
DOI:10.1587/transinf.2023EDP7238

Publicized:2024/04/16

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. INF. & SYST., VOL.E98–D, NO.1 JANUARY 2015
1

PAPER
Unveiling Python Version Compatibility Challenges in Code
Snippets on Stack Overflow

Shiyu YANG†a), Tetsuya KANDA†b), Daniel M. GERMAN††c), Nonmembers, and Yoshiki HIGO†d), Member

SUMMARY Stack Overflow, a leading Q&A platform for developers,
is a substantial reservoir of Python code snippets. Nevertheless, the incom-
patibility issues between Python versions, particularly Python 2 and Python
3, introduce substantial challenges that can potentially jeopardize the utility
of these code snippets. This empirical study dives deep into the challenges
of Python version inconsistencies on the interpretation and application of
Python code snippets on Stack Overflow. Our empirical study exposes
the prevalence of Python version compatibility issues on Stack Overflow.
It further emphasizes an apparent deficiency in version-specific identifica-
tion, a critical element that facilitates the identification and utilization of
Python code snippets. These challenges, primarily arising from the lack of
backward compatibility between Python’s major versions, pose significant
hurdles for developers relying on Stack Overflow for code references and
learning. This study, therefore, signifies the importance of proactively ad-
dressing these compatibility issues in Python code snippets. It advocates for
enhanced tools and strategies to assist developers in efficiently navigating
through the Python version complexities on platforms like Stack Overflow.
By highlighting these concerns and providing a potential remedy, we aim
to contribute to a more efficient and effective programming experience on
Stack Overflow and similar platforms.
key words: Stack Overflow, Python, Code Snippets, Version Compatibility

1. Introduction

Stack Overflow is a popular developer Q&A platform that
provides a venue for disseminating knowledge and exchang-
ing ideas, allowing users to post questions, provide answers,
and search for content that interests them. Code snippets rep-
resent the core knowledge shared on Stack Overflow, as users
regularly integrate them into their questions or answers for
heightened clarity and understanding. As of August 2023,
Stack Overflow has over 24 million questions, and 35 mil-
lion answers [1]—a testament to its active user base and a
number that continues to grow daily.

Within these questions and answers lies a treasure trove
of code snippets. This abundance of available code offers
developers an easy path to finding solutions to everyday
programming challenges. It is commonplace for developers
to copy code examples from Stack Overflow, highlighting its
integral role in the development process [2].

†The author is with the Graduate School of Information Science
and Technology, Osaka University, Suita-shi, 565-0871, Japan

††The author is with the Department of Computer Science, Uni-
versity of Victoria, Victoria, BC V8P 5C2, Canada

a) E-mail: yangsy@ist.osaka-u.ac.jp
b) E-mail: t-kanda@ist.osaka-u.ac.jp
c) E-mail: dmg@uvic.ca
d) E-mail: higo@ist.osaka-u.ac.jp

Despite the convenience Stack Overflow offers in find-
ing the needed code snippets, recent research has highlighted
that these code snippets can be toxic [3], outdated [4, 5], or
of low quality [6]. These issues can further lead to com-
promised software quality [4, 7], license violations [8], or
migration of security vulnerabilities [9].

Numerous factors contribute to the problems associ-
ated with code snippets on Stack Overflow, with the use
of outdated programming language features in these code
snippets being a major concern. Programming languages
are inherently fluid, constantly evolving to meet new needs
and sustain longevity. To signify this evolution, popular
programming languages often employ versioning, wherein
more recent versions generally denote more mature forms of
the language.

The issue of backward compatibility is a key consider-
ation for many programming languages as they evolve. This
principle would allow programs written in an earlier lan-
guage version to be compiled and run using a later version
while exhibiting the same behavior as in the previous ver-
sion. This principle, however, is subverted by Python. With
the release of Python 3.0, the language intentionally broke
backward compatibility with its predecessor, Python 2.

This lack of backward compatibility poses significant
challenges to the users of Stack Overflow. For instance, a user
might find a useful Python 2 code snippet on the platform
that may not be directly compatible with their Python 3
project. Consequently, the usability of Python snippets on
Stack Overflow could be significantly hampered due to these
compatibility issues.

We conducted an empirical study to comprehend the
challenges of version compatibility within Python code snip-
pets on Stack Overflow. Our investigation pivots around the
following key research questions:

• RQ1: How many Python code snippets have version
compatibility issues in the good answers to Stack
Overflow questions?
Answer to RQ1: About 13% of code snippets have ver-
sion compatibility issues in the good answers to ques-
tions.

