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PAPER
Nuclear Norm Minus Frobenius Norm Minimization with Rank
Residual Constraint for Image Denoising

Hua HUANG†, Yiwen SHAN††, Chuan LI†††, and Zhi WANG†††a), Nonmembers

SUMMARY Image denoising is an indispensable process of manifold
high level tasks in image processing and computer vision. However, the tra-
ditional low-rank minimization-based methods suffer from a biased problem
since only the noisy observation is used to estimate the underlying clean ma-
trix. To overcome this issue, a new low-rank minimization-based method,
called nuclear norm minus Frobenius norm rank residual minimization
(NFRRM), is proposed for image denoising. The propose method trans-
forms the ill-posed image denoising problem to rank residual minimization
problems through excavating the nonlocal self-similarity prior. The pro-
posed NFRRM model can perform an accurate estimation to the underlying
clean matrix through treating each rank residual component flexibly. More
importantly, the global optimum of the proposed NFRRM model can be
obtained in closed-form. Extensive experiments demonstrate that the pro-
posed NFRRM method outperforms many state-of-the-art image denoising
methods.
key words: image denoising, nuclear norm minus Frobenius norm, rank
residual, nonlocal self-similarity

1. Introduction

Image denoising, which aims to recover the original image
from its noisy observation, is a problem of great challenge
and popularity. It serves as an indispensable process of man-
ifold high level tasks in image processing and computer vi-
sion [1]–[8]. Due to its importance and ill-posed nature, im-
age denoising has drawn lots of research attentions in recent
years. And a variety of state-of-the-art methods have been
proposed based on low-rank minimization [9]–[15], sparse
representation [16]–[18] and deep learning [19]–[23].

Benefited from the development of convex and noncon-
vex optimization, low-rank minimization has shown excel-
lent performance in image denoising [24], [25]. Essentially,
low-rank minimization is performed on each noise matrix
that has distinctly low-rank properties. After denoising all
of those matrices, the denoised image would be obtained. In
practice, the noisy matrices can be constructed by gathering
the similar structures in the observed image [26]. Math-
ematically, the low-rank minimization associated with the
inputted noisy matrix, denoted as Y, is
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min
X

1
2σ2

n

∥Y − X∥2
F + λ · rank(X), (1)

where X is the estimated matrix, ∥ · ∥F is the Frobenius norm,
rank( · ) is the rank function, σn is the standard deviation of
noise, λ > 0 is the regularization parameter. Unfortunately,
such a rank minimization problem (1) is NP-hard, which
cannot be solved in polynomial time. Inspired by compressed
sensing [27], [28], nuclear norm is used to replace the rank
function, leading to the following nuclear norm minimization
(NNM) problem:

min
X

1
2σ2

n

∥Y − X∥2
F + λ∥X∥∗, (2)

where ∥ · ∥∗ is the nuclear norm. As pointed out by Fazel [29],
the nuclear norm is the convex envelop, i.e., the “best”
convex approximation, to the rank of matrix X on the set
{X ∈ Rm×n : ∥X∥2 ≤ 1}, where ∥X∥2 is the spectral norm.
Moreover, Candès et al. [30] proved that the underlying ma-
trix can be recovered with high accuracy and large probabil-
ity. Solving the convex NNM problem has two advantages.
First, a local optimum is indeed the global optimum. Second,
there are a number of efficient algorithms to solve it in poly-
nomial time, such as the interior point method [31], singular
value thresholding [32], and accelerated proximal gradient
with line search [33]. Albeit the theoretical guarantees and
efficient solvers, NNM still has some limitations. As pointed
out by [9], [34], the nuclear norm performs equal treatments
on all singular values. This practice ignores the prior that sin-
gular values with different magnitude have different impor-
tance, and thus should be treated differently. Consequently,
NNM would result in severe deviation between the recov-
ered matrix and the optimum. To alleviate this problem, a
number of nonconvex low-rank regularizers have been stud-
ied, including weighted norms [14], [15], truncated nuclear
norm [35], [36], and capped nuclear norm [37], [38]. Those
nonconvex regularizers give more flexible treatments on sin-
gular values. And their superiority over nuclear norm is
validated in many studies. The weighted nuclear norm [14]
sets the weights to be inversely proportional to the magnitude
of singular values. Therefore, larger singular values, which
quantify more information, are penalized less. The resultant
weighted nuclear norm minimization (WNNM) method is
applied to image denoising, achieving significant improve-
ments over the original NNM. More importantly, the global
optimum of WNNM model can be got in closed-form, which
makes WNNM highly efficient.
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However, Xie et al. [15] pointed out that weighted nu-
clear norm still tends to over-penalize the dominant singular
values, which would result in WNNM obtaining biased solu-
tions. On the same course, they proposed weighted Schatten
p-norm minimization (WSNM), which achieved state-of-the-
art denoising performance. However, solving WSNM is ex-
pensive since it no longer allows the closed-form solution
and requires dedicated iterative solvers [39].

