0.93 0.98 0.02 0.47 0.94

Triplet 0.00 0.09 0.20 0.00 0.00 0.00 0.04 0.11 0.19 0.00 0.00 0.00
ACT 0.74 0.95 0.98 0.00 0.00 0.00 0.57 0.92 0.99 0.00 0.00 0.00

ϵ = 0.2 C-IBP 0.71 0.96 0.99 0.00 0.01 0.08 0.67 0.95 0.99 0.00 0.00 0.03
TBT 0.59 0.93 0.98 0.02 0.20 0.45 0.55 0.93 0.98 0.00 0.07 0.64

TBT+FCTB 0.60 0.93 0.99 0.02 0.22 0.44 0.55 0.93 0.98 0.00 0.09 0.62

CIFAR10

Triplet 0.19 0.70 0.89 0.00 0.00 0.00 0.00 0.09 0.58 0.00 0.00 0.00
ACT 0.47 0.88 0.97 0.00 0.00 0.00 0.22 0.72 0.96 0.00 0.00 0.00

ϵ = 2
255 C-IBP 0.40 0.87 0.98 0.00 0.04 0.23 0.35 0.84 0.98 0.00 0.02 0.21

TBT 0.20 0.79 0.97 0.02 0.18 0.48 0.15 0.78 0.96 0.00 0.19 0.58
TBT+FCTB 0.19 0.81 0.97 0.02 0.20 0.48 0.17 0.80 0.97 0.01 0.21 0.70

Triplet 0.07 0.56 0.80 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00
ACT 0.36 0.81 0.95 0.00 0.00 0.00 0.07 0.45 0.91 0.00 0.00 0.00

ϵ = 3
255 C-IBP 0.40 0.87 0.98 0.00 0.01 0.06 0.32 0.83 0.98 0.00 0.01 0.06

TBT 0.19 0.78 0.96 0.01 0.12 0.33 0.14 0.77 0.96 0.00 0.09 0.38
TBT+FCTB 0.20 0.82 0.97 0.01 0.12 0.36 0.15 0.78 0.97 0.00 0.11 0.48

6.1.3 Comparison Methods

We compare our proposed robustness training Eq. (20)
(TBT) and Eq. (21) (FCTB) with three existing methods:
(i) triplet Loss (Triplet) [36], (ii) anti-collapse triplet (ACT),
which is an adversarial training for CBIR to improve em-
pirical robustness [3], (iii) robust training for classification
using interval bound propagation (C-IBP) to improve certi-
fied robustness of classification task [21].

We use Triplet as a baseline which does not have any
mechanism for robustness. We compare TBT and FCTB
with ACT to show that adversarial training is not sufficient

to improve certified robustness of CBIR. We also compare
TBT and FCTB with C-IBP to show that robust training for
improving certified robustness for the classification task is
inadequate to improve certified robustness for CBIR. Detail
of each method are explained in Appendix B.

6.1.4 Implementations of Feature extractors

Architectures. In our experiments for probabilistic certi-
fied defense, we train the feature extractor f of embedding
dimensionality 128 in the following 6-layer CNN model
architecture as Conv(64, 3, 1, 1) → Conv(64, 3, 1, 1) →
Conv(128, 3, 2, 1) →Conv(128, 3, 1, 1)→Conv(128, 3, 1, 1)
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→ Linear(128) where Conv(c, k, s, p) denotes a convolu-
tional layer with a number of filters c of size k × k, stride
size is s, and padding size is p and Linear(d) denotes a linear
layer whose output dimension is d. Note that there is a ReLU
between each layer.

Hyperparameters. The total number of training
epochs of f is 100 for MNIST and FMNIST and 200 for
CIFAR10. We use the Adam optimizer [41] with a batch
size of 100 and an initial learning rate of 0.001. We decay
the learning rate by times 0.1 at 25 and 42 epochs for MNIST
and FMNIST and times 0.5 every 10 epochs between 130
and 200 epochs for CIFAR10. The margin of triplet loss
is set to m = 1.0. When training with TBT, to stabilize
training, we use the scheduling strategy for ϵ and κ proposed
in [21]. Specifically, ϵ is gradually increased from 0.0 to
ϵe, and the κ is gradually decreased from 1.0 to κe. We
use ϵe = 0.2 for MNIST and FMNIST, and ϵe = 2

255 for
CIFAR10, respectively. We use κe = 0.5 for all datasets.
Then, we linearly increase ϵ and decrease κ between 2K and
10K steps. When training with FCTB, we fine-tune the pre-
trained feature extractor with TBT. We set fixed ϵ to 0.2 for
MNIST and FMNIST and 2

255 for CIFAR10. We set fixed κ
to 0.2 for MNIST and 0.1 for FMNIST and CIFAR10. Other
hyperparameters are shown in Appendix B.1.

