
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.7 JULY 2024
825

PAPER
Research on the Switch Migration Strategy Based on Global
Optimization

Xiao’an BAO†, Shifan ZHOU†, Biao WU†a), Xiaomei TU†, Yuting JIN†, Qingqi ZHANG†,
and Na ZHANG†, Nonmembers

SUMMARY With the popularization of software defined networks,
switch migration as an important network management strategy has at-
tracted increasing attention. Most existing switch migration strategies only
consider local conditions and simple load thresholds, without fully consid-
ering the overall optimization and dynamics of the network. Therefore, this
article proposes a switch migration algorithm based on global optimization.
This algorithm adds a load prediction module to the migration model, de-
termines the migration controller, and uses an improved whale optimization
algorithm to determine the target controller and its surrounding controller
set. Based on the load status of the controller and the traffic priority of the
switch to be migrated, the optimal migration switch set is determined. The
experimental results show that compared to existing schemes, the algorithm
proposed in this paper improves the average flow processing efficiency by
15% to 40%, reduces switch migration times, and enhances the security of
the controller.
key words: software-defined network, whale optimization algorithm, load
balancing, load prediction, switch migrations

1. Introduction

With the continuous expansion of network scale and the in-
crease in complexity, traditional network management meth-
ods can no longer meet the requirements for network perfor-
mance, reliability, and flexibility [1]. Software-Defined Net-
working (SDN), as an emerging network architecture, has
brought revolutionary changes to network management by
separating network control and data plane [2].

As the core component of SDN architecture, SDN con-
troller is responsible for centralized control and management
of the entire network [3]. In order to improve the scalability,
fault tolerance and performance of the network, SDN con-
trollers are often deployed in the form of clusters. However,
with the expansion of SDN network scale and diversification
of application scenarios, the existing SDN controller clus-
ter architecture faces some challenges, one of which is the
migration of switches [4].

In the SDN controller cluster, switches may need to
be migrated to different controller nodes, which is caused
by controller node failure, load balancing needs, or network
topology changes [5]. However, the switch migration pro-
cess may lead to network interruption, traffic loss, perfor-
mance degradation and other problems, affecting the normal
operation of the network [6].

Manuscript received December 11, 2023.
Manuscript revised March 1, 2024.
Manuscript publicized March 25, 2024.

†The authors are with Zhejiang Sci-Tech University, China.
a) E-mail: biaowuzg@zstu.edu.cn

DOI: 10.1587/transinf.2023EDP7263

Therefore, it is of great significance to study the meth-
ods and strategies of switch migration in the SDN controller
cluster for improving the availability, reliability and flex-
ibility of the network. This research aims to explore an
effective switch migration scheme to reduce network inter-
ruption time, minimize traffic loss and optimize network
performance. The overview and analysis of existing migra-
tion mechanisms and algorithms can provide guidance for
the design and implementation of switch migration in SDN
controller clusters.

The main contributions of this paper are as follows:

1) In order to reduce the cost of switch migration, this paper
proposes a switch migration algorithm based on global
optimization (SMGO). Through the improved whale
optimization algorithm, the most suitable controller is
found according to the cost of migration path, controller
load, and the number of idle controllers around the con-
troller. The algorithm in this paper can ensure that the
load on the control plane is well balanced after migra-
tion, reduce the migration cost, and ensure that impor-
tant traffic is prioritized.

2) In order to reduce frequent migration and avoid unneces-
sary migration operations, this paper introduces the load
prediction module into the migration model. The load
forecasting module predicts the future network load and
traffic patterns by analyzing historical data and trends.
When the network load is predicted to change, the action
module will make corresponding adjustments to avoid
network congestion and performance problems.

2. Correlation Studies

An effective way to solve the performance and scalability
constraints in traditional SDN implementations is to use dis-
tributed controllers. In order to improve the performance of
the control plane in SDN, several aspects need to be consid-
ered. On the one hand, the performance can be improved
by maximizing the performance of the controller and trans-
ferring part of the work to the forwarding device. On the
other hand, a group of distributed controller nodes can be
used to realize the logically centralized control plane and
solve the consistency problem of global view and state, thus
improving the scalability. However, when a large amount of
uneven traffic reaches the distributed controller, this method
may lead to the problem of load imbalance between con-

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



826
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.7 JULY 2024

trollers [7].
Cheng et al. [8] proposed a game decision-making

mechanism, which is used to migrate the switch from an
overloaded controller to an idle controller while maximiz-
ing resource utilization. However, there is a lack of game
triggering mechanism, and the whole process will generate
additional network overhead. In the distributed nearest mi-
gration algorithm [9], the controller with the closest physical
location is selected as the target controller for easy opera-
tion, but this method is likely to bring new load imbalance.
In the maximum resource utilization migration algorithm
(MUMA) [10], when load imbalance occurs, the controller
randomly selects a switch for migration. However, the algo-
rithm does not consider load balancing, and new overloads
may occur after migration. Liu et al. [11] proposed a multi
controller deployment algorithm based on delay and load, but
it did not consider the future load situation, which may cause
a large cost when the controller is migrated in the next step
after migration. Gao et al. [12] proposed a multi controller
dynamic load balancing mechanism. When the controller
is overloaded, the super controller is used to balance the
migration effect and the migration cost, and formulate an ap-
propriate switch migration strategy. However, it takes a long
time to calculate, and for different network architectures, the
optimization effect varies greatly.