One common defect of the models aforementioned is
that the low-rank matrix, i.e., X in (1), is estimated only
from its noisy version Y. As the noise become stronger, it is
more difficult to recognize the similar structures and gather
into the noisy matrix. In other words, the low-rank nature
of matrix Y would be weaken. Consequently, the recovery
would deviate from the optimum. To address this problem,
dedicated constraints should be introduced. Rank residual
constraint (RRC) [40] constructs a reference matrix for each
noisy matrix. The reference matrices lead to a more accu-
rate estimation to the underlying clean matrices. However,
RRC model treats rank residual components equally, over-
penalizing the dominant ones. To overcome this drawback,
Zhang et al. [41] replaced the nuclear norm regularizer in
RRC with weighted Schatten p-norm, and proposed the rank
residual constraint with weighted Schatten p-norm (SRRC)
model. SRRC model further improves the denoising per-
formance over RRC. However, SRRC model requires itera-
tive solvers [39], which might be expensive when recovering
large images.

Considering the drawbacks of aforementioned models,
in this paper we propose a new low-rank minimization model,
called Nuclear norm minus Frobenius norm Rank Residual
Minimization (NFRRM), and apply it to solve image de-
noising problem. The proposed model has two major ad-
vantages. First, it provides a more flexible treatment on
different rank residual components, which indicates the un-
derlying low-rank matrix can be estimated with more accu-
racy. Second, cheap closed-form solution is allowed [42],
which means the proposed model can be solved with high
efficiency. Through exploiting the framework of nonlocal
self-similarity [26] prior, the proposed NFRRM model is
applied to image denoising. Extensive experiments demon-
strated that the proposed NFRRM method outperforms sev-
eral state-of-the-art image denoising methods.

2. Related Works

2.1 Nonlocal Self-Similarity

As an ill-posed problem, image denoising has no unique solu-
tion. And the solutions vary discontinuously for small input
changes. Therefore, prior knowledge should be introduced to
regularize the solution space. The nonlocal self-similarity
(NSS) [26] is one of the exemplary image prior. NSS de-
scribes the property that there spread many similar patterns
across a natural image. Through gathering those similar
structures, a flurry of low-rank matrices, called patch matri-
ces, would be constructed. Low-rank minimization models

should be conducted on each patch matrix, estimating its un-
derlying denoised version. Eventually, the denoised image
would be obtained by concatenating all denoised matrices.

