
DOI:10.1587/transinf.2023EDP7262

Publicized:2024/05/27

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
A Two-Phase Algorithm for Reliable and Energy-Efficient
Heterogeneous Embedded Systems

Hongzhi XU†a) and Binlian ZHANG†∗b), Nonmembers

SUMMARY Reliability is an important figure of merit of the system
and it must be satisfied in safety-critical applications. This paper consid-
ers parallel applications on heterogeneous embedded systems and proposes
a two-phase algorithm framework to minimize energy consumption for
satisfying applications’ reliability requirement. The first phase is for ini-
tial assignment and the second phase is for either satisfying the reliability
requirement or improving energy efficiency. Specifically, when the applica-
tion’s reliability requirement cannot be achieved via the initial assignment,
an algorithm for enhancing the reliability of tasks is designed to satisfy
the application’s reliability requirement. Considering that the reliability
of initial assignment may exceed the application’s reliability requirement,
an algorithm for reducing the execution frequency of tasks is designed to
improve energy efficiency. The proposed algorithms are compared with
existing algorithms by using real parallel applications. Experimental re-
sults demonstrate that the proposed algorithms consume less energy while
satisfying the application’s reliability requirements.
key words: dynamic voltage and frequency scaling, energy consumption,
heterogeneous embedded systems, parallel applications, reliability require-
ment.

1. Introduction

With the rapid development of integrated circuit and chip
technology, the performance of the embedded system has
been substantially improved. Yet along with such improve-
ments also comes with more energy consumption. For
energy conservation and environmental concerns, dynamic
voltage and frequency scaling (DVFS) techniques have been
widely used for low-power design. DVFS reduces energy
consumption by scaling down the execution voltage and fre-
quency of the processor at runtime [1][2][3][4]. At present,
there are many mainstream processors, such as Intel, AMD,
and ARM, that apply DVFS techniques to improve energy
efficiency. However, the probability of the transient faults
in processor will be significantly increased by scaling down
the execution frequency, which will weaken the reliability of
the applications [5]. The reliability of an application (task)
is defined as the probability that the application (task) can
be executed correctly [5][6]. For many embedded systems,
reliability is an important quality metric of the applications.
There are many safety standards for reliability, such as ISO
26262 for automotive software systems and DO-178C for
avionics software [6]. Hence, satisfying reliability require-

†The author is with the College of Computer Science and En-
gineering, Jishou University, Zhangjiajie 427000, China

a) E-mail: xuhongzhi9@163.com
b) E-mail: zhangbinlian@163.com

ment of the application is crucial for embedded systems,
otherwise, it may lead to disastrous consequences [7].

In general, the enhancement of the systems’ reliabil-
ity may come with more energy consumption. Therefore,
a tradeoff has to be made between the degree of reliability
and energy consumption. Specifically, energy consump-
tion should be as little as possible when the reliability re-
quirement is satisfied in the system design phase. Many
well-designed algorithms are proposed to improve energy
efficiency while guaranteeing the reliability of the applica-
tions [5][7][8][9][10][11]. However, these works are mainly
based on single-processor systems. In recent years, with the
advance of cyber-physical systems [12][13], many energy-
efficient algorithms with DVFS techniques have been pro-
posed for heterogeneous systems [14][15]. However, these
algorithms do not consider the application’s reliability. In
order to make the application up to reliability requirement,
many researchers focus on the problem of minimizing system
resource (energy) consumption while satisfying the reliabil-
ity requirement of the application. Some algorithms have
been proposed for parallel applications on heterogeneous
systems [6][16][17][18], which first transfer the reliability
requirement of the application to the reliability requirement
of each task and then use the heuristic method to minimize
the resources (energy) consumption. These methods may
not be the most effective approach for improving energy
efficiency. In this paper, a novel approach is proposed to
minimize energy consumption while satisfying the reliabil-
ity requirement of the parallel applications on heterogeneous
embedded systems.

This paper focuses on the design phase of the system,
the main contributions are as follows:

(1) This paper proposes a two-phase algorithm frame-
work to satisfy applications’ reliability requirements. The
framework contains two phases. Specifically, for each appli-
cation, the first phase initiates task assignment on processors
with the minimum energy consumption so that the applica-
tion’s initial reliability can be acquired. After that, based on
the actual reliability, the second phase satisfies the reliability
requirement and improves the energy efficiency.

(2) This paper proposes an algorithm to improve an
application’s reliability if it is lower than the reliability re-
quirement after the initial assignment so that the reliability
requirement can be finally satisfied.

(3) This paper proposes an algorithm to reduce energy
consumption through DVFS techniques if the initial reliabil-
ity is already higher than the reliability requirement after the

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

initial assignment so that the application’s energy efficiency
can be improved.

(4) Experiments with real parallel applications are con-
ducted in different scenarios. Experimental results confirm
that the proposed algorithms consume less energy than other
approaches.

2. Related Work

In order to reduce the energy consumption while guaran-
teeing reliability of the system, many techniques have been
proposed. Zhu et al. [5] proposed a reliability-aware power
management framework for periodic tasks. In [7], when
the slack time is not enough to schedule a recovery for a
whole task, checkpointing techniques are used to reliability-
aware power management schemes. Zhao et al. [8] pre-
sented a shared-recovery based frequency assignment tech-
nique to minimize energy consumption while preserving the
system reliability. Fan et al. [10] considered the single pro-
cessor system with independent real-time tasks, proposed
reliability-aware dynamic power management algorithm un-
der reliability constraint to minimize the energy consump-
tion. Xu et al. [11] designed several energy-efficient schedul-
ing algorithms with reliability guarantee for a set of periodic
real-time tasks on single processor system. Aforementioned
techniques are based on single processor systems and DVFS
is used to improve energy efficiency.

In recent years, there have been a lot of works on het-
erogeneous systems. Mei et al. [19] designed a fault-tolerant
dynamic rescheduling algorithm for heterogeneous comput-
ing systems. Wang et al. [20] proposed a scheduling algo-
rithm based on replication for maximizing system reliabil-
ity. Zhang et al. [21] also investigated bi-objective genetic
scheme to optimize energy efficient and reliability for a par-
allel application on heterogeneous computing systems. Zhao
et al. [16] proposed MaxRe algorithm, which using a dy-
namic number of replicas for different tasks to satisfy the
reliability requirements of the application. To further reduce
the resources consumption, Zhao et al. [17] also presented
a RR algorithm for workflow applications on heterogeneous
systems, which consume fewer resources to satisfy the reli-
ability requirements. Xie et al. [6] designed MRCRG algo-
rithm for a DAG-based parallel application on heterogeneous
embedded systems, the algorithm first calculates the relia-
bility requirement of each task, and then assigns the task to
the processor with the least resource consumption. Xie et al.
[18] also introduced the ESRG algorithm, which uses DVFS
technique to minimize energy consumption while satisfying
the reliability requirement of a parallel application. Xu et
al. [22] designed two algorithms to guarantee the reliability
of applications. Kumar et al. [23] introduced the frame-
work to satisfy the reliability of non-preemptive periodic
tasks on heterogeneous systems. Liu et al. [24] proposed
a task replication method to maximize the reliability of the
application on heterogeneous systems. Peng et al. [25] pro-
posed a reliability and performance-aware scheduling with
energy constraint for parallel applications on heterogeneous

systems. In addition, there are some surveys related to fault-
tolerance techniques in [26].