Through investigation at home and abroad, it is found
that the control plane load imbalance problem is generally
solved by switch migration strategy, but the existing switch
migration strategy is often based on static planning or heuris-
tic algorithm, lacking flexibility and adaptability, and can not
adapt well to the rapidly changing network environment and
traffic demand.

In order to solve the above problems, this paper uses
load forecasting algorithm to improve the migration method.
The algorithm can determine the trigger time of migra-
tion, and select appropriate immigration and emigration con-
trollers to reduce unnecessary migration. If it is predicted
that the controller that needs to be relocated will also be
overloaded at the next moment, then make a comprehen-
sive judgment based on the load of the surrounding idle
controllers, and re-select the controller that needs to be re-
located to reduce the migration frequency in the future. In
addition, by using switch collection migration, you can re-
duce migration times and improve migration efficiency. At
the same time, traffic is prioritized to ensure that important
traffic can be prioritized.

3. Problem Description and Migration Model Modeling

The research background of this paper is SDN under dis-
tributed architecture. In SDN, the logical central controller
(decision-maker) manages the data plane by sending data
packets with processing policies to the switch. Because the
traffic is unstable and unbalanced within a certain period of
time, when the switch traffic in the controller domain sud-
denly increases, the response of the controller to the request
will be affected, resulting in overload of the controller.

Fig. 1 SDN multi-controller architecture.

3.1 Problem Description

The common SDN controller cluster architecture is shown in
Fig. 1. When a controller gathers a large number of requests
and the controller is in an overload state, according to the
definition of the OpenFlow protocol, if the main controller
of the switch is in an overload or inefficient state, the switch
can be migrated and another controller can be selected from
the control plane as the new main controller [13].

3.2 Symbols and Definitions

The entire network architecture is represented by graph G =
(N,S), where N and S represent the set of nodes and links,
respectively. The controller set is represented by C and the
switch set by E . T = [xi j]M×N is the connection matrix
of all elements, where M and N represent the number of
controllers and switches, and xip represents the mapping
relationship between switch Ei and controller Cp , as shown
in Formula (1).

xi j =
{
1, Switch Ei is connected to controller Cj

0, Switch Ei is not connected to controller Cj

(1)

The load value of the controller is defined as the num-
ber of switches Packet_In in its domain received by the con-
troller, as shown in Formula (2).

LCp =

m∑
i=1

PEiCp (2)

Where, LCp represents the load value of the controller,
and PEiCp represents the number of Packet_In received by
the controller Cp from the switch Ei .

The controller Cp status is defined as αp , and the value
of αp is shown in Formula (3).

αp =

{
0, LCp < LCthreshold

1, LCp ≥ LCthreshold
(3)

Where, LCthreshold is the threshold value of controller
overload.



BAO et al.: RESEARCH ON THE SWITCH MIGRATION STRATEGY BASED ON GLOBAL OPTIMIZATION
827

Table 1 Traffic priority division

The standard deviation of controller load is used to
express the load balance factor, as shown in Formula (4).

σ =

√√√
1
N

N∑
i=1

(LCi − LC)2 (4)

After the switch is migrated, the new load balancing
factor is shown in Formula (5).

σ∗ =

√√√√
1
N

©«
N∑

i=1,i,j

(
LCi

∗ − LC
∗)2
+
(
LCj

∗ − LC
∗)2ª®¬

(5)

Where LCi
∗ = LCi − LEiC j , LCj

∗ = LCj − LEiC j , LC
∗

is the new average load and LEiC j is the number of Packet_In
received by the controller Cj from the switch Ei .

Link congestion rate, using the throughput and link
bandwidth capacity The ratio is expressed.

qlink =
B
C

(6)

Where qlink represents the congestion rate of the link
and B represents the throughput of the link. Gets the number
of bytes accepted and sent by the switch port and the time
by sending a PORT_ST ATS_REQUEST message to the
switch. The throughput of the link is indicated by Formula
(7).

B =
T2 − T1

t2 − t1
+

R2 − R1

t2 − t1
(7)

Where T and R represent the bytes sent and received
respectively, and t means unified Calculate the time. The
congestion rate can be calculated by Formula (6) and (7).