6.2 Results for deterministic certified defenses

Table 1 and Table 2 show the results for deterministic certi-
fied defense proposed in Section 4. We can see that our pro-
posed robust training TBT has less Recall@K than Triplet,
ACT, and C-IBP from Table 1. This is presumably due to the
fact that the diversity of feature representation is reduced by
making the upper and lower bound evaluated tighter. How-
ever, the gap in Recall@K between TBT and the existing
methods becomes smaller as K increases. Thus, that is not a
practical problem in situations where K is large.

We can also confirm both ER-Recall@K and CR-
Recall@K of Triplet are significantly lower than the other
methods from Table 2. C-IBP and ACT achieve higher ER-
Recall@K than Triplet, while their CR-Recall@K is zero or
nearly zero, even with larger K . This implies that C-IBP and
ACT cannot help to provide certified robustness of CBIR.
This is because ACT is training to improve empirical robust-
ness, which is no enough to improve certified robustness.
We also conjecture that C-IBP is not sufficient to tighten Eq.
(17) and Eq. (18) since it aims at tightening the upper and
lower bounds of logits. In contrast, TBT achieves signif-
icantly higher CR-recall@K, particularly when K is large.
This is because TBT can tighten Eq. (17) and Eq. (18)
successfully.

We can also confirm that fine-tuning pre-trained feature
extractor with TBT to candidate images (FCTB) improve
CR-Recall@K while maintaining Recall@K from Table 1
and Table 2. This implies that FCTB can further reduce the
gap between Definition 3 and the corresponding sufficient
condition.

Limitations of deterministic certified defense. A

drawback of our deterministic verification algorithms are
that it does not scale to high-resolution images, which require
advanced architecture. We train feature extractor with TBT
using CUB and VGG architecture [42]. As a result, its train-
ing collapses, which means that the trained feature extractor
returns the same value for all test inputs. This is because IBP
provides very loose bounds for advanced deep architectures,
resulting in extremely large regularization terms in Eq.(20).

6.3 Experiments for probabilistic certified defenses

6.3.1 Experimental settings

Datasets. We use the following three image datasets, CUB-
200-2011 (CUB) [31], CARS196 (CAR) [43], and Stanford
Online Products (SOP) [44], for evaluating our probabilistic
certified defense.

• CUB is an RGB dataset with 11, 788 images labeled
with one of 200 classes. We split this dataset into
training and test images for the first and last 100 classes.

• CAR is an RGB dataset with 16, 185 images labeled
with one of 196 classes. We split this dataset into
training and test images for the first and last 98 classes.

• SOP is an RGB dataset with 11, 318 classes 59, 551
training images and 11, 316 classes 60, 501 test images.

We crop and resize the images in these datasets to 224×224,
which is a higher resolution than MNIST, FMNIST, and
CIFAR10. We train feature extractors f on each training set
and evaluate f using each test set. Let Q = {(qi, yqi )}

|Q |
i=1

and C = {(ci, yci ) ∈ X } |C |
i=1 be the annotated set of query and

candidate images, respectively. We randomly select Q and C
without duplication from the test set. We set |Q | = 100 and
|C | = 1000 for CUB, CAR, and SOP. Pixel values of images
in all datasets are in [0, 1].

6.3.2 Evaluation Measures.

Performance of CBIR. To evaluate the performance of
CBIR, we use the lower bound of Recall@K Eq. (37). Since
the exact Rank(q, c,C) is not computationally tractable when
using Gaussian smoothed distance Eq. (23), we cannot also
evaluate exact Recall@K. Thus, we evaluate the lower bound
of Recall@K by estimating the upper bound of Rank(q, c,C)
by Theorem 6 or Theorem 7:

1
|Q |

∑
(qi, yqi )∈Q


1 if ∃(c, yc) ∈ C s.t.

Rank(q, c,C) ≤ K ∧ yc = yqi
0 otherwise,

(41)

where Rank(q, c,C) is the upper bound of Rank(q, c,C) eval-
uated by Eq.(30) or Eq.(32).

Certified Robustness. To evaluate the certified robust-
ness, we use the lower bound of CR-Recall@K Eq. (40).
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Table 3 Comparison of the lower bounds of Recall@K and certified robust (CR) Recall@K for
probabilistic certified defense. All results use N = 100000 and β = 0.01. Note that the results for
σ = 0.0 are a baseline that represents Recall@K when using general Euclidean distance for calculating
ranking results. QA and CA represent query and candidate attack, respectively.