The afoementioned MRCRG [6], MaxRe [16], RR [17],
and ESRG [18] algorithms first transform the reliability re-
quirements of parallel applications into those of their sub-
tasks, subsequently employing heuristic algorithms to mini-
mize energy (resource) consumption. However, such meth-
ods may not be the most effective approach for improving
energy efficiency. Therefore, this paper proposes a novel
two-phase algorithm framework that achieves lower energy
consumption while satisfying the application’s reliability re-
quirements.

3. System Model and Problem Formulation

3.1 Heterogeneous System Model

The heterogeneous embedded system studied in this work
consists of m processor nodes, which are represented as a
set PN = {pn1, pn2, ...pnm}. All processor nodes are con-
nected via the bus and ignore data communication conflicts.

3.2 Application Model

From the system design perspective, parallel applications are
composed of precedence-constrainted tasks, which are usu-
ally represented as directed acyclic graph (DAG) [4][27][28].
Similar to [6][15][18][27][29], the parallel application is
modelled as DAG A = (T,C), where T and C are expli-
cated as follows:

T = {t1, t2, ..., tn} is a vertex set of DAG, which indi-
cates that there are n tasks in application A. C is an edge
set of DAG, which indicates the data communication rela-
tionship between tasks. The value of ci,j represents the time
required for data transmission from ti to tj . If ti and tj are
assigned to the same processor, then the data transmission
time is 0. For conveniently describing the relationship be-
tween tasks in a parallel application, the direct predecessor
tasks of ti is denoted as pred(ti) and the direct successor
tasks of ti is denoted as succ(ti). An example of DAG is
shown in Fig. 1, which consists of seven tsks and nine data
transmission edges. The edge c1,2 = 20 indicates that if t1
and t2 are assigned to the different processor, then the data
transmission time is 20; otherwise, the data transmission
time is 0.

Because the processors are heterogeneous, the required
execution time of the same task on different processor may be
different. A two-dimensional arrayn×m is used to represent
the worst case execution time (WCET) of each task execution
on different processor with maximum execution frequency.
wi,j represents the WCET of the task ti executes on processor
pnj . The WCET of ten tasks in Fig. 1 on three processor
are shown in Table 1, where the WCET of t1 on pn1, pn2,
and pn3 is 16, 12, and 18, respectively.

XU and BINLIAN ZHANG: A TWO-PHASE ALGORITHM FOR RELIABLE AND ENERGY-EFFICIENT HETEROGENEOUS EMBEDDED SYSTEMS
3

t1

t2

t3

t4

t5

t6

t7
16

22

9

10

12

20

16

18

11

Fig. 1 An example of a DAG

Table 1 WCET of tasks on different processors of the motivation example
task pn1 pn2 pn3 Rank

t1 16 12 18 107.7
t2 12 13 17 59.3
t3 13 11 16 76.3
t4 10 15 12 73.3
t5 13 10 14 35.3
t6 11 16 9 45
t7 15 7 11 11

3.3 Energy Consumption Model

Based on [7][9][29], the power dissipation of the processor
operates at frequency f is given by

P (f) = Psta + h(Pind + Pdyn)

= Psta + h(Pind + Cswif
a). (1)

In (1), Psta and Pind represent the static power and the
leakage power dissipation, respectively. Pdyn is the dynamic
power dissipation, which is related to execution frequency of
the processor. Cswi is the switching capacitance and a rep-
resents the dynamic energy exponent. When the processor
state is active, h = 1; otherwise, h = 0.

According to [5][29], the critical frequency which en-
ables a minimum total energy consumption per execution
cycle can be calculated by

fcri =
a

√
Pind

Cswi(a− 1)
. (2)

Assuming the available execution frequency of the pro-
cessor is fmin to fmax, for improving energy efficiency, the
lowest execution frequency of the processor should be

flow = max(fcri, fmin). (3)

Therefore, the discrete frequencies available for processor
pnj are fj,low to fj,max.

When task ti executes on processor pnj with exe-
cution frequency fj,k, the dynamic energy consumption
Ed(ti, pnj , fj,k) can be calculated by

Ed(ti, pnj , fj,k)

= (Pj,ind + Cj,swif
aj)× wi,j × fj,max

fj,k

, (4)

where Pj,ind, Cj,swi, and aj represent the leakage power dis-
sipation, the switching capacitance, and the dynamic energy
exponent of processor pnj , respectively.

Considering that different tasks may be executed on dif-
ferent processors, the data transmission between two proces-
sors will consume energy. Assuming that the data transmis-
sion energy consumption is proportional to the transmission
time, the energy consumption rate per unit time is expressed
as ecr [6]. Therefore, when task ti executes on processor
pnj , the data transmission energy consumption is given by

Et(ti, pnj) =
∑

tx∈pred(ti)
ecr × cx,i. (5)

In Eq. (5), if the task ti and the direct predecessor task
tx are assigned to the same processor, then the value of c′i,j
is 0; otherwise the value of c′i,j is ci,j .

According to Eqs. (4) and (5), when the task ti is
assigned to a processor, the dynamic energy consumption
can be calculated by

Ed(ti) = Ed(ti, pnap(i), fap(i),af(i))

+ Et(ti, pnap(i)), (6)

where pnap(i) and fap(i),af(i) represent the assigned pro-
cessor and corresponding execution frequency of task ti,
respectively.

From the above analysis, when all tasks in application
A are assigned to the processor, the total dynamic energy
consumption can be calculated by

Ed(A) =
∑n

i=1
Ed(ti). (7)

The static energy consumption of application A is de-
noted as Es(A), which can be calculated by

Es(A) =
∑m

j=1
Pj,sta × SL(A), (8)

where SL(A) is scheduling length of application A which is
the time from the beginning of the first task execution to the
completion of the last task. According to Eqs. (7) and (8),
the total energy consumption of the application can be given
by

E(A) = Ed(A) + Es(A). (9)

3.4 Reliability Model

The faults might occur during the execution of an applica-
tion, which can be divided into transient faults and perma-
nent faults. Since transient faults occur more commonly
than permanent faults [5][7], only transient faults are con-
sidered in this study. Assume that the probability of transient
faults during task execution follows the Poisson distribution
[5][7][6][18]. When task ti is assigned to processor pnj with
the maximum execution frequency, the reliability of which
is given by

R(ti, pnj , fj,max) = e−λj,max×wi,j , (10)

where λj,max indicates the transient fault rate per unit time
of processor pnj execution with the maximum frequency.