• RQ2: How many of the code snippets interpretable
only by Python 2 or only by Python 3 have Python
version-specific identification?
Answer to RQ2: Only about 20% of code snippets
interpretable only by Python 2 or only by Python 3 have
accurate Python version-specific identification.

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.1 JANUARY 2015

• RQ3: How do users on Stack Overflow react and
adapt to the introduction of new Python releases?
Answer to RQ3: After the release of a new Python
version, responses can generally be received on Stack
Overflow on the same day.

This paper serves as an extension and refinement of
our previous research [10, 11]. To clarify the importance of
Python version compatibility issues, we refined our research
focus based on the definitions outlined in our tool paper [11].
Specifically, we shifted from analyzing all Python code snip-
pets in the technical report [10] to concentrating solely on
those in the good answers. We conducted these revised ex-
periments using the same analytical system detailed in the
tool paper to ensure methodological consistency and accu-
racy. Additionally, we reconstructed the dataset initially
employed in the tool paper to ensure the precision of our
analysis.

2. Background

2.1 Stack Overflow

Stack Overflow, a widely used online community platform,
serves as an essential resource for developers looking to share
and acquire programming knowledge through a question-
and-answer (Q&A) format. Questions posted on the plat-
form invite solutions from the community, which are for-
matted as answers. Crucial to Stack Overflow’s efficacy is
the code snippets embedded within these questions and an-
swers. These provide specific contexts or demonstrate direct
solutions, acting as ready-to-use references. This character-
istic significantly bolsters Stack Overflow’s appeal among
developers.

For instance, consider a post titled “How do I check
if a variable exists?†”, as shown in Figure 1. In this post,
the questioner employs a blend of textual descriptions and
code snippets to articulate the question effectively, using
three tags to encapsulate the question’s topic succinctly. The
answer presents a concise solution exemplified via a code
snippet. This instance not only underscores the issue and
its precise solution but also illuminates the collaborative
and community-driven nature of knowledge exchange that
defines Stack Overflow.

Beyond the code snippets, Stack Overflow has other
distinguishing features that enhance its utility. One such
feature is its community voting system, which allows users
to upvote or downvote questions and answers based on their
usefulness or relevance. The platform also employs a tagging
system to categorize questions, streamlining the search and
discovery process.

2.2 The Evolution of Python and Version Compatibility

Backward compatibility refers to the ability of software to
function seamlessly when a newer version of the language

†https://stackoverflow.com/questions/843277

Fig. 1 An example of a Q&A post on Stack Overflow

is used without modifying the existing code. Ensuring this
continuity gives developers confidence that their previously
written code will not become obsolete with each new lan-
guage update.

2.2.1 Development history of Python

Python 2.0 was released in October 2000, bringing various
features that appealed to developers. Known for its readabil-
ity and uncluttered syntax, the language comes with an array
of built-in data types, such as tuples, lists, sets, and dictio-
naries. Beyond these core capabilities, Python also boasts
a comprehensive standard library and a rich repository of
user-contributed packages, facilitating rapid prototyping and
effective system integration. Its powerful scripting capabil-
ities also make it versatile for various tasks [12]. These
advantages have collectively propelled Python to become
one of today’s most popular and widely used programming
languages.

The trajectory of Python experienced a monumental
shift in 2008. The launch of Python 2.6 aimed to prolong
the success of the popular 2.x series, guaranteeing a contin-
uation of support and development. Concurrently, Python
3.0 emerged as a transformative iteration focusing on mod-
ernizing and refining the language, even at the expense of

YANG et al.: UNVEILING/UNRAVELING PYTHON VERSION COMPATIBILITY CHALLENGES/ISSUES
3

forfeiting backward compatibility.
Although Python 2 offered a rich feature set, it even-

tually hit a technological ceiling that hindered further ad-
vancements. This prompted the Python community to make
a calculated shift, strategically phasing out Python 2 in fa-
vor of the more progressive Python 3. The community’s
decision reached its apex when support for Python 2.7 was
officially terminated on January 1, 2020, marking the series’
end-of-life [13].

This strategic bifurcation led to both gains and draw-
backs. On the positive side, it enabled Python to innovate
and push the boundaries, solidifying its rapid ascendance in
the tech world. However, this bold move also led to a bifur-
cation within the Python community and posed challenges
for projects transitioning from Python 2 to Python 3 [14].

2.2.2 Backward Compatibility in Python Versions

In its evolution, Python has been known to break backward
compatibility almost with each new release. This policy,
including rules that govern the instances when compatibility
can be broken, is meticulously documented in PEP 387 [15].
Python 3.0, for instance, markedly broke backward compat-
ibility with Python 2. Moreover, each subsequent release
since Python 3.5 has seen the removal of deprecated features
essential for running older Python programs, with most re-
leases introducing minor changes that impact only a small
proportion of language features.