3.3 Traffic Category Classification

In the migration process, not only the migration cost and load
balance, but also the type of traffic needs to be considered,
and important traffic needs to have a higher migration pri-
ority. To achieve this goal, this paper uses SDN combined
with deep packet inspection (DPI) [14] to identify traffic.
The traffic priority division scheme is shown in Table 1.
Traffic is divided into four categories according to business
types to ensure that important traffic can be prioritized.

4. A Globally Optimized Switch Migration Model

The migration model in this paper is shown in the figure. It

involves four modules in total: load statistics module, traffic
prediction module, migration target selection module and
action management module. The corresponding functions
of each module are as follows.

1) Load statistics module. This module is mainly respon-
sible for counting the load of each controller in the con-
troller cluster, judging whether the traffic in the con-
troller exceeds the threshold, and determining the con-
troller to be migrated.

2) Flow prediction module. This module receives the load
statistics from the load statistics module and the con-
troller to be migrated. The prediction model predicts
the load situation of the controller to be migrated at the
next moment according to the traffic history information
to determine whether migration is still needed to avoid
frequent migration.

3) Target selection module. This module is the core mod-
ule of this paper, which is mainly responsible for finding
the target controller and its surrounding controller clus-
ters that can make the migration behavior of the entire
controller cluster reach the global optimization.

4) Migration implementation module. This module re-
ceives the migration controller from the traffic predic-
tion module and the migration controller from the target
selection module, and is responsible for sending specific
migration strategies to the data layer switch and migra-
tion, so as to achieve load balancing of the controller
cluster.

This model divides the migration process into four mod-
ules. Each module is divided into work and cooperation,
which improves the work efficiency to a certain extent. On
the basis of the common functions of load detection and mi-
gration selection, the flow prediction function is introduced
to avoid the waste of resources caused by unnecessary mi-
gration. The target selection module benefits from traffic
prediction, which makes the controller target selected more
reasonable and the whole network system more stable. The
migration model is shown in Fig. 2.

4.1 Traffic Prediction Module

According to the current research, switches are mostly mi-
grated when the controller is overloaded. However, in actual
research, there may be situations where the load is too high
for a short time, but the controller can handle and recover to
normal working status immediately. In this case, the switch
migration will cost more than waiting for the controller to
complete the processing. Therefore, this paper introduces a
load prediction model to avoid unnecessary migration and
reduce resource waste.

Auto-Regressive Integrated Moving Average Model
(ARIMA) is a common time series analysis method [15],
which can be used to predict future traffic. The following
steps are used for traffic prediction with ARIMA model:

Step 1: Collect data, collect historical traffic data, in-
cluding traffic values at each time point.



828
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.7 JULY 2024

Fig. 2 Switch migration model.

Step 2: Data preprocessing, preprocessing data, includ-
ing deleting outliers, checking data stability, etc. ARIMA
model requires that the time series is stable, that is, the mean
and variance do not change with time. If the data is unstable,
it needs to be stabilized, such as difference operation.

Step 3: Model selection, select the appropriate ARIMA
model according to the autocorrelation and partial autocor-
relation graph of the data. Autocorrelation plots can be used
to determine moving average components, and partial au-
tocorrelation plots can be used to determine autoregressive
components. Automated methods, such as grid search, can
be used to determine the best ARIMA model.

Step 4: Model estimation, Based on the selected
ARIMA model, the maximum likelihood estimation (MLE)
is used to estimate the model parameters. This will result in
an optimal set of model parameters.

Step 5: Model test, use the estimated model parame-
ters to fit the historical data, and calculate the residual (the
difference between the observation value and the model pre-
diction value). The residual sequence is tested to ensure that
it meets the requirements of randomness and stability.

Step 6: Model prediction: use the estimated ARIMA
model to predict the future traffic of the controller.

The flow of algorithm 1 is as follows: after the load
statistics module completes the statistics and preliminary
evaluation, the traffic prediction module will receive the load
information from the traffic statistics module to preliminary
judge the overload controller and the target controller. The
prediction model is built to predict the load at the next time.
If the overload controller is still overloaded at the next time,
select the controller as the exit controller and send the mi-
gration trigger signal Move.

4.2 Target Selection Module

This module is the core of the entire migration model. This

paper proposes a global optimal migration algorithm based
on the improved whale optimization algorithm to reduce the
migration cost and ensure the performance of the controller.

4.2.1 Global Optimal Target Controller

The original Whale Optimization Algorithm (WOA) steps
are roughly as follows:

1) Initialize individual position and velocity: The initial
position x(t) and velocity v(t) are randomly generated
for each whale.

2) Calculate individual fitness: calculate the fitness value
of each whale according to the objective function of the
problem.

3) Select the current optimal solution: according to the
individual fitness, select the current optimal solution p.