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

According to [5][7][9][29], the transient faults rate λj,k

of the processor pnj with execution frequency fj,k is given
by

λj,k = λj,max × 10
dj×(fj,max−fj,k)

fj,max−fj,min , (11)

where dj represents the sensitivity fault rate to corresponding
voltage and frequency scaling of the processor pnj , which is
greater than 0.

Based on Eqs. (10) and (11), when task ti is assigned
to the processor pnj with execution frequency fj,k, the reli-
ability of task ti is given by

R(ti) = R(ti, pnj , fj,k)

= e
−λj,max×10

dj×(fj,max−fj,k)

fj,max−fj,min ×
wi,j×fj,max

fj,k . (12)

When all the tasks are assigned to the processor, the
reliability of the application is given by

R(A) =

n∏
i=1

R(ti, pnap(ti), fap(ti),af(ti)). (13)

Based on Eq. (12), the obtainable maximum reliability
of task ti can be calculated by

Rmax(ti) = max
pnj∈PN

{R(ti, pnj , fj,max))}. (14)

If all the tasks are assigned with the obtainable maxi-
mum reliability, the reliability of the application will reach
the maximum, which can be calculated by

Rmax(A) =

n∏
i=1

Rmax(ti). (15)

3.5 Problem Description

Considering a parallel application A execution on a hetero-
geneous embedded system, the reliability requirement of ap-
plication is Rreq(A) ≤ Rmax(A). The problem of this work
is to determine the processor and frequency assignments for
each task in A, so that the total energy consumption can be
minimized while the application’s reliability requirement is
satisfied. The formal description is to minimize

E(A) = Ed(A) + Es(A) (16)

subject to

R(A) ≥ Rreq(A). (17)

4. The Proposed Algorithms

Because the reliability of the application is determined by
the reliability of all the tasks within the application, the reli-
ability requirement of the application can be transferred into
the reliability requirement of each task, such as the MRCRG
algorithm [6], the MaxRe algorithm [16], the RR algorithm

[17], and the ESRG algorithm [18]. The proposed algorithm
framework in this study is different from the algorithms men-
tioned above, which is divided into two phases to minimize
energy consumption while satisfying the reliability require-
ment. The first phase is for initial assignment and the second
phase is for either satisfying the reliability requirement or im-
proving energy efficiency. Initial assignment is to make each
task reach the highest reliability with a certain minimum en-
ergy consumption. In the second phase, when the reliability
of the application obtained in the first phase is lower than the
reliability requirement, then the algorithm must enhance the
reliability of certain tasks until the reliability requirement of
the application is satisfied; otherwise, the DVFS technique
can be used to improve energy efficiency.

Similar to [6][18][27], the task topology order is gen-
erated using the Rank value, which is defined as

Rank(ti) = wi + max
tj∈succ(ti)

{ci,j +Rank(tj)}. (18)

In Eq. (18), the wi is average WCET of the task ti on
each processor, which can be calculated by

wi =

(∑M

j=1
wi,j

)/
m. (19)

The Rank values of each task of application in motiva-
tional example are shown in Table 1, the task with a greater
the Rank value has a higher priority. Therefore, before the
application is executed, we sort the task in a non-increasing
order of Rank values, which can make the task-execution in
the correct order.

4.1 Initial Assignment

The algorithm of the first phase is named initial assignment
with minimum energy consumption (IMEC). Based on afore-
mentioned, the IMEC algorithm is shown in Algorithm 1.

The main objective of the IMEC algorithm is to achieve
high reliability with relatively low energy consumption. For
task ti, IMEC first assigns it to the processor with the low-
est energy consumption without applying DVFS, so that the
minimum energy consumption e and corresponding reliabil-
ity can be calculated. Then, IMEC traverses other processor
and frequency combinations, searching whether task ti can
achieve higher reliability when the energy consumption is
less than or equal to e.

The details of the IMEC algorithm are as follows. Line
1 initializes the scheduling queue qt, while lines 2-26 use a
while loop to schedule each task. For task ti, IMEC traverses
all processors to find the minimum energy consumption e
required to execute task ti without using DVFS, as well as
its corresponding reliability r (Lines 5-13). Lines 14-25 are
double-layer for loops used to traverse the combination of
processor and execution frequency. Line 16 calculates the
energy consumption of task ti. If the energy consumption
is less than or equal to e and the reliability is higher than
r (Lines 17-19), the processor and execution frequency for
executing task ti are updated (Line 21).

XU and BINLIAN ZHANG: A TWO-PHASE ALGORITHM FOR RELIABLE AND ENERGY-EFFICIENT HETEROGENEOUS EMBEDDED SYSTEMS
5

Algorithm 1 IMEC
Require: PN = {pn1, pn2, ...pnm}, A and Rreq(A)
Ensure: R(A)
1: sort the tasks to queue qt by non-increasing order of Rank value
2: while qt is not empty do
3: ti ← queuet.out()
4: e←∞
5: for each processor pnj ∈ PN do
6: calculate Ed(ti) using Eq. (6)
7: if Ed(ti) < e then
8: e← Ed(ti)
9: calculate R(ti) using Eq. (12)

10: r ← R(ti)
11: ap(i)← j
12: end if
13: end for
14: for each processor pnj ∈ PN and j ̸= ap(i) do
15: for frequency fj,k from fj,low to fj,max do
16: calculate Ed(ti) using Eq. (6)
17: if Ed(ti) ≤ e then
18: calculate R(ti) using Eq. (12)
19: if R(ti) > r then
20: r ← R(ti)
21: ap(i)← j and af(i)← k
22: end if
23: end if
24: end for
25: end for
26: end while
27: calculate R(A) using Eq. (13)

The time complexity of the IMEC algorithm is analyzed
as follows. For each task ti, IMEC calculates the minimum
energy consumption e and the corresponding reliability r
can be completed in O(n×m) time. Then, IMEC traverses
other processors and frequency levels, which can be done
in O(n×m× fs) time, where fs represents the maximum
number of available discrete frequencies of the processor.
Therefore, the time complexity of IMEC is O(n2×m×fs).

The IMEC algorithm obtains the initial reliability of
the application. If the reliability requirement is higher than
that obtained by IMEC, it is necessary to enhance reliability
of certain tasks until the reliability requirement of the ap-
plication is satisfied. In the following, we will enhance the
reliability of some tasks to satisfy the reliability requirement
of the application.

4.2 Enhancing the Reliability of Tasks

In order to enhance the reliability of the application, we
first give the method for choosing tasks that need enhanced
reliability.

(1) We choose tasks with relatively low reliability to
enhance. This method can quickly enhance the reliability of
the application.

(2) We choose tasks that have great potential for en-
hancing reliability. This method may not increase too much
energy consumption when improving the reliability of the
task, because there are more options for allocatable proces-
sors and frequency levels.

The following introduces how to choose tasks that have

the potential to enhance reliability.
Define the current reliability ratio (CRR), which is the

ratio of the current reliability of the task to the maximum
reliability of the task.