Figure 1 depicts the detailed procedure about generating
a patch matrix from the observed image. Concretely, given a
noisy image Y , a number of key patches are assigned across
it. Those key patches are spaced an equal distance apart,
and each spans p × p pixels. For each key patch, its k
most similar neighbors (i.e., patches) are identified via k-
Nearest Neighbors (k-NN) algorithm. The similar neighbors
are found in a squared search region around the key patch,
instead of the whole image. The distance between the key
patch K ∈ Rp×p and its ith neighbor Pi ∈ Rp×p is measured
by

d(K,Pi) = ∥K − Pi ∥F , (3)

where i ∈ {1,2, . . . ,S2}, and S is the side length of the
squared search region. After that, the chosen k most similar
patches are stretched to column vectors, denoted as yi ∈ Rp2

for i ∈ {1,2, . . . , k}. Those k vectors are stacked to form a
patch matrix Y = C+N ∈ Rp2×k,where C, N are the under-
lying clean matrix and the noise matrix, respectively. Note
that the relationship between key patches and patch matrices
is one-to-one. As patch matrix Y groups similar structures,
it has clear low-rank property. Therefore, low-rank mini-
mization can be conducted on Y. And the corresponding
denoised version X, which is desired to be as closed to the
ground truth C as possible, can be estimated. In summary,
NSS prior bridges the gap between the low-rank minimiza-
tion and image denoising problem, promoting the proposal
of numerous low-rank based image denoising methods [13]–
[15], [43], [44].

2.2 The Constraint of Rank Residual

As discussed in Introduction, defective results would be ob-
tained by the traditional low-rank models since they estimate
the underlying clean matrix only from its corresponding
noisy observation. To address this issue, dedicated con-
straints should be introduced to regularize the solutions. In
[40], Zha et al. proposed a novel low-rank minimization-
based method with rank residual constraint (RRC) for image
denoising and achieved the competitive results.

Mathematically, the rank residual, denoted as Γ, is de-
fined as the difference between the the estimated matrix X
and the underlying ground truth matrix C, that is Γ def

= X−C.
However, the clean matrix C is unavailable in image denois-
ing problem. Therefore, accurate estimator should be intro-
duced, for example, the nonlocal means [45]. Denote the
estimated clean matrix as Ĉ. Then the rank residual can be
modified as

Γ
def
= X − Ĉ. (4)

Finally, a general form of low-rank minimization model with
rank residual can be formulated as
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Fig. 1 Image denoising based on integrating NSS and low-rank minimization.

min
X

1
2
∥Y − X∥2

F + λr(X − Ĉ), (5)

where r( · ) denotes a low-rank regularizer that promotes the
rank residual to be low-rank. It remains an open problem
what regularizer fits for rank residual better [41].

2.3 Nuclear Norm Minus Frobenius Norm

Nuclear norm Minus Frobenius norm (NNFN) is a non-
convex regularizer with multiple merits. Mathematically,
NNFN of matrix X ∈ Rm×n is defined as

∥X∥∗−F = ∥X∥∗ − α∥X∥F

=

l∑
i=1
σi(X) − α

( l∑
i=1
σi(X)2

) 1
2
, (6)

where α ≥ 0, l = min(m,n), and σi(X) is the ith singular
value of X. As shown in Fig. 2, NNFN is adequate to treat
singular values with much flexibility. More importantly, the
optimization model with NNFN, which can be formulated as

min
X

1
2
∥Y − X∥2

F + λ∥X∥∗−F , (7)

allows the global optimum being obtained in closed-
form [42], [46]. The NNFN-based low-rank models have
achieved promising performance in matrix completion [46],
recommendation system [46], and color image denois-
ing [13].

Fig. 2 The output pattern of the NNFN-based proximal operator with
λ = 10. The horizontal axis represents the input, i.e., the ith singular value
of the observed matrix Y. The vertical axis represents the output, i.e., the
ith singular value of the output matrix X. Rational set of α will boost the
flexibility of shrinkage. Concretely, when α = 0, NNFN reduces to nuclear
norm. Thus a constant shrinkage is imposed on σi (X). As α becomes
larger, the resultant NNFN shrinks less on the large singular values, or even
preserves them. When α → +∞, NNFN behaves like Capped nuclear
norm, which only shrinks the small singular values.