4) Select the global optimal solution: select the global
optimal solution g according to the fitness size of all
individuals.

5) Update speed and position: update the velocity and po-
sition of each whale according to the following formula:

v(t + 1) = A ∗ (p − x(t)) + C ∗ (g − x(t)) (8)
x(t + 1) = x(t) + v(t + 1) (9)

Where v(t+1) represents the speed of the t+1 time step;
v(t) represents the speed of the t time step; A is the degree
of freedom factor used to regulate the individual speed; p is
the individual optimal solution; x(t) is the position of the t
time step; C is the amplitude scale factor, which is used to
adjust the amplitude of the global optimal solution; g is the
global optimal solution.

Because the traditional whale optimization algorithm
randomly generates the initial position of the whale at the
beginning, this randomness will lead to slow convergence
of the algorithm, and there may be premature convergence
problems, that is, it is easy to fall into the local optimal
solution and cannot find the global optimal solution [16].



BAO et al.: RESEARCH ON THE SWITCH MIGRATION STRATEGY BASED ON GLOBAL OPTIMIZATION
829

Fig. 3 AWOA algorithm flow.

So this paper proposes Adaptive Whale Optimization Al-
gorithm (AWOA) based on adaptive inertia weight. In the
process of position update, inertia weight is introduced. By
adjusting the size of inertia weight, we can balance the global
search and local search, and improve the performance of the
optimization algorithm [17]. The updating strategy of iner-
tia weight adopted in this paper is linear decreasing, which
makes the inertia weight gradually reduce from the maxi-
mum value to the minimum value, thus increasing the global
search ability of the algorithm. A larger inertia weight can
accelerate the exploration ability of the algorithm, while a
smaller inertia weight can enhance the local search ability of
the algorithm. By gradually reducing the inertia weight, the
algorithm can explore the solution space more widely at the
initial stage of the search, and search the optimal solution
more finely at the later stage of the search. The formula of
inertia weight introduced on the original basis is as follows:

v(t + 1) = w ∗ v(t) + A ∗ (p − x(t)) + C ∗ (g − x(t))
(10)

w = w_max − (w_max − w_min) ∗ (t − 1)/T (11)

Among them, w is the inertia weight, which is used to
control the influence of the current speed, that is, balance the
influence of the individual optimal solution and the global
optimal solution on the speed; w_max is the initial maxi-
mum inertia weight; w_min is the minimum inertia weight;
t indicates the number of current iterations; T represents the
maximum number of iterations.

In the search and predation phase of AWOA algorithm,
each whale individual is regarded as a specific solution, and
the whale individual is evaluated according to the results of
each iteration. When the maximum number of iterations is
reached, the optimal whale individual in the current maxi-

mum number of iterations is regarded as the global optimal
solution of the algorithm.

4.2.2 For the Selection of the Migration Node

At the beginning of the migration action, the switch nodes
connected to the migration controller need to be added to
the node set TNode to be selected according to the migration
priority.

Calculate the flow LCin that the target controller can
accept. LCin is defined as the difference between the target
controller load and the average load of the control plane
controller, as shown in Formula (12).

LCin =

�����LCtarget −
1
n

n∑
i=1

LCi

����� (12)

Where, LCtarget is the target controller load.
The node selection problem is actually a dynamic pro-

gramming problem. The optimization goal is to select the
node with the highest priority under the limit of the total
capacity LCin.
1) Problem analysis

In the first i switch nodes, select several nodes to join
the set TNode to be migrated.

Status: In the first i switch nodes, select several nodes
to join the set TNode to be migrated with the remaining load
space of lc to obtain the maximum priority.

Decision: whether to select the i switch node to join
MigNode{}.
2) The state transfer equation

Let it represent the maximum priority occupied by the
migration collection TNode with a load capacity of lc after
joining the first i switch nodes

F(i, j) = max{
F(i − 1, lc − Load[i] + S Pri[i]), select the ith node
F(i − 1, lc) , not select the ith node

(13)

Where F(0, j) = 0, Load[i] represents the load of the i
node, and S_Pri[i] indicates the migration priority of the i
node.

4.3 Migration Implementation Module

In this module, complete the switch migration operation,
update the connection matrix Ω = [xi j]M×N of the network
elements, and change the role of the controller. First, through
the overload controller and target controller determined by
the prediction module, the overload controller selects the mi-
gration switching unit to be migrated, and sends the trigger
migration signal to the target controller Ctarget . After re-
ceiving the signal, Ctarget will respond to the migration start
signal and start the migration action.



830
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.7 JULY 2024

The detailed process of Algorithm 2 is as follows. First,
the load prediction module confirms whether the overload
controller needs to be migrated by analyzing historical data
and trends. Then, the target selection module preliminar-
ily selects the globally optimal target controller and its sur-
rounding idle controller cluster through the continuous con-
vergence iteration of the improved whale optimization al-
gorithm, and finally determines the target controller by the
prediction module. Finally, the action module sends the
migration start signal to the overload controller to start the
migration operation.