Recall@K (QA) CR-Recall@K (QA) Recall@K (CA) CR-Recall@K (CA)
K 1 50 300 1 50 300 1 50 300 1 50 300

CUB

Triplet (Baseline) σ = 0.0 0.45 0.96 1.00 - - - 0.45 0.96 1.00 - - -

ϵ = 0.01 Triplet σ = 1.0 0.00 0.09 0.52 0.00 0.05 0.27 0.00 0.00 0.00 0.00 0.00 0.00
GA-Triplet σ = 1.0 0.03 0.42 0.85 0.02 0.25 0.65 0.00 0.42 0.80 0.00 0.28 0.60

ϵ = 0.05 Triplet σ = 1.0 0.00 0.09 0.52 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00
GA-Triplet σ = 1.0 0.03 0.42 0.85 0.01 0.14 0.42 0.00 0.42 0.80 0.00 0.16 0.39

CAR

Triplet (Baseline) σ = 0.0 0.56 0.96 0.98 - - - 0.56 0.96 0.98 - - -

ϵ = 0.01 Triplet σ = 1.0 0.00 0.07 0.52 0.00 0.00 0.23 0.00 0.00 0.04 0.00 0.00 0.00
GA-Triplet σ = 1.0 0.01 0.30 0.74 0.00 0.20 0.44 0.00 0.22 0.64 0.00 0.04 0.45

ϵ = 0.05 Triplet σ = 1.0 0.00 0.07 0.52 0.00 0.00 0.02 0.00 0.00 0.04 0.00 0.00 0.00
GA-Triplet σ = 1.0 0.01 0.30 0.74 0.00 0.13 0.32 0.00 0.22 0.64 0.00 0.01 0.30

SOP

Triplet (Baseline) σ = 0.0 0.75 1.00 1.00 - - - 0.75 1.00 1.00 - - -

ϵ = 0.01 Triplet σ = 1.0 0.00 0.06 0.21 0.00 0.02 0.10 0.00 0.00 0.02 0.00 0.00 0.00
GA-Triplet σ = 1.0 0.06 0.33 0.62 0.03 0.24 0.42 0.01 0.26 0.61 0.00 0.19 0.39

ϵ = 0.05 Triplet σ = 1.0 0.00 0.06 0.21 0.00 0.00 0.05 0.00 0.00 0.02 0.00 0.00 0.00
GA-Triplet σ = 1.0 0.06 0.33 0.62 0.00 0.06 0.21 0.01 0.26 0.61 0.00 0.06 0.23

As well as the evaluation of the lower bound of Recall@K
Eq.(41), we use the upper bound of Rank(q, c,C) to calculate
the lower bound of CR-Recall@K as follows:

1
|Q |

∑
(q, yq )∈Q


1 if ∃(c, yc) ∈ C s.t. yc = yq ∧

Rank(q, c,C) ≤ K ∧ Verα,ϵ,β (q, c,C)
0 otherwise,

(42)

where Verα,ϵ,β (q, c,C) is probabilistic verification algo-
rithms defined by Eq. (36). We use α = K − Rank(q, c,C)
for each c ∈ C. Then, Verα,ϵ,β (q, c,C) verifies whether c
still satisfies Rank f (qi, c,C) ≤ K under QA and CA. We
set the false positive rate β to 0.01 for all experiments of
probabilistic certified defenses.

6.4 Implementations of Feature extractors

Architectures. We use ResNet50 [45] as model architecture
of f . We use the parameters pre-trained on ImageNet [34]
obtained from torchvision library in PyTorch [46] as initial
parameters. We set the feature dimension is d = 128. We
use the codes† provided by [47] for training f .

Hyperparameters. We use Triplet loss with margin
m = 0.2 as the loss function. The total number of training
epochs is 150. We use the Adam optimizer [41] with a batch
size of 112, an initial learning rate of 0.00001, and a weight
decay of 0.0004. We decay the learning rate by times 0.3 at
1000 iterations. When using Gaussian data augmentation,
we sample noise from N (0, σ2I) where σ ∈ {0.1, 1.0} at
each parameter update and added to the training data. Then,
†https://github.com/Confusezius/Revisiting_Deep_

Metric_Learning_PyTorch

We use the same σ during training and testing.

6.5 Results for probabilistic certified defenses

Table 3 shows the results of the lower bounds of Recall@K
and CR-Recall@K for probabilistic certified defense pro-
posed in Section 5. All results in Table 3 use N = 100000.
Triplet and GA-Triplet represent the results of models trained
with Triplet Loss and Triplet Loss with Gaussian data aug-
mentation, respectively. Note that the results for σ = 0.0
are a baseline that represents Recall@K when using general
Euclidean distance for calculating ranking results. From Ta-
ble 3, we can see that GA-Triplet has higher lower bounds of
Recall@K and CR-Recall@K than Triplet. These are due to
the fact that Gaussian data augmentation successfully miti-
gates the distribution shift between the training and test data
of feature extractor f , allowing f to compute a meaning-
fully distinguishable estimated smoothed distance ŝdc (q) or
ŝdq (c) for ∀c ∈ C. GA-Triplet has less Recall@K than the
baseline, but the gap gets smaller as K increases. Thus, that
is not a practical problem when K is large.