2.2.3 Compatibility Issues of Python Snippets on Stack
Overflow

The parallel paths of Python 2 and 3 heralded not only unique
challenges in language enhancement but also implications for
the vast reservoir of Python snippets on platforms like Stack
Overflow. Historically, Python 2 was rich in capabilities but
eventually encountered a juncture where it couldn’t encom-
pass newer advancements. This prompted Python’s custo-
dians to strategically sunset Python 2 in favor of Python 3,
culminating in the community’s decision to officially termi-
nate support for Python 2.7 as of January 1, 2020, marking
the end-of-life for this Python iteration [13].

As an integral knowledge repository, Stack Overflow
is brimming with Python code snippets spanning various
versions. Yet, the divergence between Python 2.x and 3.x
has cast a shadow over the applicability of these snippets.
Many code snippets authored during the Python 2.x epoch
may not operate smoothly within the Python 3.x framework,
sparking concerns about their lasting utility. This landscape
accentuates the pressing need to assess the Python snippets
on Stack Overflow critically. It’s essential to ascertain their
compatibility with contemporary Python standards, ensuring
they remain valuable resources for the vast and evolving
community of Python developers.

3. Study Approach

3.1 Data Collection

To unveil the challenges of version compatibility within
Python code snippets on Stack Overflow, we decided to use
the collection of Python code snippets from the “good an-
swer” on the platform. As introduced in Section 2, Stack
Overflow features a voting system for questions and answers.
This paper defines a “good answer” as the one with the high-
est positive score. Note that not every question has a good
answer; those without are omitted according to the data selec-
tion criteria specified in this section. Moreover, in instances
where several answers to a question have the same score, all
such answers are regarded as good answers. The reason for
choosing good answers is that they are expected to be correct
answers and most likely to be used by other users. This sec-
tion diligently delineates the systematic approach we have
adopted to extract Python code snippets from good answers
on Stack Overflow.
Data Selection Criteria: To conduct our empirical study,
we obtained Python code snippets from the good answers on
Stack Overflow.

When an original questioner posts a question on Stack
Overflow, tags are added to describe the topic of the question,
we use these tags to distinguish questions related to Python.
Additionally, the content of the posted code snippet can differ
from the initial posting due to edits over time. In light of
these considerations, we focused on the most up-to-date data
available to users in exploring the compilability of the current
code snippets. Therefore, we employed the following five
criteria to pinpoint the code snippets needed for our study:

• Code snippet from good answers to questions with at
least one tag labeled as “python”.

• Answer scores must be positive.
• Answers that share the same positive score are all rec-

ognized as good answers.
• Questions lacking answers are omitted.
• Posting data is the latest version.

Data Source: We use SOTorrent [16] to extract Python code
snippets on Stack Overflow. SOTorrent is an open dataset
based on the official Stack Overflow data dump, which pro-
vides access to the version history of Stack Overflow content
at the level of whole question posts and individual text or
code blocks. SOTorrent has been continuously updated with
many versions since its creation. When we started our study,
the latest version of SOTorrent was SOTorrent20 03 as of
March 15, 2020†.
Data Extraction: Applying the established criteria to
the SOTorrent dataset, we successfully extracted 1,498,133
questions. These questions led to 2,161,905 answers, among
which 976,807 were good answers. Acknowledging that
an answer could contain multiple code snippets, we had a

†https://zenodo.org/record/3746061

4
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.1 JANUARY 2015

considerable corpus of 1,376,571 code snippets.
Data Preprocessing: During the data extraction process, we
noticed that code snippets stored in the SOTorrent database
could introduce formatting issues that were not originally
present, such as redundant or inconsistent indentation. These
formatting issues might hinder subsequent analysis efforts,
prompting us to preprocess the data. This step primarily
involved rectifying redundant or inconsistent indentations
within the code snippets, ensuring their readiness for future
parsing and analysis. Moreover, we tackled instances where
the code was framed in a read-eval-print loop (REPL) mode,
further enhancing the quality and uniformity of our dataset.

3.2 Code Snippet Analysis

To deeply investigate the challenges of version compatibil-
ity in Python code snippets on Stack Overflow, we utilized
Python interpreters to parse code snippets in the dataset we
acquired. We deployed multiple Python interpreters, specif-
ically, one major release of Python 2 (2.7) and four major
releases of Python 3 (3.5 to 3.8). The selection of these
versions was driven by the availability of the Python inter-
preters and the timeline of the SOTorrent release we em-
ployed, which incorporates Python 3.8 as the latest version.
We excluded older versions due to the challenges in prepar-
ing an execution environment and newer versions released
after the dataset.