5. Analysis of Experimental Results

5.1 Algorithm Performance Test

In order to test the optimization performance of the adaptive
inertia weight based whale optimization algorithm (AWOA)
and other swarm intelligence optimization algorithms pro-
posed in this paper, the benchmark function [18] is used for
simulation testing, and the results are compared and ana-
lyzed.

In this paper, the classical benchmark function is used
as the fitness function to compare the convergence accuracy
and convergence speed of different optimization algorithms.
Where, F1(x) ∼ F3(x) is a single peak benchmark func-
tion, and F4(x) ∼ F6(x) is a multi peak benchmark function.
The experimental parameters of Particle Swarm Optimiza-
tion (PSO) and WOA algorithms are set as follows: popula-
tion size is 30, particle dimension is 30, and the maximum
number of iterations is 500. After a large number of experi-
ments, the value range of inertia weight in AWOA algorithm
is set to 0.01 to 0.4, and other parameters are consistent with
WOA algorithm.

The test results are shown in Fig. 4, where the conver-

gence curve represents the optimal convergence value of the
current iteration number. It can be seen from Fig. 4 (a) to
Fig. 4 (f) that AWOA algorithm has a faster convergence rate
in the iterative process than PSO and WOA algorithm. This is
because the adaptive inertia weight strategy improved in this
paper is introduced. The inertia weight changes adaptively
with the population state, avoiding invalid iterations, increas-
ing population diversity, and further improving the conver-
gence speed and accuracy. It can be seen from Fig. 4 (b),
Fig. 4 (c) and Fig. 4 (f) that the convergence curve of the
AWOA algorithm is not displayed at the end of the iteration,
which proves that the AWOA algorithm has converged to the
optimal value at this time, and no redundant iterative search
is required. However, other algorithms will fall into the local
optimal value in the optimization process, and the conver-
gence curve gradually becomes stable, so that they cannot
jump out of the local optimal domain, hinder the global op-
timization efficiency, and lead to a significant decline in the
overall optimization performance.

In addition, this article conducted 1000 independent lo-
calization optimization experiments in the same simulation
environment. The experimental results are shown in Ta-
ble 2. Although the AWOA algorithm has a slightly higher
computational complexity than PSO, its optimization local-
ization performance is better. After introducing an adaptive
inertia weight strategy on the basis of the traditional WOA
algorithm, the average consumption time of the AWOA algo-
rithm is reduced by about 40%, while the average optimiza-
tion positioning error is reduced by 28%, indicating better
optimization performance.

5.2 Experimental Environment

This experiment uses OpenDaylight to realize the control
and management of SDN. Set multiple SDN controller in-
stances on different virtual machines, and enable them to
communicate with each other by configuring network con-
nections between controllers. Connect the SDN switch to
the controller cluster by specifying the IP address or domain
name of the controller on the switch [19]. Use the Mininet
tool to simulate and deploy the SDN topology, and use the
Ipref tool to simulate the flow to test the performance of the
controller. The topology structure adopted in this paper is:
5 controllers C0 ∼ C4, 15 switches E0 ∼ E14, which are
randomly distributed. The experimental topology is shown
in the Fig. 5.

Experimental parameters. Considering that the aver-
age diameter of a typical real network topology is about
log(n) [20], the maximum number of public nodes in the
experiment is set to 2log(n), and the channel delay from
the controller to the switch is 0.5ms. Each group of labo-
ratory runs 20 times, and takes the average value to ensure
unbiased.

5.3 Controller Load

This paper defines the controller load ratio as the ratio of the



BAO et al.: RESEARCH ON THE SWITCH MIGRATION STRATEGY BASED ON GLOBAL OPTIMIZATION
831

Fig. 4 Convergence curve of benchmark test function.

Table 2 Algorithm average consumption time and average positioning
error

actual controller receiving Packet_In request data packets
to the controller capacity, as shown in the Formula (14).

σ =
LC
Cm

(14)

This paper compares the maximum, middle and min-
imum load proportions in the controller cluster. Figure 6
and Fig. 7 clearly show the comparison of the load share of
the controller using the SMGO algorithm mentioned in this
article and not using any load balancing algorithm under the



832
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.7 JULY 2024

Fig. 5 Experimental topology.

Fig. 6 Controller load distribution under static distribution.

Fig. 7 Controller load distribution under SMGO.

same traffic transmission situation.
Figure 6 shows the load distribution of the controller

after the network runs for a period of time without load bal-
ancing. Figure 7 shows the load distribution of the controller
after SMGO algorithm is added. It can be seen from Fig. 7
that after implementing the SMGO algorithm, the number
of loads exceeding the controller capacity is greatly reduced,
and the network stability is better. In the case of static alloca-
tion, no measures are taken after the controller load exceeds

Fig. 8 Response time comparison.