The effect of standard deviation σ. Table 4 shows the
results of the lower bounds of Recall@K and CR-Recall@K
for GA-Triplet with different standard deviation σ. All re-
sults in Table 3 use N = 100000. We can see that σ controls
the trade-off between Recall@K and CR-Recall@K. This is
because as σ increases, the upper and lower bounds of the
smooth distance in Eq. (28) and Eq. (29) become smaller,
but it becomes more difficult to compute a meaningfully dis-
tinguishable estimated smoothed distance ŝdc (q) or ŝdq (c)
for ∀c ∈ C.

The effect of sample sizes of Gaussian noises N . Table
5 shows the results of the lower bounds of Recall@K and
CR-Recall@K for GA-Triplet with different sample sizes of
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Table 4 Comparison of the lower bounds of Recall@K and certified robust (CR) Recall@K for
probabilistic certified defense with different standard deviation σ. All results use N = 100000 and
β = 0.01. QA and CA represent query and candidate attack, respectively.

Recall@K (QA) CR-Recall@K (QA) Recall@K (CA) CR-Recall@K (CA)
K 1 50 300 1 50 300 1 50 300 1 50 300

CUB

ϵ = 0.01 GA-Triplet σ = 0.1 0.14 0.88 1.00 0.00 0.19 0.60 0.13 0.84 0.99 0.00 0.27 0.66
GA-Triplet σ = 1.0 0.03 0.42 0.85 0.02 0.25 0.65 0.00 0.42 0.80 0.00 0.28 0.60

ϵ = 0.05 GA-Triplet σ = 0.1 0.14 0.88 1.00 0.00 0.00 0.00 0.13 0.84 0.99 0.00 0.00 0.00
GA-Triplet σ = 1.0 0.03 0.42 0.85 0.01 0.14 0.42 0.00 0.42 0.80 0.00 0.16 0.39

CAR

ϵ = 0.01 GA-Triplet σ = 0.1 0.27 0.91 0.99 0.01 0.41 0.76 0.17 0.84 0.98 0.01 0.37 0.72
GA-Triplet σ = 1.0 0.01 0.30 0.74 0.00 0.20 0.44 0.00 0.22 0.64 0.00 0.04 0.45

ϵ = 0.05 GA-Triplet σ = 0.1 0.00 0.07 0.52 0.00 0.00 0.00 0.17 0.84 0.98 0.00 0.00 0.00
GA-Triplet σ = 1.0 0.01 0.30 0.74 0.00 0.13 0.32 0.00 0.22 0.64 0.00 0.01 0.30

SOP

ϵ = 0.01 GA-Triplet σ = 0.1 0.19 0.58 0.86 0.03 0.16 0.39 0.10 0.54 0.78 0.01 0.19 0.47
GA-Triplet σ = 1.0 0.06 0.33 0.62 0.03 0.24 0.42 0.01 0.26 0.61 0.00 0.19 0.39

ϵ = 0.05 GA-Triplet σ = 0.1 0.19 0.58 0.86 0.00 0.00 0.00 0.10 0.54 0.78 0.00 0.00 0.00
GA-Triplet σ = 1.0 0.06 0.33 0.62 0.00 0.06 0.21 0.01 0.26 0.61 0.00 0.06 0.23

Table 5 Comparison of the lower bounds of Recall@K and certified robust (CR) Recall@K for
probabilistic certified defense with different sample sizes of Gaussian noises N . All results use σ = 1.0
and β = 0.01. QA and CA represent query and candidate attack, respectively.

Recall@K (QA) CR-Recall@K (QA) Recall@K (CA) CR-Recall@K (CA)
K 1 50 300 1 50 300 1 50 300 1 50 300

CUB

ϵ = 0.01 GA-Triplet N = 100000 0.03 0.42 0.85 0.02 0.25 0.65 0.00 0.42 0.80 0.00 0.28 0.60
GA-Triplet N = 1000000 0.04 0.61 0.92 0.03 0.40 0.82 0.08 0.58 0.94 0.01 0.41 0.80

ϵ = 0.05 GA-Triplet N = 100000 0.03 0.42 0.85 0.01 0.14 0.42 0.00 0.42 0.80 0.00 0.16 0.39
GA-Triplet N = 1000000 0.04 0.61 0.92 0.01 0.19 0.54 0.08 0.58 0.94 0.00 0.21 0.47

CAR

ϵ = 0.01 GA-Triplet N = 100000 0.01 0.30 0.74 0.00 0.20 0.44 0.00 0.22 0.64 0.00 0.04 0.45
GA-Triplet N = 1000000 0.06 0.43 0.88 0.03 0.30 0.72 0.00 0.33 0.82 0.00 0.20 0.62

ϵ = 0.05 GA-Triplet N = 100000 0.01 0.30 0.74 0.00 0.13 0.32 0.00 0.22 0.64 0.00 0.01 0.30
GA-Triplet N = 1000000 0.06 0.43 0.88 0.00 0.15 0.40 0.00 0.33 0.82 0.00 0.03 0.34