3. The Proposed Model

3.1 Problem Formulation

Image denoising aims to recover the original clean image C
from its noisy observation Y , which can be formulated as

Y = C + N, (8)
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Fig. 3 The schematic framework of the proposed NFRRM method.

where N ∈ Rm×n is the Gaussian white noise with each entry
Ni j ∼ N(0,σ2

n). Problem (8) is severely ill-posed. There-
fore, prior knowledge should be exploited to characterize the
statistical features of the observed image Y . In this paper,
NSS prior is introduced to concentrate the similar structures,
form the low-rank matrices, and deliver them to the proposed
model. As shown in Fig. 3, two matrices should be prepared
for our model.

1) Patch matrix
Given the observed image Y ∈ RH×W , we set M key
patches across it. A key patch sizes p × p pixels. And
the key patches are s pixels apart. In this paper, we set
s = min(4, p − 1). Hence we have

M = ⌈(H − p)/s⌉ × ⌈(W − p)/s⌉, (9)

where ⌈·⌉ is the ceil function. For each key patch, k most
similar patches are identified via k-NN algorithm. The
selected k similar patches are then scratched to column
vectors, denoted as yi ∈ Rp2 for i ∈ {1,2, . . . , k}. The
vectors are stacked to form a patch matrix, denoted as
Y ∈ Rp2×k . The detailed procedure of generating the
patch matrix can be found in Sect. 2.1.

2) Reference matrix
To calculate the rank residual in (4), a reference matrix
should be constructed for each patch matrix. To recap,
for each key patch, k most similar patches are extracted
by k-NN. For each similar patch Pi (i ∈ {1,2, . . . , k}),
its contribution, i.e., weight, to the reference matrix is

wi =
1

∥w∥1
e−

∥K−Pi ∥2
h , (10)

where w = [w1, w2, . . . , wk]⊤, K is the key patch, and h

is a constant. Intuitively, the weight wi depends on the
similarity between the key patch K and the neighbor
Pi . And the similarity is modeled by a decreasing
function of the Euclidean distance. After obtaining
the weight vector w, the reference matrix Ĉ can be
calculated. Concretely, the jth column of Ĉ is given by
( j ∈ {1,2, . . . , k})

Ĉ(1:p2, j) = Y(1:p2,1:k − j + 1) · w(1:k − j + 1),
(11)

where Y ∈ Rp2×k is the noisy patch matrix of key patch
K, the subscript in w(1:k − j + 1) means selecting the
1st through the p2th elements of w. The mechanism
in (11) stems from the nonlocal means [45]. And the
constructed reference matrix Ĉ ∈ Rp2×k is adequate to
approximate the underlying clean patch matrix C with
sufficient accuracy. It is worth emphasizing that a key
patch will correspond with only one patch matrix and
one reference matrix.

To estimate the clean patch matrix X with high accuracy
and more efficiency, the Nuclear norm minus Frobenius norm
Rank Residual Minimization (NFRRM) model is proposed.
Mathematically, NFRRM model can be formulated as

min
X

1
2σ2

n

∥Y − X∥2
F + λ∥X − Ĉ∥∗−F , (12)

where σn is the standard deviation of noise, λ is the regu-
larization parameter, Y and Ĉ are the inputted patch matrix
and reference matrix, respectively.

After the patch matrix X ∈ Rp2×k being estimated, it is
decomposed back to k patches. Those denoised patches are
then reverted back to their original places. Finally, the de-
noised image would be obtained by concatenating the results
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all denoised patch matrices.
The above procedure is carried out several rounds in

order to obtain better denoising performance. Denote the
inputted image and outputted image at t-th iteration as Y (t)

and X (t), respectively. To reduce the method noise, the
following iterative regularization is adopted:

Y (t) = X (t−1) + δ(Y − X (t−1)), (13)

where t ∈ N+, and δ ∈ [0,1) controls the step-back in con-
secutive iterations.

3.2 Optimization

The optimization problem in (12) can be equivalently rewrit-
ten as follows:

min
X

1
2
∥Ȳ − X̄∥2

F + λσ
2
n ∥X̄∥∗−F , (14)

where Ȳ = Y − Ĉ, and X̄ = X − Ĉ. The following Theorem
is proposed to show that the global optimum of problem (14)
can be obtained in closed-form.