Fig. 9 Relations of network size and response times.

the threshold, and the resource allocation on the entire link
is very unbalanced.

5.4 Response Time

The load balancing of different algorithms is measured by
testing the response time of the controller. The controller
load balancing dynamic adaptive algorithm (DALB) [21]
and the maximum resource utilization migration algorithm
(MUMA) are used for comparison.

The response time comparison is shown in Fig. 8. It can
be seen from Fig. 8 that the controller response time of the
SMGO algorithm proposed in this paper is shorter than that
of the MUMA and DALB algorithms, and its performance is
better than that of the MUMA and DALB algorithms. Fig-
ure 9 shows that the average response time of the controller
changes with the increase of the network size when the trans-
mission rate is unchanged. Experiments show that SMGO
algorithm has shorter controller response time and better
performance than the other two load balancing algorithms.

5.5 System Stability

The stability of the system is related to the number of migra-
tions, because during the migration process, some switches
may not be able to handle new connections in time, resulting
in migration interruption and other problems [22]. At the
current scale, the migration frequency of SMGO algorithm
is significantly less than that of DALB and MUMA algo-



BAO et al.: RESEARCH ON THE SWITCH MIGRATION STRATEGY BASED ON GLOBAL OPTIMIZATION
833

Table 3 Average number of migrations at different network sizes

rithm. It can be seen from Table 3 that SMGO will consider
the migration cost of the controller at the next moment every
time the load is balanced. As the switch size continues to
increase, the gap shows an obvious trend of expanding.

6. Conclusion

This paper studies the switch migration strategy under the
distributed software definition network architecture, and pro-
poses a switch migration strategy based on global optimiza-
tion. The strategy first finds the target controller and the
surrounding controller set based on the improved whale op-
timization algorithm. On this basis, the migration target is
recalculated through the load prediction algorithm to ensure
that this migration has the smallest impact on the network
stability at the next moment. The simulation results show
that AWOA algorithm has higher precision and faster conver-
gence speed than PSO, WOA and other algorithms; When
applied to the scenario of global optimal controller target
location, the positioning performance of the algorithm in
this paper is significantly better than that of the compared
algorithm, and it is more suitable for switch migration in the
SDN controller cluster environment.

References

[1] S. Zhang and F. Zou, “Review of software-defined web research,”
Application Research of Computers, vol.30, no.8, pp.2246–2251,
2013.

[2] C.-K. Hang, Y. Cui, H.-Y. Tang, and J.-P. Wu, “State-of-the-Art Sur-
vey on Software-Defined Networking (SDN),” Journal of Software,
vol.26, no.1, pp.62–81, 2015. DOI: 10.13328/j.cnki.jos.004701

[3] S. Wang, J. Li, Y. Zhang, et al., “The SDN architecture and secu-
rity study,” Telecommunications Science, vol.29, no.3, pp.117–122,
2013.

[4] X. Wang, “Multi-balancing deployment and switch migration strat-
egy in SDN,” Hebei University, 2021. DOI: 10.27103/d.cnki.
ghebu.2021.000942

[5] F. Meng, “Study on load balancing based on SDN multicon-
troller,” Anhui University, 2023. DOI: 10.26917/d.cnki.ganhu.2022.
000488

[6] Y. Li, “Switch migration and real-time routing updates in
software-defined networks,” Tianjin Normal University, 2021. DOI:
10.27363/d.cnki.gtsfu.2021.000314

[7] W. Lee, “Research on Distributed Traffic Load Equilibrium Technol-
ogy based on SDN,” Southwest University of Science and Technol-
ogy, 2023. DOI: 10.27415/d.cnki.gxngc.2023.000117

[8] G. Cheng, H. Chen, H. Hu, and J. Lan, “Dynamicswitch migration
towards a scalable SDN control plane,” International Book Titleof
Communication Systems, vol.29, no.9, pp.1482–1499, 2016.

[9] S. Zhang, J. Lan, P. Sun, and Y. Jiang, “Online load balancing for

distributed control plane in software-defined data center network,”
IEEE Access, vol.6, pp.18184–18191, 2018.

[10] A.A. Neghabi, N. Jafari Navimipour, M. Hosseinzadeh, and A.
Rezaee, “Load balancingmechanisms in the software defined net-
works:a systematic and comprehensive review of theliterature,” IEEE
Access, vol.6, pp.14159–14178, 2018.