In our study, we defined a code snippet as being inter-
pretable (or compatible) with a specific Python version if the
corresponding Python interpreter could successfully parse it.
To determine this, we attempted to compile the snippet us-
ing Python’s native py compilemodule. If the compilation
process was successful, the code snippet was categorized
as interpretable (or pass) for that particular Python version.
Conversely, if the compilation failed, the snippet was classi-
fied as uninterpretable (or fail) for that version. Within the
confines of our study, the previously extracted code snippets
from good answers were parsed using each chosen Python
interpreter version. We recorded each code snippet’s out-
comes (pass/fail), constructing a comprehensive overview
of their compatibility across different Python versions.

In this paper, only compile errors are considered. Cases
that involve run-time errors or yield different results without
errors are excluded from some considerations. Firstly, com-
pile errors are a clear and direct indicator of compatibility,
making the results clearer and more manageable. Secondly,
run-time errors and differences in results involve more com-
plex factors beyond the original intent and scope of this study.
Lastly, it is difficult to set up the appropriate inputs to cause
the desired run-time errors.

Moreover, in our experimental environment, because
the compilation process does not involve the installation of
any third-party libraries, code snippets that depend on spe-
cific libraries will result in compilation errors. This setup
eliminates the impact of third-party libraries on the discus-
sion of our experimental results.

4. Results

In this section, we explore the underlying motivation, the ap-
proach taken, and the results of our three research questions
concerning the challenges of version compatibility within
Python code snippets on Stack Overflow.

4.1 RQ1: How many Python code snippets have version
compatibility issues in the good answers to Stack
Overflow questions?

Motivation: This research question aims to measure the
prevalence of version compatibility issues in Python code
snippets from good answers on Stack Overflow. Given that
the platform is a widely used resource for developers, under-
standing the scope of such issues is crucial. Code snippets
with compatibility issues may prevent users from reusing the
code. By quantifying the extent of these version compati-
bility issues, this research question offers actionable insights
into the prevalence and nature of version-specific problems
in Python code snippets. Such insights can guide Python
programmers in adopting best practices for version compati-
bility, inform educators in structuring their coding curricula,
and provide tool developers with a clearer understanding of
common issues to address in future updates, aiding them in
their respective endeavors.
Approach: In addressing this research question, we parsed
these Python code snippets from the good answers on Stack
Overflow using Python 2.7, Python 3.5, Python 3.6, Python
3.7, and Python 3.8. And we marked whether it is inter-
pretable in each version as described in Section 3.2. In
this way, we compiled a comprehensive catalog of Python
versions compatible with each snippet.
Results: Analyzing the parsing results, we found that
440,456 (32.0%) code snippets failed to be parsed by all
Python versions, i.e., these code snippets are uninterpretable
for all Python versions. There are several possible reasons:
1) Our study didn’t cover early Python versions like 2.0 or 3.0.
2) Some “Python” tagged answers may include non-Python
code. 3) Programming errors, such as syntax issues, could
be present. 4) Incomplete Python code snippets. 5) Third-
party libraries need to be imported. In other words, they
are not caused by the Python version upgrade we would like
to investigate. In addition, we found that 755,699 (54.9%)
code snippets could pass the parsing for all Python versions,
i.e., these code snippets were interpretable for all Python ver-
sions. This may be the case because they are not using some
features that would affect the compilability of code snippets
vary between Python versions.

Finally, the remaining 180,416 (13.1%) code snippets
are the parts that face compatibility issues across Python
2.7 and Python 3.x. This percentage indicates a significant
challenge within the Python community, suggesting that a
notable fraction of shared code on Stack Overflow may be
incompatible with either Python 2 or 3. For these code
snippets that face compatibility issues, we found that they

YANG et al.: UNVEILING/UNRAVELING PYTHON VERSION COMPATIBILITY CHALLENGES/ISSUES
5

can be divided into the following three categories:

Pass Python 2.7, Fail for some Python 3:
The code snippet passes Python interpreter parsing for
Python 2.7 and at least one Python interpreter parsing
for Python 3, but not all Python 3 versions.

Pass Python 2.7, Fail for all Python 3:
The code snippet fails for any Python 3 Python inter-
preter parsing but passes Python 2.7 Python interpreter
parsing.

Fail for Python 2.7, Pass Python 3 (all or some):
The code snippet fails for Python 2.7 Python interpreter
parsing but passes all or some Python 3 Python inter-
preter parsing.