Theorem 1: Assume that Ȳ admits singular value decom-
position (SVD) as UȲΣȲV⊤

Ȳ, where ΣȲ = Diag(σ(Ȳ)).
Then the global optimum of problem (14) is

X∗ = UȲ Diag(ρ∗)V⊤
Ȳ + Ĉ, (15)

with

ρ∗i =

(
1 +
λασ2

n

∥ s∥2

)
· si, (16)

where si = max(σi(Ȳ) − λσ2
n,0).

Proof 1: Assume that X̄ ∈ Rp×q admits SVD as UX̄ΣX̄V⊤
X̄,

l = min(p,q). Denote λ ·σ2
n as Λ. Then the loss term in

problem (14) can be rewritten as

1
2
∥Ȳ − X̄∥2

F =
1
2
(
∥Ȳ∥2

F − 2⟨Ȳ, X̄⟩ + ∥X̄∥2
F

)
. (17)

According to the Von Neumann’s trace inequality [47], we
have

⟨Ȳ, X̄⟩ ≤ Tr(σ(Ȳ)⊤σ(X̄)). (18)

The equality occurs if and only if

UȲ = UX̄ and VȲ = VX̄. (19)

Then, for problem (14), we have

min
X

1
2
∥Ȳ − X̄∥2

F + Λ∥X̄∥∗−F (20)

= min
X

1
2
∥Ȳ∥2

F − Tr(σ(Ȳ)⊤σ(X̄)) + 1
2
∥X̄∥2

F

+ Λ

(
l∑

i=1
σi(X̄) − α

( l∑
i=1
σi(X̄)2

) 1
2

)
(21)

= min
X

l∑
i=1

(1
2
σi(X̄)2 − σi(Ȳ) · σi(X̄) + Λ · σi(X̄)

)
− Λα

( l∑
i=1
σi(X̄)2

) 1
2 (22)

Denote the objective function of (22) as J(σ(X̄)). The min-
imum point of J(σ(X̄)), denoted as ρ∗ ∈ Rl , is given by the
following first-order optimality condition:

∂J
∂σ(X̄)

= 0, (23)

where 0 ∈ Rl is a zero vector. Formula (23) can be rewritten
as (

1 − Λα

∥σ(X̄)∥2

)
σ(X̄) = σ(Ȳ) − Λ1, (24)

where 1 ∈ Rl is a vector with all elements equal to 1. The
solution of (24) is

ρ∗i =
(
1 +
Λα

∥s∥2

)
· si, (25)

where si = max(σi(Ȳ) − Λ,0). Therefore, the global opti-
mum of X̄ is

X̄∗ = UȲ Diag(ρ∗)V⊤
Ȳ. (26)

Thus the global optimum of the original problem (12) is

X∗ = X̄∗ + Ĉ. (27)

Finally, the whole procedure of our image denoising method
is summarized in Algorithm 1.

3.3 Complexity Analysis

We discuss the time complex of the steps in the inner for-
loop of Algorithm 1. Step 6 costs O(S2 log S), where S is
the side length of the squared search region. Step 7 costs
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Table 1 PSNR (dB) results of all competing methods.

O(p4k), where p is the side length of a patch and k is the
number of most similar neighbors. Step 8 costs O(p2k2)
since there are p2(1 + 2 + · · · + k) = p2

2 k(k + 1) entries to
be calculated. Step 9 (SVD) costs O(p2k2). Step 10 and 11
cost O(p4k + p2k2) and O(p2k), respectively. Among them,
the dominant cost lies in step 8. Therefore, the total time
complexity of the proposed method is O(p2k2 · M · T). And
solving the proposed NFRRM model (i.e., step 9 and 10)
costs O(p2k2).