SOP

ϵ = 0.01 GA-Triplet N = 100000 0.06 0.33 0.62 0.03 0.24 0.42 0.01 0.26 0.61 0.00 0.19 0.39
GA-Triplet N = 1000000 0.11 0.47 0.76 0.07 0.33 0.61 0.01 0.33 0.71 0.01 0.25 0.56

ϵ = 0.05 GA-Triplet N = 100000 0.06 0.33 0.62 0.00 0.06 0.21 0.01 0.26 0.61 0.00 0.06 0.23
GA-Triplet N = 1000000 0.11 0.47 0.76 0.01 0.09 0.27 0.01 0.33 0.71 0.0 0.10 0.29

Gaussian noises N . All results in Table 5 use σ = 1.0.
We can see that Recall@K and CR-Recall@K improve as
N increases. This is because the upper and lower bounds
of Gaussian smoothed distances and ranking results can be
tight as the sample size of Gaussian noises N , as explained in
Section 5. However, the computational complexity increases
as N increases.

Limitations of probabilistic certified defense. A
drawback of our probabilistic verification algorithm is its
high computational cost. As denoted in Section 5, in the
probabilistic verification algorithms, the total number of for-
ward propagation of DNN in evaluating Eq.(34) and Eq.(35)
is equivalent to N + |C | and 1 + N |C |, respectively. For
example, we require a total of 101000 and 100000001 for-
wards to evaluate Eq.(34) and Eq.(35) when N = 100000
and |C | = 1000.

7. Future Directions

In this section, we present potential directions for future re-
search focusing on enhancing the certified defense for CBIR.
Specifically, we delve into possibilities for improving robust
training, reducing the computational complexity of the veri-
fication algorithms, and implementing our certified defenses
in real-world CBIR systems.

The primary direction is further investigation into more
effective robust training of feature extractors, with the aim
of enhancing the certified robustness of CBIR. One poten-
tial method that could be considered is utilizing adversarial
training, which trains DNNs using AXs as training data.
[25] has demonstrated that adversarial training can enhance
not only empirical robustness but also certified robustness
in the classification setting. It is reasonable to explore the
application of adversarial training to the training of feature
extractors for CBIR, with the expectation of boosting its
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certified robustness.
Another important direction is to reduce the compu-

tational complexity of the verification algorithms used to
evaluate the certified robustness of CBIR. As described in
Section 5, our probabilistic verification algorithms scale to
high-resolution images but bear a high computational cost,
especially when the number of candidate images |C| is large.
This may limit the practical application of our method in real-
world scenarios. One potential solution to mitigate this lim-
itation is to utilize an additional distribution in randomized
smoothing. [48] has shown that using an additional distri-
bution can yield higher certified robustness of classification,
even with a smaller sampling size (i.e., fewer classification
model forwards). Applying this theory and computational
methodology to the verification algorithms for CBIR may not
be straightforward, but it certainly holds promising potential.

A third vital direction is to assess the effectiveness of
our proposed certified defenses in real-world CBIR systems,
such as person re-identification, medical image retrieval, and
image-based product search. The application of our pro-
posed method to these systems could provide the theoret-
ically guaranteed verification results on ranking invariance
against AXs associated with retrieved images, thereby poten-
tially improving the security of these systems. Nonetheless,
it ’s important to note that in real-world CBIR systems, a
domain gap between the training and evaluation data often
becomes larger due to the frequent addition of new images
to the candidate images (e.g., the addition of new products
in image-based product search). The impact of such domain
gap on the performance of our proposed certified defenses
remains largely unexplored and thus is need for further as-
sessment. A detailed investigation into this matter may re-
veal unique challenges and solutions for deploying certified
defenses in real-world CBIR systems.

8. Conclusion

In this study, we proposed deterministic and probabilistic
certified defenses for CBIR. Our certified defenses provide
certified robustness, which deterministically and probabilis-
tically guarantees that no AX that largely changes the ranking
of CBIR exists around the query or candidate images. We
theoretically and experimentally confirmed that our deter-
ministic certified defenses are lightweight but do not scale
to high-resolution images; on the other hand, the proba-
bilistic one is computationally expensive but scales to high-
resolution images. Developing a certified defense that is
lightweight and scales to high-resolution images is a future
work.
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Appendix A: Proofs of Theorems

A.1 Proof of Lemma 1

Proof. From definitions of Eq. (7) and Eq. (8), for ∀δ ∈
{δ | δ ∈ X, ∥δ∥p ≤ ϵ }, the following holds:∑

c∈C
1
[
d( f (q + δ), f (ci)) < d( f (q + δ), f (c))

]
≥
∑
c∈C

1
[
dci (q) < dc (q)

]
, (A· 1)∑

c∈C
1
[
d( f (q + δ), f (c)) < d( f (q + δ), f (ci))

]
≥
∑
c∈C

1
[
dc (q) < dci

(q)
]
. (A· 2)