[11] X. Liu, B. Zhao, X. Fang, etc., “A study on SDN multicontroller
deployment strategy based on MCDDL algorithm,” Journal of Hubei
Institute, vol.40, no.1, pp.50–57, 2022. DOI: 10.13501/j.cnki.42-
1908/n.2022.03.009

[12] D. Gao, “Study on load balancing strategy based on SDN con-
troller and traffic scheduling,” Anhui University, 2023. DOI:
10.26917/d.cnki.ganhu. 2022.001551

[13] N. Zhang, X. Chen, and Y. Yang, “Research on Network Structure
and Its Key Technology based on OpenFlow,” Network Applica-
tion Branch of China Computer Users Association, Proc. 26th An-
nual Conference of New Technology and Network Application 2022,
[Publisher unknown], 2022:5. DOI: 10.26914/c.cnkihy.2022.049276

[14] A. Santos Da Silva, C.C. Machado, R.V. Bisol, L.Z. Granville, and
A. Schaeffer-Filho, “Identification and selection of flow features for
accurate traffic classification in SDN,” Network Computing and Ap-
plications (NCA), IEEE, pp.134–141, 2015.

[15] Z. Li, Y. Hu, T. Hu, and P. Wei, “Dynamic SDN controller associa-
tion mechanism based on flow characteristics,” IEEE Access, vol.7,
pp.92661–92671, 2019.

[16] A.A. Qaffas, S. Kamal, F. Sayeed, P. Dutta, S. Joshi, and I. Alhassan,
“Adaptive population-based multi-objective optimization in SDN
controllers for cost optimization,” Physical Communication, vol.58,
p.102006, 2023.

[17] K. Sridevi and M.A. Saifulla, “LBABC: Distributed controller load
balancing using artificial bee colony optimization in an SDN,” Peer-
to-Peer Networking and Applications, vol.16, no.2, pp.947–957,
2023.

[18] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Ad-
vances in Engineering Software, vol.95, pp.51–67, 2016.

[19] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A.
Cabellos-Aparicio, “Unveiling the potential of graph neural networks
for network modeling and optimization in SDN,” Proc. 2019 ACM
Symposium on SDN Research. New York: ACM Press, pp.140–151,
2019.

[20] V. Huang, G. Chen, X. Zuo, A.Y. Zomaya, N. Sohrabi, Z. Tari, and
Q. Fu, “Request Dispatching Over Distributed SDN Control Plane:
A Multiagent Approach,” IEEE Trans. Cybern., pp.1–14, 2023.

[21] G. Cheng, H. Chen, Z. Wang, and S. Chen, “DHA: distributed
decisions on the switch migration toward a scalable SDN control
plane,” IFIP Networking Conference (IFIP Networking). IEEE, pp.1–
9, 2015.

[22] Y. Zhang and M. Chen, “Performance evaluation ofSoftware-Defined
Network (SDN) controllers using Dijkstra’s algorithm,” Wireless
Networks, vol.28, no.8, pp.3787–3800, 2022.