4. Experimental Results

To validate the effectiveness of the proposed NFRRM
method, extensive experiments are implemented on image
denoising. Seven state-of-the-art methods are chosen for
comparison, including the block matching and 3d filter-
ing (BM3D) [16], global image denoising (GLIDE) [48],
optimal graph Laplacian regularization (OGLR) [49],
group sparsity residual constraint with nonlocal pri-
ors (GSRC) [18], rank residual constraint (RRC) [40],
SRRC [41], and Nonconvex Structural Sparsity Residual

Fig. 4 Ten test images. The first row, from left-to-right: House, Straw,
Lake, Starfish, and Kodim. The second row, from left-to-right: Monarch,
Plants, Brodatz, Parrots, and Boat.

Constraint (NSSRC) [50]. The codes of all competing meth-
ods are obtained from their authors. The default parameters
are kept. Both peak signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) are considered to quantify the denois-
ing performance. The higher PSNR and SSIM indicate the
better quality of the denoised image. The competition be-
tween methods are conducted on ten widely used images, the
thumbnails of which are shown in Fig. 4. The noisy obser-
vations are generated by zero-mean Gaussian with standard
deviation σn ∈ {20,30,40,50,75,100}.
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Table 2 SSIM results of all competing methods.

Table 3 The settings of λ and α.

For the proposed NFRRM method, parameters are set
with respect to different noise levels. Concretely, the size of
a patch p × p is set as 6 × 6, 7 × 7, 7 × 7, 7 × 7, 8 × 8, 9 × 9
for σn = 20,30,40,50,75,100, respectively. The number
of similar neighbors k is set as 60, 60, 70, 80, 90, 100
for σn = 20,30,40,50,75,100, respectively. The size of
search region S × S = 25 × 25 for all noise levels. The
iterative regularization parameter δ = 0.1. The upper bound
of iteration T = 81. And the settings of λ and α are listed in
Table 3.

The PSNR results for all competing methods are pre-
sented in Table 1. The best results are highlighted in bold.
The proposed NFRRM method achieves the highest PSNR in

42 out of 60 cases. Importantly, NFRRM outperforms other
rank residual-based methods, i.e., RRC and SRRC, in all of
60 cases. The average improvements of NFRRM over RRC
are 0.10 dB, 0.13 dB, 0.14 dB, 0.19 dB, 0.20 dB, 0.38 dB for
σn = 20,30,40,50,75,100, respectively. The improvement
becomes more significant as the noise becomes larger. More-
over, NFRRM also outperforms the group sparse residual-
based methods, i.e., GSRC and NSSRC.

The SSIM results are shown in Table 2. The pro-
posed NFRRM achieves the best SSIM on 41 out of 60
cases. Concretely, NFRRM outperforms its counterparts,
i.e., RRC and SRRC, in 53 out of 60 cases. The aver-
age improvements of NFRRM over SRRC are 1.6 × 10−3,
2.6 × 10−3, 5.8 × 10−3, 6.3 × 10−3, 1.02 × 10−2, 1.83 × 10−2

for σn = 20,30,40,50,75,100, respectively. When σn = 20,
NFRRM fails to achieve the best average SSIM, narrowly
losing to NSRRC. However, NFRRM achieves the highest
average SSIM under all of the other noise levels. In summary,
the proposed NFRRM method not only achieves the highest
PSNR and SSIM in most cases, but also outperforms other
state-of-the-art rank residual-based methods significantly.

The visual comparison between all competing meth-
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Fig. 5 Denoising results of Starfish with σn = 20. The subtitle format is “method: PSNR, SSIM”.

Fig. 6 Denoising results of Lake with σn = 30. The subtitle format is “method: PSNR, SSIM”.
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Fig. 7 Denoising results of Kodim with σn = 40. The subtitle format is “method: PSNR, SSIM”.

Fig. 8 Denoising results of Monarch with σn = 40. The subtitle format is “method: PSNR, SSIM”.



HUANG et al.: NUCLEAR NORM MINUS FROBENIUS NORM MINIMIZATION WITH RANK RESIDUAL CONSTRAINT FOR IMAGE DENOISING
1001

Fig. 9 Denoising results of Plants with σn = 50. The subtitle format is “method: PSNR, SSIM”.