Eq. (A· 1) and Eq. (A· 2) represent the lower bounds of
the number of candidate images that are more dissimilar
and similar to q + δ than ci , respectively. Thus, we get the
claim. □

A.2 Proof of Lemma 2

Proof. From Eq. (7) and Eq. (8), for C̃ = {ci + δi }Ni=1 where
∀δ1, ..., δN ∈ {δ | δ ∈ X, ∥δ∥p ≤ ϵ }, the following holds:∑

c+δ∈C̃
1
[
d( f (q), f (ci + δi)) < d( f (q), f (c + δ))

]
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≥
∑
c∈C

1
[
dq (ci) < dq (c)

]
,

(A· 3)∑
c+δ∈Ĉ

1
[
d( f (q), f (c + δ)) < d( f (q), f (ci + δi))

]
≥
∑
c∈C

1
[
dq (c) < dq (ci)

]
.

(A· 4)

Eq. (A· 3) and Eq. (A· 4) represent the lower bounds of the
number of perturbed candidate images in C̃ that are more
dissimilar and similar to q than ci + δi , respectively. Thus,
we get the claim. □

A.3 Proof of Theorem 1

Proof. When Eq. (13) is satisfied, from Theorem 1,

−α ≤ Rank(q + δ, ci,C) − Rank(q, ci,C) ≤ α

holds for ∀δ ∈ {δ | δ ∈ X, ∥δ∥p ≤ ϵ }, which is equivalent to
Eq. (5). □

A.4 Proof of Theorem 2

Proof. When Eq. (14) is satisfied, from Theorem 2,

−α ≤ Rank(q, ci + δi, C̃) − Rank(q, ci,C) ≤ α

holds for C̃ = {IR f (q,C)i+δi }Ni=1 where∀δ1, ..., δN∈ {δ | δ ∈
X, ∥δ∥p ≤ ϵ }, which is equivalent to Eq. (6). □

A.5 Proof of Theorem 3

Proof. Since f (x1)i ≤ f (x1 + δ)i ≤ f (x1)i holds for
∀δ ∈ {δ | δ ∈ X, ∥δ∥∞ ≤ ϵ } from the definitions of
f (x)i and f (x)i , maxδ∈X, ∥δ ∥∞≤ϵ ( f (x1 + δ)i − f (x2)i)2 ≤
max
{| f (x1)i − f (x2)i |, | f (x2)i − f (x1)i |

}2 holds. Then, we
obtain

max
δ∈X, ∥δ ∥∞≤ϵ

( ∑
i∈{1,..,d }

(
f (x1 + δ)i − f (x2)i

)2) 1
2
≤

( ∑
i∈{1,..,d }

max{| f (x1)i − f (x2)i |, | f (x2)i − f (x1)i |}2
) 1

2
.

(A· 5)

□

A.6 Proof of Theorem 4

Proof. Since f (x1)i ≤ f (x1 + δ)i ≤ f (x1)i holds for
∀δ ∈ {δ | δ ∈ X, ∥δ∥∞ ≤ ϵ } from the definitions of
f (x)i and f (x)i , minδ∈X, ∥δ ∥∞≤ϵ ( f (x1 + δ)i − f (x2)i)2 ≥

min
{
0, f (x1)i − f (x2)i, f (x2)i − f (x1)i

}2 holds. Then, we
obtain

min
δ∈X, ∥δ ∥∞≤ϵ

( ∑
i∈{1,..,d }

(
f (x1 + δ)i − f (x2)i

)2) 1
2
≥

( ∑
i∈{1,..,d }

min
{
0, f (x1)i − f (x2)i, f (x2)i − f (x1)i

}2) 1
2
.

(A· 6)

□

A.7 Proof of Lemma 3

Proof. Since 0 ≤ sdx2 (x1) ≤ 1 for ∀x1, x2 ∈ X from defini-
tion of smoothed distance Eq. (23), the following holds for
any t > 0 by Hoeffding’s Inequality:

P[|sdx2 (x1) − ŝdx2 (x1) | ≥ t] ≤ 2 exp(−2Nt2). (A· 7)

Then, for q ∈ X and C = {ci |ci ∈ X }M
i=1, we have:

P
[∪c∈C ( |sdc (q) − ŝdc (q) | ≥ t)

] ≤ 2|C | exp(−2Nt2).
(A· 8)

Since P
[∪c∈C ( |sdc (q)− ŝdc (q) | ≥ t)

]
+P
[∩c∈C ( |sdc (q)−

ŝdc (q) | < t)
]
= 1, we have

P
[∩c∈C |sdc (q) − ŝdc (q) | < t

] ≥ 1 − 2|C | exp(−2Nt2).
(A· 9)