CRR(ti) =
Rcur(ti)

Rmax(ti)
(20)

In Eq. (20), Rcur(ti) represents the current reliability
of task ti. Obviously, CRR(ti) is less than or equal to 1.
CRR(ti) = 1 indicates that task ti has been assigned with
the maximum reliability. If CRR values of all tasks equal
to 1, the reliability of application will reach Rmax(A); oth-
erwise, the reliability of application is lower than Rmax(A).
It is not difficult to find that tasks with small CRR value has
great potential to improve reliability.

When the IMEC algorithm is completed, the reliabil-
ity and initial CRR value of all the tasks can be obtained.
For example, we assume that the power and reliability pa-
rameters for all processors are known and shown in Table
2, where the maximum frequency fj,max for each processor
is normalized to 1.0. The maximum reliability of the ap-
plication in motivational example is 0.9750174, which can
be obtained by Eq. (15). Table 3 shows the initial CRR
value of the tasks in motivation application when the IMEC
algorithm is completed.

Table 2 power and reliability parameters of processors
pnj Pj,sta Pj,ind Cj,swi aj λj,max dj
pn1 0.01 0.03 1.2 2.8 0.0003 2.1
pn2 0.01 0.05 1.0 2.6 0.0004 2.0
pn3 0.01 0.07 0.9 2.7 0.0006 2.2

Table 3 The initial CRR value of the tasks in motivation application
when the IMEC algorithm is completed.

ti pnj Frequency R(ti) Rmax(ti) CRR
t1 2 1 0.9952115 0.9952115 1
t3 2 1 0.9956097 0.9961076 0.9995001
t4 1 0.9 0.9933712 0.9970045 0.9963558
t2 2 1 0.9948135 0.9964065 0.9984013
t6 3 1 0.9946146 0.9967054 0.9979022
t5 2 1 0.9960080 0.9961076 0.9999
t7 2 1 0.9972039 0.9972039 1

As shown in Table 3, the CRR value of the tasks t2, t3,
t4, t5, and t6 are less than 1, which indicates that the relia-
bility of these tasks can be enhanced. When the reliability
of a task is enhanced, the reliability of the application will
be enhanced. Assuming that the reliability of task ti is en-
hanced from Rcur(ti) to Rnew(ti), the enhanced reliability
of application can be calculated by

R(A) =
Rcur(A)

Rcur(ti)
×Rnew(ti), (21)

where Rcur(A) represents the current reliability of the ap-
plication before task enhanced.

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

In addition, if task ti is reassigned to a new proces-
sor, it will affect the communication energy consumption of
directly successor tasks, which can be calculated by

Esucc(ti, pnj) =
∑

tx∈succ(ti)
ecr × ci,x. (22)

Based on the above analysis, the algorithm for enhanc-
ing the reliability of tasks (ERT) is described as Algorithm
2.

The main ideas of the ERT algorithm are as follows.
When the reliability of the application is lower than the
reliability requirement, ERT repeatedly chooses the task to
enhance the reliability until the reliability requirement of
the application is satisfied. The details of main idea are
explained as follows.

(1) Line 2 chooses an appropriate task ti that has rela-
tively low reliability and great potential for enhancing relia-
bility (call the LRGP algorithm).

(2) If task ti is executed at a lower frequency, ERT will
increase its execution frequency (Lines 3-4). Otherwise,
ERT traverses all processes and corresponding frequency
levels to search for combinations with reliability greater than
R(ti) and minimum energy consumption (Lines 6-19).

(3) Line 21 updates R(A).

Algorithm 2 ERT
Require: results of IMEC and Rreq(A)
Ensure: R(A) and E(A)
1: while R(A) < Rreq(A) do
2: call the LRGP algorithm to obtain the task ti that need to enhance

reliability
3: if ti with the reduced execution frequency then
4: increase the execution frequency of ti by one level
5: else
6: e =∞
7: for each processor pnj ∈ PN and j ̸= ap(i) do
8: for frequency fj,k from fj,low to fj,max do
9: calculate Rnew(ti) using Eq. (12)

10: if Rnew(ti) > R(ti) then
11: calculate Enew(ti) using Eq. (6)
12: calculate Esucc(ti) using Eq. (22)
13: if Enew(ti) + Esucc(ti) < e then
14: e = Enew(ti) + Esucc(ti)
15: ap(i)← j and af(i)← k
16: end if
17: end if
18: end for
19: end for
20: end if
21: update R(A) using Eq. (21)
22: end while
23: calculate E(A) using Eq. (9)

In the ERT algorithm, the while loop is executed for one
iteration. Because each iteration will enhance the reliability
of a task, the reliability of the application can be constantly
enhanced until R(A) ≥ Rreq(A) by using iteration.

The time complexity of ERT is analyzed as follows.
During each iteration, obtaining task ti has time complexity
O(n) (the LRGP algorithm). In Lines 7-19, ERT needs to

Algorithm 3 LRGP
Require: results of current scheduling
Ensure: ti
1: traverse the task queue to find the first task tk whose CRR value is not

equal to 1
2: i← k
3: for x← k + 1 to n do
4: if R(tx) < R(ti) and CRR(tx) < CRR(ti) then
5: i← x
6: end if
7: end for

traverse all the processors and all corresponding execution
frequency levels to find the suitable processor with higher
reliability and minimum energy consumption, which has
time complexity O(n×m× fs). Because there are n tasks
and m processors, the maximum number of iterations is
n ×m × fs. Therefore, the worst case time complexity of
the ERT algorithm is O(n2 ×m2 × fs2).

4.3 Improving Energy Efficiency

Sometimes, the reliability requirement of application may be
lower than the reliability generated by the IMEC algorithm.
In this case, we can reduce the frequency of the processor
to improve energy efficiency. Due to the reduction of the
execution frequency, the reliability of the task will be dra-
matically weakened. According to the idea of choosing tasks
by ERT, in this algorithm, the tasks with the relatively high
reliability and large CRR should be selected preferentially.
Based on the above ideas, an algorithm for improving energy
efficiency (IEE) is designed as Algorithm 4.

Algorithm 4 IEE
Require: results of current scheduling and Rreq(A)
Ensure: R(A) and E(A)
1: rcs← reliability of current scheduling
2: while R(A) > Rreq(A) do
3: choose the task ti with the relatively high reliability and large CRR
4: calculate Rnew(ti) after reducing the one level execution frequency
5: rcs← rcs

R(ti)
×Rnew(ti)

6: if rcs > Rreq(A) then
7: reduce the execution frequency of task ti by one level
8: R(A)← rcs
9: end if

10: end while
11: calculate E(A) using Eq. (9)

The IEE algorithm is mainly a while loop. When the
current reliability of the application is higher than the re-
liability requirement, IEE repeatedly chooses the task with
relatively high reliability and large CRR to reduce their ex-
ecution frequency. Lines 4-5 calculate the reliability of the
application after reducing the execution frequency of task ti.
Line 7 indicates that if the reliability of the application still
satisfies the requirement, IEE will reduce the execution fre-
quency of task ti by one level. Line 8 updates the reliability
of current scheduling.