Fig. 10 Denoising results of Brodatz with σn = 75. The subtitle format is “method: PSNR, SSIM”.
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Table 4 PSNR results of a BoostNet model (trained for σn = 50) and a NFRRM model (λ = 0.93, α = 1.855).

Table 5 SSIM results of a BoostNet model (trained for σn = 50) and a NFRRM model (λ = 0.93, α = 1.855).

Fig. 11 The effects of λ. (a) λ = 0.01: PSNR = 18.56 dB, SSIM =

0.3929. (b) λ = 1: PSNR = 27.97 dB, SSIM = 0.8329. (c) λ = 100:
PSNR = 11.43, SSIM = 0.5027.

ods are shown in Figs. 5–10. The proposed NFRRM re-
moves the Gaussian noise completely in all of the chosen six
cases. Meanwhile, the textures, edges, and image details are
preserved well by NFRRM. Concretely, NFRRM present
a better recovery on textures of the sea bed in Fig. 5, the
eave in Fig. 7, and the multiple kinds of surfaces in Fig. 10.
In contrast, GSRC, RRC, and NSSRC over-smooth those
textures, as shown in their highlighted windows. In the
highlighted windows of Fig. 8, NFRRM reconstructs more
structures on the mouthpart of the monarch and the flowers
in the left-bottom corner. In contrast, the OGLR and GLIDE
over-smooth the image and generate too much artifacts. In
Fig. 6 and Fig. 9, NFRRM preserves the edges better. While
BM3D, GLIDE, and OGLR failed to reconstruct those edges
and details. In summary, the proposed NFRRM method
presents strong denoising capability, recovering the images
with promising visual qualities while achieving high PSNR
and SSIM.

We also compare the proposed NFRRM model with a
state-of-the-art deep learning model BoostNet [51]. For fair-
ness, we use one NFRRM model (λ = 0.93, α = 1.855) and
one BoostNet model (trained for exactly σn = 50) to test all
of noise levels σn ∈ {20,30,40,50,75,100}. The PSNR and
SSIM results are listed in Table 4 and Table 5, respectively.
For σn = 50, NFRRM is narrowly inferior to BoostNet since
it only obtains higher PSNR and SSIM in 4 images while
BoostNet obtains 6. However, for σn ∈ {20,30,40,75,100},
the proposed NFRRM outperforms BoostNet significantly,
achieving the higher PSNR and SSIM on all of the 50 test
cases. Moreover, the denoising results of BoostNet (trained
for σn = 50) become unreasonable when the tested noise
levels becomes far from 50. As shown in Fig. 12, Boost-
Net (for σn = 50) over-smooths the images corrupted by
σn ∈ {20,30,40}; while it remains too much noise in the
images which are previously corrupted by σn = {75,100}.
On the contrary, the proposed NFRRM shows much more
robustness since a same NFRRM model is adequate to obtain
satisfactory denoising results in all of the six noise levels.

5. Sensitivity Analyses of Hyper-Parameters

In this section, we discuss the sensitivity of λ, α, and s. All
of the tests are carried out on the image “Starfish” corrupted
by noise ∼ N(0,302).

5.1 Regularization Parameter λ

Regularization parameter λ balances the influence of the fi-
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Fig. 12 Denoising results on “Starfish” of BoostNet model (trained for σn = 50) and NFRRM model
(λ = 0.93, α = 1.855).

Fig. 13 The effects of λ on the denoising performance of NFRRM. The
corrupted observation is generated by adding zero-mean Gaussian noise
with standard deviation σn = 30 on image “Starfish”. Other parameters
are all fixed.

delity term (∥·∥2
F ) and the regularization term (∥·∥∗−F ). As

the value of λ becomes too small, the NFRRM model would

mostly minimize the fidelity term, which makes the yielded
image contain too much noise, as shown in Fig. 11 (a). As
the value of λ becomes too large, the NFRRM model would
mostly minimize the regularization term. Consequently, the
yielded image would be over-smoothed and lose lots of de-
tails, as shown in Fig. 11 (c).