Eq. (A· 9) represents that ŝdc (q) − t ≤ sdc (q) ≤ ŝdc (q) + t
holds simultaneously for ∀c ∈ C with probability at least 1−
2|C | exp(−2Nt2). Note that Eq.(A· 9) satisfies if we replace
sdc (q) and ŝdc (q) with sdq (c) and ŝdq (c), respectively. If

we set 2|C | exp(−2Nt2) = β, we obtain t =
√

1
2N log( 2 |C |

β ).
Thus, we get the claim. □

A.8 Proof of Corollary 1

Proof. Since bothΦ andΦ−1 are monotonic increasing func-
tions, the followings with probability at least 1 − β hold by
combining Lemma 3, Eq.(24), and Eq.(25):

Φ(Φ−1(sdx2 (x1)) +
ϵ

σ
) ≤

Φ(Φ−1(ŝdx2 (x1) +

√
1

2N
log(

2|C |
β

)) +
ϵ

σ
) (A· 10)

Φ(Φ−1(sdx2 (x1)) − ϵ
σ

) ≥

Φ(Φ−1(ŝdx2 (x1) −
√

1
2N

log(
2|C |
β

)) − ϵ
σ

). (A· 11)

Thus, we get the claim. □
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A.9 Proof of Theorem 6 and Theorem 7

Proof. Using Lemma 3, the following holds with probability
at least 1 − β:∑

c∈C
1
[
sdci (q) < sdc (q)

] ≥∑
c∈C

1
[
ŝdci (q) + t < ŝdc (q) − t

]
, (A· 12)∑

c∈C
1
[
sdc (q) < sdci (q)

] ≥∑
c∈C

1
[
ŝdc (q) + t < ŝdci (q) − t

]
. (A· 13)

wherer t =
√

1
2N log 2 |C |

β . Note that both Eq. (A· 12) and Eq.
(A· 13) satisfy if we replace sdc (q) and ŝdc (q) by sdq (c) and
ŝdq (c), respectively. Eq. (A· 12) and Eq. (A· 13) represent
the lower bounds of the number of candidate images that are
more dissimilar and similar to q than ci , respectively. Thus,
we get the claim. □

A.10 Proof of Theorem 8

Proof. From Theorem 6, the following holds with probabil-
ity at least 1 − β:

Rank(q, ci,C) ≤ Rank(q, ci,C) ≤ Rank(q, ci,C),
(A· 14)

where Rank(q, c,C) = |C | −∑c∈C 1(ŝdci (q)+ t < ŝdc (q)−
t) and Rank(q, c,C) =

∑
c∈C 1(ŝdc (q) + t < ŝdci (q) − t) +

1. Moreover, combining Theorem 1 and Corollary 1, the
followings also hold with probability at least 1 − β:

Rank(q + δ, ci,C) ≤ |C | −
∑
c∈C

1

[
sdci (q) < sdc (q)

]
(A· 15)

Rank(q + δ, ci,C) ≥
∑
c∈C

1

[
sdc (q) < sdci

(q)
]
+ 1,

where sdx2 (x1) = Φ(Φ−1(ŝdx2 (x1)+
√

(1/2N ) log(2|C |/β))+
ϵ
σ ) and sdx2

(x1) = Φ(Φ−1(ŝdx2 (x1)−
√

(1/2N ) log(2|C |/β))−
ϵ
σ ). Thus, when Eq. (34) holds, the followings hold with
probability at least 1 − β by combining Eq. (A· 16) and
Eq.(A· 15):

α ≥
(
N −
∑
c∈C

1

[
sdci (q) < sdc (q)

])
− Rank(q, ci,C)

∧ α ≥ Rank(q, ci,C) −
(∑
c∈C

1

[
sdc (q) < sdci

(q)
]
+ 1
)

⇔ α ≥
(
N −
∑
c∈C

1

[
sdci (q) < sdc (q)

])
− Rank(q, ci,C)

∧ α ≥ Rank(q, ci,C) −
(∑
c∈C

1

[
sdc (q) < sdci

(q)
]
+ 1
)

⇔ α ≥ Rank(q + δ, ci,C) − Rank(q, ci,C)
∧ α ≥ Rank(q, ci,C) − Rank(q + δ, ci,C)
⇔ |Rank(q + δ, ci,C) − Rank(q, ci,C) | ≤ α

Thus, we get the claim. □

A.11 Proof of Theorem 9

Proof. From Theorem 7, the following holds probability at
least 1 − β:

Rank(q, ci,C) ≤ Rank(q, ci,C) ≤ Rank(q, ci,C),
(A· 16)

where Rank(q, ci,C) = |C |−∑c∈C 1(ŝdq (ci)+t < ŝdq (c)−
t), and Rank(q, ci,C) =

∑
c∈C 1(ŝdq (c)+t < ŝdq (ci)−t)+1.