XU and BINLIAN ZHANG: A TWO-PHASE ALGORITHM FOR RELIABLE AND ENERGY-EFFICIENT HETEROGENEOUS EMBEDDED SYSTEMS
7

The time complexity of the IEE algorithm is analyzed
as follows. Fisrt, IEE chooses a suitable task, which has
time complexity O(n). Then, IEE reduces the execution fre-
quency of task and calculates the reliability, which has time
complexity O(1). There are n tasks and fs level execution
frequency, so the worst time complexity of IEE is O(n2×fs).

5. Experimental Performance Evaluation

5.1 Experimental Parameters

The C++ program is used to implement a scheduling simu-
lator. The experimental parameters are mainly taken from
[6][7][18] and listed as follows:

(1) The WCET of task ti assigned to the processor pnj

is 10ms ≤ wi,j ≤ 100ms, the communication time between
ti and tj is 10 ms ≤ ci,j ≤ 100 ms.

(2) For processor pnj , Pj,sta = 0.01, 0.03 ≤ Pj,ind ≤
0.07, 0.8 ≤ Cj,swi ≤ 1.2, and 2.5 ≤ aj ≤ 3.0. The
maximum frequency is normalized to fj,max = 1.0 GHz and
the lowest frequency is calculated by Eq. (3), the difference
between adjacent frequency levels is 0.1 GHz.

(3) The communication energy consumption rate is
ecr = 0.2 W.

(4) The transient faults rate of processor pnj exe-
cutes with maximum frequency is 0.000001 ≤ λj,max ≤
0.000009, and the sensitivity faults rate of voltage/frequency
scaling is 1.0 ≤ dj ≤ 3.0.

(5) Similar to [6], a simulated heterogeneous platform
with 32 processors is constructed to execute applications.

Considering that ESRG [18] reduces energy consump-
tion while satisfying the reliability requirement, the state-
of-the-art RR [17] and MRCRG [6] consume fewer re-
sources than MaxRe [16]. However, the RR and MRCRG
do not reduce the execution frequency to improve energy
efficiency. For that matters, we include DVFS techniques as
further extension according to the ESRG algorithm frame-
work, and these two extended algorithms are called as RR-D
and MRCRG-D, respectively. Then, the proposed two-phase
(TP) algorithm will be compared with the RR, RR-D, MR-
CRG, MRCRG-D,and ESRG algorithms.

Gaussian elimination (GE) and Fourier transform (FT)
are widely used as DAG-based parallel applications for algo-
rithm evaluation [6][15][18][29], because GE and FT have
the characteristics of low and high parallelism respectively.
Therefore, these two applications are used to evaluate the
algorithms, and their introduction is as follows.

GE application: A nonnegative integer s is used to
describe the size of the GE application, the total number of
tasks in application is n = s2+s−2

2 .
FT application: A nonnegative integer s is used to de-

scribe the size of the FT application, the total number of tasks
in application is n = (2 × s − 1) + s × logs2 with s = 2y ,
where y is a nonnegative integer. The DAG structures of
GE and FT applications can be found in references [6], [15],
[18], and [29].

5.2 Different Task Numbers

Experiment 1: This experiment uses GE application with
different total number of tasks to compare the algorithms.
The reliability requirement of the application is 0.95. Scale
parameter s increases from 16 to 40 with increments of
4 (i.e., the total number of tasks is 135, 209, 299, 405,
527, 665, and 819 respectively). The energy consumption,
obtained reliability, and the scheduling length with different
algorithms are shown in Fig. 2.

Fig. 2(a) shows the energy consumptions of the dif-
ferent algorithms. As the total number of tasks increases,
the energy consumptions of the six algorithms are increased.
Overall, MRCRG-D generates the most energy consumption,
and RR second. TP generates the least energy consump-
tion. In details, the energy consumption generated by TP is
90.3% of RR, 94.1% of RR-D, 91.0% of MRCRG, 72.9% of
MRCRG-D, and 94.6% of ESRG.

Fig. 2(b) shows the reliabilities of the different al-
gorithms. The reliabilities obtained by RR-D, MRCRG-D,
ESRG, and TP are almost the same, which are slightly higher
than the reliability requirement. However, the reliabilities
obtained by RR and MRCRG are much higher than the reli-
ability requirement.

Fig. 2(c) shows the scheduling lengths of the different
algorithms. The difference of scheduling length generated
by RR, and MRCRG is not obvious, but the scheduling length
generated by MRCRG-D is significantly larger than that of
other algorithms. Whenever the scheduling length generated
by TP is smaller than that generated by MRCRG-D and
ESRG.

Experiment 2: This experiment uses FT application
with different total number of tasks to compare the algo-
rithms. The reliability requirement of the application is
0.95. Scale parameter s is 8, 16, 32, 64, and 128 respec-
tively (i.e., the total number of tasks is 39, 95, 223, 511,
and 1151 respectively). The energy consumption, obtained
reliability, and the scheduling length of the algorithms are
shown in Fig. 3.

As shown in Fig. 3(a), as the total number of tasks
increase, the energy consumption of the six algorithms are
also increased. In details, the energy consumption generated
by TP is 85.8% of RR, 93.8% of RR-D, 88.4% of MRCRG,
76.3% of MRCRG-D, and 85.9% of ESRG. Notice that when
the total number of tasks is greater than or equal to 819, the
reliability of the application can not be reached to 0.95 using
RR and RR-D. In other words, when the number of tasks
is equal to 1151, tasks will not be scheduled appropriately
using RR and RR-D. Therefore, the schedule results at 1151
tasks using RR and RR-D are not plotted in the figure.

As shown in Fig. 3(b), the reliabilities obtained by
RR-D, MRCRG-D, ESRG, and TP are slightly higher than
reliability requirement, and the reliabilities obtained by RR
and MRCRG are much higher than reliability requirement.
when the total number of tasks is greater than or equal to
1151, the reliability of the application can not be reached to

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

0

5000

10000

15000

20000

25000

30000

en
er

gy
 c

on
su

m
pt

io
n

(m
J)

total number of tasks

 RR
 RR-D
 MRCRG
 MRCRG-D
 ESRG
 TP

135 209 299 405 527 665 819

(a) The energy consumptions

0.94

0.95

0.96

0.97

0.98

0.99

1.00

135 209 299 405 527 665 819

re
lia

bi
lit
y

total number of tasks

 RR
 RR-D
 MRCRG
 MRCRG-D
 ESRG
 TP

(b) The reliability values

0

1000

2000

3000

4000

5000

6000

7000

8000

sc
he

du
lin

g
le

ng
th

 (m
s)

 RR
 RR-D
 MRCRG
 MRCRG-D
 ESRG
 TP

total number of tasks
135 209 299 405 527 665 819

(c) The scheduling lengths

Fig. 2 GE applications for different total number of tasks. (Experiment 1).