Of the above categories, the results are shown in Table 1,
which provides a comprehensive overview of the situation
of the parts of Python code snippets that face compatibility
issues extracted from good answers on Stack Overflow. The
“Overall percentage” column in the table indicates the pro-
portion of the three categories of code snippets relative to all
snippets extracted from the good answers on Stack Overflow.
Notably, as indicated in the table, a considerable portion of
these code snippets is exclusively interpretable by Python 2.
This demonstrates the persistence of legacy Python 2 code
within the developer ecosystem, underscoring the challenges
in migrating to Python 3 despite its growing adoption and
the cessation of official support for Python 2.

These results underline the extent of version compati-
bility issues within Python code snippets on Stack Overflow,
pointing to a pressing need for attention and potential im-
provements in this area.

Answer to RQ1: About 13% of code snippets have
version compatibility issues in the good answers to
questions.

4.2 RQ2: How many of the code snippets interpretable
only by Python 2 or only by Python 3 have Python
version-specific identification?

Motivation: Within Stack Overflow, question tags and the
answer texts are crucial navigational tools, guiding users
toward content that aligns with their specific programming
needs. Stack Overflow’s tagging system includes “Python
2.x” and “Python 3.x” tags, allowing users to designate their
questions as specifically pertaining to Python 2 or Python
3. Similarly, mentioning the Python version in the answer
texts can guide users in understanding the applicability of
the given code snippet. Correctly identifying a code snip-
pet as exclusively interpretable by either Python 2 or Python
3, through tags or textual mentions (i.e., version-specific
identification) is crucial. For instance, if a code snippet is
solely compatible with Python 2 and is correctly identified as
Python 2, it helps users avoid inadvertently using this snippet
in a Python 3 context, and vice versa. Nevertheless, the ef-

fectiveness of this approach is contingent on the accurate ap-
plication of these tags and textual mentions. In our research,
we aim to determine how many Python code snippets can
be interpreted exclusively by Python 2 or Python 3 are accu-
rately identified with their respective version, either through
tags or textual mentions in the corresponding answers. This
analysis will assess the precision of Python version-specific
identification on Stack Overflow and identify potential ar-
eas for enhancement to improve the user experience on the
platform.
Approach: To address this research question, we turned to
the parsing results of the code snippets obtained in RQ1. We
focused on the categories “Fail for Python 2.7, Pass Python
3 (all or some)” and “Fail for all Python 3, Pass Python 2.7”
as they represent code snippets exclusively compatible with
Python 3 and Python 2, respectively. These identified snip-
pets were then scrutinized for the presence of corresponding
“Python 2.x” or “Python 3.x” tags, or textual mentions in
their associated answers, to determine whether they were for
Python 2 or Python 3. This enabled us to gauge the accu-
racy of version-specific identification in relation to the actual
version compatibility of the code snippets.
Results: The findings from our study are presented in Ta-
ble 2. The first row of the table shows that out of 47,712
code snippets that are solely compatible with Python 3, only
9,981 have been correctly tagged with “Python 3.x”. Fur-
thermore, 2,356 snippets mention the Python version in the
text, of which 1,944 snippets mention the correct version
in the text without the “Python 3.x” tag. This corresponds
to only about 25% of Python 3-specific code snippets being
properly labeled. This indicates a sizable gap in version-
specific identification, highlighting that nearly 75% of these
snippets lack the crucial information to inform users of their
compatibility solely with Python 3.

Similarly, the second row reveals an even more glar-
ing issue: among the 72,932 code snippets that are only
interpretable by Python 2, merely 9,202 have been correctly
tagged as “Python 2.x”. Additionally, 2,418 snippets in-
clude a text mention of the Python version, and all of these
are without a corresponding version tag. This amounts to a
mere 16% of Python 2-specific snippets being appropriately
labeled, leaving a staggering 84% of these snippets without
clear version-specific indications.

The discrepancy between the 25% accurate identifying
rate for Python 3 and the 16% for Python 2 demonstrates
that Python 3-specific snippets are, on average, more likely
to be correctly identified than their Python 2 counterparts on
Stack Overflow.

These numbers reveal a critical issue with the current
state of version-specific identification on Stack Overflow.
Despite the platform’s wide use and the community’s depen-
dency on it for reliable coding solutions, the lack of accurate
version labeling potentially misleads users and hampers ef-
fective code reuse. In summary, the data call for immediate
improvements in version-specific identification practices on
the platform to better guide its vast user base, especially
those working in mixed-version Python environments.