Combining Theorem 2 and Corollary 1, the followings holds
with probability at least 1 − β:

Rank(q, ci + δ j, C̃) ≤ |C | −
∑
c∈C

1

[
sdq (ci) < sdq (c)

]
(A· 17)

Rank(q, ci + δi, C̃) ≥
∑
c∈C

1

[
sdq (c) < sdq (c)

]
+ 1,

where sdx2 (x1) = Φ(Φ−1(ŝdx2 (x1)+
√

(1/2N ) log(2|C |/β))+
ϵ
σ ), sdx2

(x1) = Φ(Φ−1(ŝdx2 (x1)−
√

(1/2N ) log(2|C |/β))−
ϵ
σ ). Thus, when Eq. (34) holds, the followings hold with
probability at least 1 − β by combining Eq. (A· 16) and
Eq.(A· 15):

α ≥
(
N −
∑
c∈C

1

[
sdq (ci) < sdq (c)

])
− Rank(q, ci,C)

∧ α ≥ Rank(q, ci,C) −
(∑
c∈C

1

[
sdq (c) < sdq (ci)

]
+ 1
)

⇔ α ≥
(
N −
∑
c∈C

1

[
sdq (ci) < sdq (c)

])
− Rank(q, ci,C)

∧ α ≥ Rank(q, ci,C) −
(∑
c∈C

1

[
sdq (c) < sdq (ci)

]
+ 1
)

⇔ α ≥ Rank(q + δ, ci,C) − Rank(q, ci,C)
∧ α ≥ Rank(q, ci,C) − Rank(q + δ, ci,C)
⇔ |Rank(q + δ, ci,C) − Rank(q, ci,C) | ≤ α

Thus, we get the claim. □

Appendix B: Comparison Methods

We compare our proposed robustness training Eq. (20)
(TBT) and Eq. (21) (FCTB) with three existing methods:
(i) triplet Loss (Triplet) [36], (ii) anti-collapse triplet (ACT),
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which is an adversarial training for CBIR to improve em-
pirical robustness [3], (iii) training for classification using
interval bound propagation (C-IBP) to improve certified ro-
bustness for the classification task [21].

Triplet is one of the loss functions commonly used in
metric learning. Let Dt = {(a, p, n)i }Mi=1 be a training data
set where p belongs to the same class as a, and n belongs
to a different class than a. Then, Triplet trains the feature
extraction DNN f by minimizing the following loss function:∑

(a,p,n)∈Dt

max{∥ f (a)− f (p)∥2−∥ f (a)− f (n)∥2+m, 0},

(A· 18)

where m is a margin parameter.
ACT trains feature extraction DNN f on generated ad-

versarial examples. Let Dt = {(a, p, n)i }Mi=1 be a training
data set. For each triplet (a, p, n) ∈ Dt , ACT generate p+ δp
and n + δn so that the distance ∥ f (p + δp) − f (n + δn)∥2
is small. Specifically, ACT minimize triplet loss with the
triplet (a, p + δp, n + δn) as follows:∑

(a,p,n)∈Dt

max{∥ f (a) − f (p + δp)∥2

− ∥ f (a) − f (n + δn)∥2 + m, 0}, (A· 19)

where

δp, δn = arg min
δp,δn ∈X,

∥δp ∥∞≤ϵ, ∥δn ∥∞≤ϵ

∥ f (p + δp) − f (n + δn)∥2.

(A· 20)

In our experiments, we minimize Eq. (A· 20) by using PGD
[12] with the step size of ϵ

10 and the number of updates of
20.

C-IBP trains the classifier fc by simultaneously mini-
mizing the original cross-entropy loss and cross-entropy loss
due to the upper and lower bounds of the logits calculated by
IBP. Let f̂ yc (x) be the upper and lower bounds of the logits
fc (x) where the logit of true class y is equal to its lower
bound and the other logits are equal to their upper bounds.
Then, C-IBP trains fc (x) by minimizing the following loss
function with training data Dt = {(x, y)i }Mi=1:∑

(x, y)∈Dt

κ · CE( fc (x), y) + (1 − κ) · CE( f̂ yc (x), y),

(A· 21)

where CE represents Cross-Entropy loss. Note that we use
the classifier trained with IBP without the final layer (logit
layer) as a feature extractor in our experimentation.

B.1 Hyperparameters of ACT and C-IBP

When training with ACT, we set the fixed maximum pertur-
bation size of the adversarial examples as ϵ = 0.2 for MNIST
and FMNIST and ϵ = 2

255 for CIFAR10. Then we generate

them by using PGD [12] with the step size of ϵ
10 and the

number of updates of 20.
When training with C-IBP, we use the scheduling strat-

egy for ϵ and κ proposed in [21] as well as training of TBT.
Specifically, ϵ is gradually increased from 0.0 to ϵe, and the
κ is gradually decreased from 1.0 to κe. We use ϵe = 0.2 for
MNIST and FMNIST, and ϵe = 2

255 for CIFAR10, respec-
tively. We use κe = 0.5 for all datasets. Then, we linearly
increase ϵ and decrease κ between 2K and 10K steps.
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