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

en
er

gy
 c

on
su

m
pt

io
n

(m
J)

total number of tasks

 RR
 RR-D
 MRCRG
 MRCRG-D
 ESRG
 TP

39 95 223 511 1151

(a) The energy consumptions

0.94

0.95

0.96

0.97

0.98

0.99

1.00

39 95 223 511 1151

re
lia

bi
lit
y

total number of tasks

 RR
 RR-D
 MRCRG
 MRCRG-D
 ESRG
 TP

(b) The reliability values

0

1000

2000

3000

4000

5000

6000

39 95 223 511 1151

sc
he

du
lin

g
le

ng
th

 (m
s)

 RR
 RR-D
 MRCRG
 MRCRG-D
 ESRG
 TP

total number of tasks

(c) The scheduling lengths

Fig. 3 FT applications for different total number of tasks. (Experiment 2).

0.95 using RR and RR-D.
As shown in Fig. 3(c), MRCRG-D generates the largest

scheduling length, while other algorithms generate relatively
small scheduling lengths when the total number of tasks is
less than or equal to 511.

The result of Experiment 2 is similar to that of Exper-
iment 1, The TP algorithm can always make the application
satisfy the reliability requirement and generate the least en-
ergy consumption.

The main reasons for the above two experimental results
can be explained as follows.

(1) RR and RR-D assume that the tasks that have
not been assigned are with the same reliability require-
ment, ESRG also assumes the tasks that have not been as-
signed have the same reliability requirements Rubrg(ti) =
n
√
Rreq(A). When the tasks are assigned to the processor,

the actual reliability of tasks are little difference in ESRG
and RR. However, the reliability requirements of all tasks in
ESRG are more balanced than that in RR and RR-D. In RR
and RR-D, the reliability of some tasks may be reduced too
low (relative to ESRG), so the tasks that have not been as-
signed must be executed with higher reliability. As a result,
sometimes, due to the task’s reliability requirement is too
higher, no processor can satisfy such requirement. There-
fore, When the number of tasks becomes larger, RR and
RR-D can not make the application to achieve the reliability
requirement. In General, In RR, RR-D, and ESRG, the reli-

ability requirement of tasks are not very different from each
other. Hence, the application’s energy consumption and the
actual reliability generated by RR-D and ESRG is almost the
same.

(2) When DVFS technique is used in the algorithms,
The RR-D and MRCRG-D algorithm reduces the execution
frequency as much as possible. In MRCRG-D, the reliabil-
ity requirement of early assigned few tasks is too lower, thus
more later-assigned tasks must be executed with the high-
est reliability, which takes more efforts to improve energy
efficiency. Therefore, MRCRG-D generates more energy
consumption than other algorithms.

(3) In TP, the task will be assigned to a processor with
minimal energy consumption in the first phase using IMEC.
When the reliability requirement of the application is higher
than the reliability generated by IMEC, TP chooses the tasks
that have relatively low reliability and great potential to en-
hance the reliability. Therefore, the tasks are assigned to
the processor of higher energy efficiency more easily. When
the reliability requirement of the application is lower than
the reliability generated by IMEC, TP reduces the execution
frequency of many tasks, other tasks are still assigned to
processors with minimal energy consumption. Other algo-
rithms first transform the reliability requirement of the appli-
cation into the reliability requirement of each task, and then
assign the tasks to the processor that satisfy the reliability
requirements. However, some tasks may have relatively high

XU and BINLIAN ZHANG: A TWO-PHASE ALGORITHM FOR RELIABLE AND ENERGY-EFFICIENT HETEROGENEOUS EMBEDDED SYSTEMS
9

0

5000

10000

15000

20000

en
er

gy
 c

on
su

m
pt

io
n

(m
J)

reliability requirement

 RR RR-D MRCRG
 MRCRG-D ESRG TP

0.91 0.92 0.93 0.94 0.95 0.96 0.97

(a) The energy consumptions

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

0.91 0.92 0.93 0.94 0.95 0.96 0.97

re
lia

bi
lit
y

reliability requirement

 RR RR-D MRCRG
 MRCRG-D ESRG TP

(b) The reliability values

0

1000

2000

3000

4000

5000

6000

0.91 0.92 0.93 0.94 0.95 0.96 0.97

sc
he

du
lin

g
le

ng
th

 (m
s)

 RR RR-D MRCRG
 MRCRG-D ESRG TP

reliability requirement

(c) The scheduling lengths

Fig. 4 GE applications for different reliability requirements. (Experiment 3).

reliability requirements, which are difficult to be allocated
to high efficient processors resulting in significant energy
overhead. Compared with these algorithms, the proposed
TP consumes much less energy.

(4) When DVFS technique is used in the algorithms, in
order to improve energy efficiency, the execution frequency
of task is reduced as much as possible. As a result, the actual
reliability of the assigned tasks will be slightly higher than
the reliability requirement. In contrast, when the algorithm
without using DVFS technique, the actual reliability of the
assigned tasks may be much higher than the reliability re-
quirement. Therefore, the actual reliability generated by RR
and MRCRG are much higher than reliability requirement,
the actual reliability generated by RR-D, MRCRG-D, ESRG,
and TP are slightly higher than reliability requirement.

(5) All algorithms do not consider scheduling length. In
MRCRG-D, the tasks that are executed later must be executed
with the highest reliability, which may lead some tasks that
can be executed in parallel to be assigned to the same proces-
sor. MRCRG may do the same, but MRCRG does not reduce
the execution frequency of task. Therefore, the scheduling
length generated by MRCRG-D is longer than that of other
algorithms. When the number of tasks is relatively large, the
reliability requirement of each task is relatively high. In this
case, TP first considers increasing the execution frequency
of the tasks and generates the minimum scheduling length.

5.3 Different Reliability Requirements

Experiment 3: This experiment uses GE applications with
different reliability requirements to compare the algorithms.
Scale parameter s = 32 (i.e., the total number of tasks
is 527). The reliability requirement of the application is
changed from 0.91 to 0.97 with each increment of 0.01. The
energy consumption, obtained reliability, and the scheduling
length of the algorithms are shown in Fig. 4.

As shown in Fig. 4(a), when the reliability requirement
of the application is changed from 0.91 to 0.96, the change
of energy consumption generated by all algorithms is small.
When the reliability requirement of the application reaches
0.97, The energy consumption generated by all algorithms
increases significantly. The main reasons can be explained as

follows. When the reliability requirement of the application
is lower than 0.96, due to the reliability requirement is not
very high, all algorithms are more easily assign tasks to
higher energy efficiency processor. On the contrary, when
the reliability requirement of the application is higher than
0.96, the tasks are more difficult assign to higher energy
efficiency processor. Overall, TP generates the least energy
consumption. In details, the energy consumption generated
by TP is 85.8% of RR, 90.1% of RR-D, 90.2% of MRCRG,
72.4% of MRCRG-D, and 94.2% of ESRG.

As shown in Fig. 4(b), when the application is sched-
uled with RR-D, MRCRG-D, ESRG, and TP, the reliabilities
of application obtained by these algorithms are about the
same and slightly higher than reliability requirement. When
the application is scheduled with RR and MRCRG, the reli-
ability of the application is obviously higher than reliability
requirement of the application.