6
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.1 JANUARY 2015

Table 1 Python code snippets facing compatibility issues in Stack Overflow
Categories #Snippets Overall percentage

Pass Python 2.7, Fail for some Python 3 59,772 4.3%
Pass Python 2.7, Fail for all Python 3 72,932 5.3%
Fail for Python 2, Pass Python 3 (all or some) 47,712 3.5%

Total 180,416 13.1%

Answer to RQ2: Only about 20% of code snippets
interpretable only by Python 2 or only by Python 3
have accurate Python version-specific identification.

4.3 RQ3: How do users on Stack Overflow react and
adapt to the introduction of new Python releases?

Motivation: The evolution of Python, with its frequent ver-
sion updates, greatly influences the coding practices among
its community, particularly regarding version compatibility.
Given the importance of Stack Overflow as a knowledge base
for Python users, understanding how users react and adapt
to new Python releases can provide critical insights into
the challenges and solutions associated with Python version
compatibility.
Approach: To investigate the response of Stack Overflow
users to each Python release, we sourced the release dates of
each Python version directly from Python’s official website.
Our approach tracks the evolution of Python code snippets
corresponding to each version since its release. This allows
us to gauge the platform-wide response in coding practices
to each Python version update. We defined a Python code
snippet “responding” to a certain Python version based on
two criteria:

• The posting or the most recent modification date of the
code snippet must be after the release of that Python
version. While this does not guarantee that the snip-
pet will include newly introduced language features or
syntax, it increases the likelihood that the snippet is
influenced by or compatible with that version.

• The code snippet should be compatible with the con-
cerned Python version and fail to compile for all preced-
ing Python versions, implying that it utilizes features or
syntax unique to the new version.

Our study primarily focuses on Python versions 3.5
through 3.8 for this research question. Additionally, we
incorporate Python 2.7 from the Python 2 series for compar-
ative insight.
Results: To precisely assess the response of Stack Overflow
users to each Python version release, we categorized code
snippets corresponding to each version on a daily basis. Fig-
ure 2 presents a stacked area percentage chart for various
Python versions, where the release date for each Python ver-
sion is marked with a yellow dashed line. The horizontal axis
represents the code snippets’ post or the latest modification
date, while the vertical axis indicates the percentage of each

Python version in all response code snippets.
Figure 2 shows that, except for Python 3.5 (which

was not assessed against previous versions), the three other
Python versions (3.6, 3.7, and 3.8) elicited a rapid and sub-
stantial response within days of their release. This result
not only underscores the enthusiastic attitude of the Python
developer community towards new versions but also mani-
fests the swift acceptance and incorporation of unique fea-
tures offered by new versions. Particularly noteworthy is the
prominence of Python 3.6 among the community. Several
factors may contribute to this phenomenon. Python 3.6 in-
troduced compelling new features like f-strings, which made
string formatting more intuitive. It also received perfor-
mance optimizations and benefitted from broader third-party
library support, making it a particularly attractive choice. Its
longer-term support has also rendered it a stable option for
ongoing projects. These factors likely fueled rapid commu-
nity engagement with Python 3.6, emphasizing the Python
ecosystem’s dynamism and willingness to embrace new ad-
vancements. Furthermore, when investigating the response
time of Python 3.8, we noticed a certain delay compared to
other Python versions. This delay may have various rea-
sons, including the complexity of new features, community
response time, code example availability, and version mi-
gration speed. However, since this study focused on the
analysis of code snippets and did not conduct a detailed
study of the full-text content of posts, there is not enough
data to comprehensive explanation for this delay. An exten-
sive analysis of the full textual content of the posts is needed
to fully understand the community’s reaction to the release
of the new Python version. Specifically, developers are ea-
ger to experiment with and integrate new capabilities into
their code, emphasizing the language’s adaptability and the
community’s openness to change.

Answer to RQ3: After the release of a new Python
version, responses can generally be received on Stack
Overflow on the same day.

5. Threats to Validity

Our research faces inherent limitations and threats to validity
that are worth considering.
Limitations of Python code snippets: As elaborated in
Section 4, approximately 32.0% of the Python code snippets
we extracted from SOTorrent failed for Python interpreter
parsing for all Python versions, implying they were incom-

YANG et al.: UNVEILING/UNRAVELING PYTHON VERSION COMPATIBILITY CHALLENGES/ISSUES
7

Table 2 The results of version annotation for code snippets in the good answers
on Stack Overflow, which are only compatible with either Python 2 or Python 3.