Figure 13 investigates the sensitivity of λ. As λ be-
comes larger, the denoising performance (PSNR and SSIM)
improves sharply, and reaches the peak at λ = 1. Then the
performance continues to decrease as λ → +∞. In this pa-
per, the suitable values of λ are determined via experiments.

5.2 Parameter α

Parameter α controls the shrinkage on singular values. As it
becomes too small (α → 0), the NNFN would behave like
the nuclear norm, which is characterized by the green line in
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Table 6 The best α for each image.

Fig. 14 The impact of α. (a) The corrupted observation (σn = 20),
PSNR = 20.81 dB, SSIM = 0.4731. (b) α = 0: PSNR = 27.63 dB,
SSIM = 0.8292. (c) α = 2.4: PSNR = 28.04 dB, SSIM = 0.8349. (d)
α = 10: PSNR = 27.38 dB, SSIM = 0.8258.

Fig. 15 PSNR and SSIM results on “Starfish” with different α.

Fig. 2. In that case, the leading singular values would be over-
shrunk during the regularization process of NFRRM model.
Consequently, the output image would be over-smoothed,
losing lots of details, as shown in Fig. 14 (b). As α becomes
too large (α → +∞), too many singular values would be
zero-shrunk, which is characterized by the yellow line in
Fig. 2. Consequently, the output image would contain noise
and artifacts at the edges, as shown in Fig. 14 (d).

Figure 15 investigates the sensitivity of α. As can be
seen, the best α dwells in the midst. In this paper, the suitable

Fig. 16 Effects of s on denoising performance of NFRRM. Running time
is in seconds.

α is also determined via experiments.
An empirical strategy is devised to choose α efficiently.

If the corrupted image has a higher SSIM value (denoted as
SSIM0), a larger α is preferred, and vice versa. Considering
the ten images corrupted by σn = 50. Their initial SSIM
values, i.e., SSIM0, are sorted in an ascending order. Then,
those 10 images are divided into two groups according to
their SSIM0, as shown in Table 6. For each corrupted image,
we search its “best α”, i.e., an α that can make the NFRRM
produce the highest SSIM on that image. And the “best α”
for each image are also listed in Table 6. As can be seen, the
averages of “best α” between two groups have a wide gap.
And for the image in the second group, their “best α” tend to
be larger. Therefore, the aforementioned empirical strategy
for choosing α can be obtained. This empirical strategy is
efficient since it only uses the SSIM value of the corrupted
image, which can be easily obtained.

5.3 The Interval of Key Patches s

Figure 16 investigates the sensitivity of s. As s becomes
small (8 → 5), the denoising performance would be im-
proved significantly. That is attributed to that more key
patches are generated, and hence the nonlocal self-similarity
of the image is further exploited. However, as s becomes
too small (5 → 1), the running time would increase sharply,
while the PSNR improves little. Therefore, the choice of
s should be judicious in order to meet the balance between
denoising performance and running time.

6. Conclusion

In this paper, a new image denoising method, called nu-
clear norm minus Frobenius norm rank residual minimiza-
tion (NFRRM), was proposed. The proposed method con-
verts the ill-posed image denoising problem to a nonconvex



HUANG et al.: NUCLEAR NORM MINUS FROBENIUS NORM MINIMIZATION WITH RANK RESIDUAL CONSTRAINT FOR IMAGE DENOISING
1005

optimization problem by exploiting the frameworks of im-
age NSS prior. The sound NNFN regularizer was chosen to
model the rank residual. With it, the proposed NFRRM
model can treat different rank residual components with
high flexibility. We derived that the global optimum of the
nonconvex optimization problem can be easily obtained in
closed-form. Extensive experimental results demonstrated
that the proposed method outperforms several state-of-the-
art image denoising methods.
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