As shown in Fig. 4(c), when the reliability requirement
of the application is increased, the change of scheduling
length generated by all algorithms is not significant, but the
scheduling length generated by TP is always less than that
generated by RR-D, MRCRG-D, and ESRG.

Experiment 4: This experiment uses FT applications
with different reliability requirements to compare the algo-
rithms. Scale parameter s = 64 (i.e., the total number of
tasks is 511). The reliability requirement of the applica-
tion is increased from 0.91 to 0.97 with each increment of
0.01. The energy consumption, obtained reliability, and the
scheduling length of the algorithms are shown in Fig. 5.

As shown in Fig. 5(a), when the reliability requirement
is lower than 0.96, the energy consumption generated by all
algorithms has little change. When the reliability require-
ment reaches 0.97, the energy consumption generated by all
the algorithms increases significantly. Similar to the pre-
vious experimental results, the TP algorithm generates the
least energy consumption.

As shown in Fig. 5(b), all algorithms can make the
reliability of the application satisfy the requirements. RR-
D, MRCRG-D, ESRG, and TP generate almost the same
reliability.

As shown in Fig. 5(c), whenever MRCRG-D generates
the maximum scheduling length. with the reliability require-

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

0

5000

10000

15000

20000

en
er

gy
 c

on
su

m
pt

io
n

(m
J)

reliability requirement

 RR RR-D MRCRG
 MRCRG-D ESRG TP

0.91 0.92 0.93 0.94 0.95 0.96 0.97

(a) The energy consumptions

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

0.91 0.92 0.93 0.94 0.95 0.96 0.97

re
lia

bi
lit
y

reliability requirement

 RR RR-D MRCRG
 MRCRG-D ESRG TP

(b) The reliability values

0

500

1000

1500

2000

2500

3000

0.91 0.92 0.93 0.94 0.95 0.96 0.97

sc
he

du
lin

g
le

ng
th

 (m
s)

 RR RR-D MRCRG
 MRCRG-D ESRG TP

reliability requirement

(c) The scheduling lengths

Fig. 5 FT applications for different reliability requirements. (Experiment 4).

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

en
er

gy
 c

on
su

m
pt

io
n

(m
J)

communication energy consumption rate

 RR RR-D MRCRG
 MRCRG-D ESRG TP

(a) The energy consumptions

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

re
lia

bi
lity

communication energy consumption rate

 RR RR-D MRCRG
 MRCRG-D ESRG TP

(b) The reliability values

0

2000

4000

6000

8000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sc
he

du
lin

g
le

ng
th

 (m
s)

 RR RR-D MRCRG
 MRCRG-D ESRG TP

communication energy consumption rate

(c) The scheduling lengths

Fig. 6 GE applications for different data transmission energy consumption rates. (Experiment 5).

ment of the application increases, the scheduling length gen-
erated by TP tends to decrease but is not obvious. When
the reliability requirement increases from 0.91 to 0.95, the
scheduling length generated by RR-D and ESRG also tends
to decrease, but the scheduling length generated by RR and
MRCRG almost remains unchanged. However, when the
reliability requirement exceeds 0.95, the scheduling length
generated by RR, RR-D MRCRG, and ESRG tends to in-
crease.

5.4 Different Data Transmission Energy Consumption
Rates

Experiment 5: This experiment compares the algorithms
for different data transmission energy consumption rates.
GE applications with s = 36 (i.e., the total number of tasks
is 665) are used in this experiment. The reliability require-
ment of the application is 0.95. The data transmission energy
consumption rate ecr is increased from 0.1 to 0.9 with each
increment of 0.1. The energy consumption, obtained relia-
bility, and the scheduling length of the algorithms are shown
in Fig. 6.

Fig. 6(a) shows the energy consumptions with differ-
ent algorithms. According to the results, as ecr increases,
the energy consumption generated by all algorithms also in-
creases. It is worth noting that the differences in energy
consumption for each algorithms will be greater. The main

reasons are as follows. The same task may be assigned to
different processors by different algorithms, which will lead
to the difference in data transmission energy consumption
becomes larger. Overall, the TP algorithm generates the
lowest energy consumption than other algorithms.

As shown in Fig. 6(b), the reliabilities obtained by
RR-D, MRCRG-D, ESRG, and TP are slightly higher than
reliability requirement, and the reliability obtained by RR is
much higher than reliability requirement. The experimental
results are similar to that of the previous four experiments.

As shown in Fig. 6(c), when ecr increases from 0.1
to 0.5, the scheduling length of all algorithms has little
changes, and the scheduling length of MRCRG-D is the
longest. However, when ecr increases from 0.5 to 0.9, the
scheduling length generated by RR, MRCRG and TP algo-
rithms increases significantly. This happens because these
three algorithms have more processors to choose when as-
signing tasks. When ecr is too high, these algorithms may
choose processors with lower data transmission energy con-
sumption to execute tasks, which will increase the scheduling
length.

From the result of Experiment 1 to Experiment 5, it
can be summarized as follows:

(1) Under different application scenarios, TP always
generates the least energy consumption in all the algorithms.

(2) When the DVFS technique is used to reduce the exe-
cution frequency of some tasks, the total energy consumption

XU and BINLIAN ZHANG: A TWO-PHASE ALGORITHM FOR RELIABLE AND ENERGY-EFFICIENT HETEROGENEOUS EMBEDDED SYSTEMS
11

may be increased. However TP can make good use of DVFS
technique to improve energy efficiency.

(3) TP can generate relatively small scheduling length
in most cases and the changes of application’s reliability
requirement have a little effect on the scheduling length.

6. Conclusions

This paper presents a two-phase algorithm framework to
minimize energy consumption while satisfying reliability
requirement of the application. Experimental results demon-
strate that the proposed algorithm consumes less energy than
the state-of-the-art algorithms. We think that the proposed
algorithm can be applied to the design phase of heteroge-
neous embedded systems. In future work, both scheduling
length and reliability requirement will be considered. For
instance, when the DVFS technique is used to improve en-
ergy efficiency, the values of slack time will be taken into
account.

Acknowledgments

The research was partially funded by the National Natural
Science Foundation of China (Grant Nos. 62062036)

References

[1] X. Zhu, C. He, K. Li, and X. Qin, “Adaptive energy-efficient schedul-
ing for real-time tasks on dvs-enabled heterogeneous clusters,” Jour-
nal of parallel and distributed computing, vol.72, no.6, pp.751–763,
2012.

[2] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task schedul-
ing on heterogeneous computing systems,” Parallel and Distributed
Systems, IEEE Transactions on, vol.25, no.11, pp.2867–2876, 2014.

[3] K. Li, “Power and performance management for parallel computa-
tions in clouds and data centers,” Journal of Computer and System
Sciences, vol.82, no.2, pp.174–190, 2016.