Categories #Snippets #Snippets (tagged) #Snippets (text, untagged) Percentage (version-specific)

Fail for Python 2, Pass Python 3 (all or some) 47,712 9,981 1,944 (2,356) 25%
Fail for all Python 3, Pass Python 2 72,932 9,202 2,418 (2,418) 16%

Fig. 2 Responses by Python version on Stack Overflow

patible with all Python versions. This subset of code snippets
often included programming errors, pseudocode, and other
issues unrelated to Python version upgrades, contributing to
parsing failures. However, these snippets may also conceal
features pertinent to Python version upgrades, obfuscated by
errors arising from unrelated issues. Owing to technical and
time constraints, we had to abandon the processing and ex-
amination of this portion of the code snippets in this study,
potentially jeopardizing the validity of our results.
External validity: The generalizability of our findings
presents a potential threat to external validity. Our study
primarily revolved around Stack Overflow, and our insights
may not extend to other Q&A platforms due to the variance
in their mechanisms. Future research endeavors should en-
compass a broader range of Q&A platforms to mitigate this
risk.

6. Related Work

Quality of Code Snippets on Q&A Platforms Within the
scholarly discourse on Q&A platforms, the quality and re-
liability of shared code snippets have received widespread
attention. The study by Wu et al. [6] underscored the critical
need for improved mechanisms to evaluate the applicability
of reused code, highlighting the role of such platforms in
software development practices. Another investigation re-
vealed a concerning trend of obsolete or license-violating
code being circulated, underscoring a deficiency in the up-

keep of these code fragments [3]. The ExampleCheck frame-
work’s exploration into API misuse within accepted answers
on these forums further suggests a pressing need for more
stringent solution validation processes [17]. The reliability
of Java API-related snippets was specifically questioned. In
the work of Zerouali et al. [18], the impermanent reliability
of these snippets is brought to the fore, underscoring how
library updates can swiftly invalidate previously dependable
solutions. This reality underscores the ephemeral nature of
code snippet accuracy. To counteract the widespread issue
of reliance on outdated libraries in Java snippets on Stack
Overflow, Zerouali et al. developed an automated approach
for pinpointing Maven library version ranges. Their method-
ology illuminates the tendency within the developer commu-
nity to lean on antiquated libraries and signals the need for
a systematic reassessment of code snippet maintenance and
the protocols for updating them. To address the challenge of
outdated library usage in Java snippets on Stack Overflow,
Zerouali et al. [18] developed a methodology for automatic
identification of Maven library version ranges, highlighting
the commonality of reliance on older libraries.
Compatibility Issues and Tools The evolution of program-
ming languages and their corresponding updates are pivotal
in influencing the longevity and relevance of code snippets
shared on platforms like Stack Overflow. In this context,
the work by Malloy et al. [14, 19] merits attention, as they
delved into the challenges posed by Python version upgrades
on code compatibility. Their contribution, a tool named Py-

8
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.1 JANUARY 2015

Comply, has been developed specifically to detect the com-
patibility of Python code snippets with targeted versions of
the Python language. Complementing this, our previous
work presents PyVerDetector, a Chrome browser extension
introduced in [11], which is ingeniously designed to tackle
the issue of Python code snippet version compatibility on
Stack Overflow. PyVerDetector aids users by automatically
determining and indicating the Python version with which
a given snippet of code is compatible, thus enhancing the
overall utility and maintainability of code shared within the
developer community.

7. Conclusion

In this paper, we conducted an empirical study investigating
Python code snippet compatibility issues on Stack Overflow.
The results are quite telling: Firstly, approximately 14%
of code snippets in the good answers to questions exhibit
version compatibility issues. This significant percentage un-
derscores the need for more robust mechanisms or tools like
PyVerDetector to assist users in accurately identifying the ap-
propriate Python version for a given code snippet. Secondly,
our findings reveal that only about 20% of code snippets
interpretable exclusively by Python 2 or Python 3 have accu-
rate Python version-specific identification. Finally, our study
observes that new Python versions are quickly adopted and
discussed on Stack Overflow, indicating an engaged commu-
nity of users who readily respond and adapt to these changes.

These findings clearly show the Python version compat-
ibility landscape on Stack Overflow and highlight key areas
for potential improvement. We hope this research brings
awareness to these issues and spurs further research and
development in creating solutions that could substantially
enhance the user experience on Q&A platforms like Stack
Overflow. For further insights and a detailed look at the code
snippets and other valuable information utilized in this study,
interested readers and researchers can access our dataset on
zenodo†.

Acknowledgments

We would like to thank Davide Pizzolotto for his contribu-
tions to the tool development in our previous paper [11]. His
expertise has been invaluable to our research.

References

[1] S. Exchange, “Stack exchange data,” 2023. Accessed on 2023-08.
[2] S. Baltes and S. Diehl, “Usage and attribution of stack overflow code

snippets in github projects,” Empirical Software Engineering, vol.24,
no.3, pp.1259–1295, 2019.