http://dx.doi.org/10.13328/j.cnki.jos.004701
http://dx.doi.org/10.13328/j.cnki.jos.004701
http://dx.doi.org/10.13328/j.cnki.jos.004701
http://dx.doi.org/10.27103/d.cnki.ghebu. 2021.000942
http://dx.doi.org/10.27103/d.cnki.ghebu. 2021.000942
http://dx.doi.org/10.27103/d.cnki.ghebu. 2021.000942
http://dx.doi.org/10.26917/d.cnki.ganhu.2022.000488
http://dx.doi.org/10.26917/d.cnki.ganhu.2022.000488
http://dx.doi.org/10.26917/d.cnki.ganhu.2022.000488
http://dx.doi.org/10.27363/d.cnki.gtsfu.2021.000314
http://dx.doi.org/10.27363/d.cnki.gtsfu.2021.000314
http://dx.doi.org/10.27363/d.cnki.gtsfu.2021.000314
http://dx.doi.org/10.27415/d.cnki.gxngc.2023.000117
http://dx.doi.org/10.27415/d.cnki.gxngc.2023.000117
http://dx.doi.org/10.27415/d.cnki.gxngc.2023.000117
http://dx.doi.org/10.1002/dac.3101
http://dx.doi.org/10.1002/dac.3101
http://dx.doi.org/10.1002/dac.3101
http://dx.doi.org/10.1109/access.2018.2820148
http://dx.doi.org/10.1109/access.2018.2820148
http://dx.doi.org/10.1109/access.2018.2820148
http://dx.doi.org/10.1109/access.2018.2805842
http://dx.doi.org/10.1109/access.2018.2805842
http://dx.doi.org/10.1109/access.2018.2805842
http://dx.doi.org/10.1109/access.2018.2805842
http://dx.doi.org/10.13501/j.cnki.42-1908/n.2022.03.009
http://dx.doi.org/10.13501/j.cnki.42-1908/n.2022.03.009
http://dx.doi.org/10.13501/j.cnki.42-1908/n.2022.03.009
http://dx.doi.org/10.13501/j.cnki.42-1908/n.2022.03.009
http://dx.doi.org/10.26917/d.cnki.ganhu. 2022.001551
http://dx.doi.org/10.26917/d.cnki.ganhu. 2022.001551
http://dx.doi.org/10.26917/d.cnki.ganhu. 2022.001551
http://dx.doi.org/10.26914/c.cnkihy.2022.049276
http://dx.doi.org/10.26914/c.cnkihy.2022.049276
http://dx.doi.org/10.26914/c.cnkihy.2022.049276
http://dx.doi.org/10.26914/c.cnkihy.2022.049276
http://dx.doi.org/10.26914/c.cnkihy.2022.049276
http://dx.doi.org/10.1109/nca.2015.12
http://dx.doi.org/10.1109/nca.2015.12
http://dx.doi.org/10.1109/nca.2015.12
http://dx.doi.org/10.1109/nca.2015.12
http://dx.doi.org/10.1109/access.2019.2927173
http://dx.doi.org/10.1109/access.2019.2927173
http://dx.doi.org/10.1109/access.2019.2927173
http://dx.doi.org/10.1016/j.phycom.2023.102006
http://dx.doi.org/10.1016/j.phycom.2023.102006
http://dx.doi.org/10.1016/j.phycom.2023.102006
http://dx.doi.org/10.1016/j.phycom.2023.102006
http://dx.doi.org/10.1007/s12083-023-01448-2
http://dx.doi.org/10.1007/s12083-023-01448-2
http://dx.doi.org/10.1007/s12083-023-01448-2
http://dx.doi.org/10.1007/s12083-023-01448-2
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1145/3314148.3314357
http://dx.doi.org/10.1145/3314148.3314357
http://dx.doi.org/10.1145/3314148.3314357
http://dx.doi.org/10.1145/3314148.3314357
http://dx.doi.org/10.1145/3314148.3314357
http://dx.doi.org/10.1109/tcyb.2023.3266448
http://dx.doi.org/10.1109/tcyb.2023.3266448
http://dx.doi.org/10.1109/tcyb.2023.3266448
http://dx.doi.org/10.1109/ifipnetworking.2015.7145319
http://dx.doi.org/10.1109/ifipnetworking.2015.7145319
http://dx.doi.org/10.1109/ifipnetworking.2015.7145319
http://dx.doi.org/10.1109/ifipnetworking.2015.7145319
http://dx.doi.org/10.1007/s11276-022-03044-3
http://dx.doi.org/10.1007/s11276-022-03044-3
http://dx.doi.org/10.1007/s11276-022-03044-3


834
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.7 JULY 2024

Xiao’an Bao received the B.S. from
Zhejiang University (China) in 1998, and M.S.
from China West Normal University in 2004. He
was an Associate Professor at Zhejiang Sci-Tech
University, China, from 2007 to 2012. Since
November of 2012, he has been a Professor at
Zhejiang Sci-Tech University, China. His main
research interests include software engineering
and computer vision, and pattern recognition.
First-Author is the author of over X technical
publications, proceedings, editorials and books.

He has published dozens of papers in journals such as Software Journal,
Computer Research and Development, International Journal of Multimedia
and Ubiquitous Engineering, and International Journal of Advancements in
Computing Technology.

Shifan Zhou is currently studying at
Zhejiang Sci-Tech University, pursuing master’s
degree in Computer Science.

Biao Wu was born in 1989. He received
the B.S. from Hubei University of Technology in
2013 and the M.E. from Zhejiang Sci-Tech Uni-
versity in 2016 both in the People’s Republic of
China. He received the Ph.D. from Yamaguchi
University, Japan in 2021. Since April of 2021,
he has been a Lecturer at Zhejiang Sci-Tech Uni-
versity. His main research interests include com-
puter vision, deep learning and program net the-
ory.

Xiaomei Tu was born in 1995, M.S. can-
didate. She from Zhejiang Sci-Tech University.
Her research interests include video image pro-
cessing and object detection.

Yuting Jin was born in 1994. Master. She
from Zhejiang Sci-Tech University. Her research
interests include computer vision, deep learning,
program analysis and intelligent software testing.

Qingqi Zhang was born in 1996. He re-
ceived the B.E. from Heilongjiang University,
China, in 2019 and the M.E. from Zhejiang Sci-
Tech University, China, in 2022. He is cur-
rently a Ph.D. candidate in the Graduate School
of East Asian Studies, Yamaguchi University,
Japan. His main research interests include com-
puter vision and pattern recognition.

Na Zhang was born in 1977. She from
Fenghua City, Zhejiang Province, is a profes-
sor with a master’s degree. She from Zhejiang
University (China), mainly engages in research
on computer vision and intelligent information
processing.