[4] G. Xie, G. Zeng, X. Xiao, R. Li, and K. Li, “Energy-efficient schedul-
ing algorithms for real-time parallel applications on heterogeneous
distributed embedded systems,” IEEE Transactions on Parallel and
Distributed Systems, vol.28, no.12, pp.3426–3442, Dec 2017.

[5] D. Zhu and H. Aydin, “Reliability-aware energy management for
periodic real-time tasks,” Computers, IEEE Transactions on, vol.58,
no.10, pp.1382–1397, 2009.

[6] G. Xie, Y. Chen, Y. Liu, Y. Wei, R. Li, and K. Li, “Resource con-
sumption cost minimization of reliable parallel applications on het-
erogeneous embedded systems,” IEEE Transactions on Industrial
Informatics, vol.13, no.4, pp.1629–1640, 2017.

[7] D. Zhu, “Reliability-aware dynamic energy management in depend-
able embedded real-time systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol.10, no.2, p.26, 2010.

[8] B. Zhao, H. Aydin, and D. Zhu, “Shared recovery for energy effi-
ciency and reliability enhancements in real-time applications with
precedence constraints,” ACM Transactions on Design Automation
of Electronic Systems, vol.18, no.2, p.23, 2013.

[9] M. Lin, Y. Pan, L.T. Yang, M. Guo, and N. Zheng, “Scheduling co-
design for reliability and energy in cyber-physical systems,” IEEE
Transactions on Emerging Topics in Computing, vol.1, no.2, pp.353–
365, 2013.

[10] M. Fan, Q. Han, and X. Yang, “Energy minimization for on-line
real-time scheduling with reliability awareness,” Journal of Systems
and Software, vol.127, pp.168 – 176, 2017.

[11] H. Xu, R. Li, L. Zeng, K. Li, and C. Pan, “Energy-efficient schedul-
ing with reliability guarantee in embedded real-time systems,” Sus-
tainable Computing: Informatics and Systems, vol.18, pp.137–148,
2018.

[12] P. Derler, E. Lee, A.S. Vincentelli, et al., “Modeling cyber–physical
systems,” Proceedings of the IEEE, vol.100, no.1, pp.13–28, 2012.

[13] I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A.L. King,
M. Mullenfortino, S. Park, A. Roederer, et al., “Challenges and
research directions in medical cybercphysical systems,” Proceedings
of the IEEE, vol.100, no.1, pp.75–90, 2012.

[14] K. Li, “Energy-efficient task scheduling on multiple heterogeneous
computers: Algorithms, analysis, and performance evaluation,”
IEEE Transactions on Sustainable Computing, vol.1, no.1, pp.7–19,
2016.

[15] G. Xie, J. Jiang, Y. Liu, R. Li, and K. Li, “Minimizing energy
consumption of real-time parallel applications using downward and
upward approaches on heterogeneous systems,” IEEE Transactions
on Industrial Informatics, vol.13, no.3, pp.1068–1078, June 2017.

[16] L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, “Fault-tolerant scheduling
with dynamic number of replicas in heterogeneous systems,” High
Performance Computing and Communications (HPCC), 2010 12th
IEEE International Conference on, pp.434–441, IEEE, 2010.

[17] L. Zhao, Y. Ren, and K. Sakurai, “Reliable workflow scheduling
with less resource redundancy,” parallel computing, vol.39, no.10,
pp.567–585, 2013.

[18] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, and K. Li, “Energy-efficient
fault-tolerant scheduling of reliable parallel applications on hetero-
geneous distributed embedded systems,” IEEE Transactions on Sus-
tainable Computing, vol.3, no.3, pp.167–181, 2018.

[19] J. Mei, K. Li, X. Zhou, and K. Li, “Fault-tolerant dynamic reschedul-
ing for heterogeneous computing systems,” Journal of Grid Comput-
ing, vol.13, no.4, pp.507–525, 2015.

[20] S. Wang, K. Li, J. Mei, G. Xiao, and K. Li, “A reliability-aware task
scheduling algorithm based on replication on heterogeneous com-
puting systems,” Journal of Grid Computing, vol.15, no.1, pp.23–39,
2017.

[21] L. Zhang, K. Li, C. Li, and K. Li, “Bi-objective workflow scheduling
of the energy consumption and reliability in heterogeneous comput-
ing systems,” Information Sciences, vol.379, pp.241 – 256, 2017.

[22] H. Xu, R. Li, C. Pan, and K. Li, “Minimizing energy consumption
with reliability goal on heterogeneous embedded systems,” Journal
of Parallel and Distributed Computing, vol.127, pp.44–57, 2019.

[23] N. Kumar, J. Mayank, and A. Mondal, “Reliability aware energy
optimized scheduling of non-preemptive periodic real-time tasks on
heterogeneous multiprocessor system,” IEEE Transactions on Paral-
lel and Distributed Systems, vol.31, no.4, pp.871–885, 2019.

[24] J. Liu, Z. Zhu, and C. Deng, “A novel and adaptive transient fault-
tolerant algorithm considering timing constraint on heterogeneous
systems,” IEEE Access, vol.8, pp.103047–103061, 2020.

[25] J. Peng, K. Li, J. Chen, and K. Li, “Reliability/performance-aware
scheduling for parallel applications with energy constraints on het-
erogeneous computing systems,” IEEE Transactions on Sustainable
Computing, 2022.

[26] S. Safari, M. Ansari, H. Khdr, P. Gohari-Nazari, S. Yari-Karin,
A. Yeganeh-Khaksar, S. Hessabi, A. Ejlali, and J. Henkel, “A survey
of fault-tolerance techniques for embedded systems from the per-
spective of power, energy, and thermal issues,” IEEE Access, vol.10,
pp.12229–12251, 2022.

[27] H. Topcuoglu, S. Hariri, and M.y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous computing,”
IEEE transactions on parallel and distributed systems, vol.13, no.3,
pp.260–274, 2002.

[28] Z. Tang, L. Qi, Z. Cheng, K. Li, S.U. Khan, and K. Li, “An energy-
efficient task scheduling algorithm in dvfs-enabled cloud environ-
ment.,” Journal of Grid Computing, vol.14, no.1, pp.55–74, 2016.

[29] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li, “Maximizing
reliability with energy conservation for parallel task scheduling in a

12
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

heterogeneous cluster,” Information Sciences, vol.319, pp.113–131,
2015.

[30] T. Mladenov, S. Nooshabadi, and K. Kim, “Implementation and
evaluation of raptor codes on embedded systems,” IEEE Transactions
on Computers, vol.60, no.12, pp.1678–1691, 2011.

Hongzhi XU received the Ph.D. degree
in computer science and engineering from Hu-
nan University, Changsha, China, in 2018. He
is a professor at Jishou University, Zhangjiajie,
China. His research interests include heteroge-
neous computing systems and energy-efficient
computing.

Binlian ZHANG received the M.S. degree in
computer science and engineering from Hunan
Normal University, Changsha, China, in 2007.
She is an associate professor at Jishou Univer-
sity, Zhangjiajie, China. Her research interests
include heterogeneous computing systems and
energy-efficient computing.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