[3] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on stack overflow,” IEEE Transactions on Soft-
ware Engineering, vol.47, no.3, pp.560–581, 2021.

[4] H. Zhang, S. Wang, T.H. Chen, Y. Zou, and A.E. Hassan, “An empir-
ical study of obsolete answers on stack overflow,” IEEE Transactions
on Software Engineering, vol.47, no.4, pp.850–862, 2021.

†https://zenodo.org/records/10790233

[5] J. Zhou and R.J. Walker, “Api deprecation: a retrospective analysis
and detection method for code examples on the web,” Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE), pp.266–277, 2016.

[6] Y. Wu, S. Wang, C.P. Bezemer, and K. Inoue, “How do develop-
ers utilize source code from stack overflow?,” Empirical Software
Engineering, vol.24, no.2, pp.637–673, 2019.

[7] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl, “Stack overflow considered harmful? the impact of
copy&paste on android application security,” 2017 IEEE Symposium
on Security and Privacy (SP), pp.121–136, 2017.

[8] L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack overflow: A
code laundering platform?,” 2017 IEEE 24th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER),
pp.283–293, 2017.

[9] M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and A.K. Mot-
lagh, “An empirical study of c++ vulnerabilities in crowd-sourced
code examples,” IEEE Transactions on Software Engineering, vol.48,
no.5, pp.1497–1514, may 2022.

[10] S. Yang, T. Kanda, and K. Inoue, “The effect of python version
upgrades on the compilability of code snippets posted on stack over-
flow,” IPSJ SIG Technical Report, vol.2022-SE-211, no.28, pp.1–8,
July 2022.

[11] S. Yang, T. Kanda, D. Pizzolotto, D.M. German, and Y. Higo,
“Pyverdetector: A chrome extension detecting the python version
of stack overflow code snippets,” 2023 IEEE/ACM 31st Interna-
tional Conference on Program Comprehension (ICPC), pp.25–29,
may 2023.

[12] R. Toal, R. Rivera, A. Schneider, and E. Choe, Programming Lan-
guage Explorations, Chapman and Hall/CRC, 10 2016.

[13] “Sunsetting python 2.”https://www.python.org/doc/sunset-python-2/,
2022. Accessed: 2022-06-27.

[14] B. Malloy and J. Power, “An empirical analysis of the transition from
python 2 to python 3,” Empirical Software Engineering, vol.24, 04
2019.

[15] B. Peterson and B. Cannon, “Backwards compatibility policy,” PEP
387, Python Software Foundation, 2009.

[16] S. Baltes, C. Treude, and S. Diehl, “Sotorrent: Studying the ori-
gin, evolution, and usage of stack overflow code snippets,” 2019
IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), pp.191–194, 2019.

[17] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online q&a forum reliable? a study of api
misuse on stack overflow,” Proceedings of the 40th International
Conference on Software Engineering (ICSE), p.886–896, 2018.

[18] A. Zerouali, C. Velázquez-Rodrı́guez, and C. De Roover, “Identi-
fying versions of libraries used in stack overflow code snippets,”
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pp.341–345, 2021.

[19] B.A. Malloy and J.F. Power, “Quantifying the transition from python
2 to 3: An empirical study of python applications,” 2017 ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp.314–323, 2017.

YANG et al.: UNVEILING/UNRAVELING PYTHON VERSION COMPATIBILITY CHALLENGES/ISSUES
9

Shiyu Yang received a B.E. degree in Soft-
ware Engineering from Dalian Jiaotong Univer-
sity in 2018 and an M.E. degree in Software En-
gineering from Osaka University in 2022. She is
pursuing a Ph.D. degree at the Graduate School
of Information Science and Technology, Osaka
University. Her research interests include soft-
ware engineering, especially software reuse, em-
pirical approach, and program source code anal-
ysis. She is a member of the IEEE.

Tetsuya Kanda received his master’s de-
gree and Ph.D. degree in information science
and technology from Osaka University in 2013
and 2016, respectively. At present, he is an asso-
ciate professor at Osaka University. His ongoing
research is centered on revealing software evo-
lution and reuse by analyzing source code and
development history.

Daniel M. German is currently a professor
with the Department of Computer Science, Uni-
versity of Victoria. His research interests include
the areas of mining software repositories, open-
source software ecosystems, and the impact of
intellectual property in software engineering.

Yoshiki Higo received his master’s degree
and Ph.D. degree in information science and
technology from Osaka University in 2004 and
2006, respectively. At present, he is a profes-
sor at Osaka University. His research interests
include mining software repositories, program
analysis, and automated program repair.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

