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PAPER
Nuclear Norm Minus Frobenius Norm Minimization with Rank
Residual Constraint for Image Denoising

Hua HUANG†, Yiwen SHAN††, Chuan LI†††, and Zhi WANG††† ,††a), Nonmembers

SUMMARY Image denoising is an indispensable process of manifold
high level tasks in image processing and computer vision. However, the tra-
ditional low-rank minimization-based methods suffer from a biased problem
since only the noisy observation is used to estimate the underlying clean ma-
trix. To overcome this issue, a new low-rank minimization-based method,
called nuclear norm minus Frobenius norm rank residual minimization
(NFRRM), is proposed for image denoising. The propose method trans-
forms the ill-posed image denoising problem to rank residual minimization
problems through excavating the nonlocal self-similarity prior. The pro-
posed NFRRM model can perform an accurate estimation to the underlying
clean matrix through treating each rank residual component flexibly. More
importantly, the global optimum of the proposed NFRRM model can be
obtained in closed-form. Extensive experiments demonstrate that the pro-
posed NFRRM method outperforms many state-of-the-art image denoising
methods.
key words: Image denoising, nuclear norm minus Frobenius norm, rank
residual, nonlocal self-similarity

1. Introduction

Image denoising, which aims to recover the original image
from its noisy observation, is a problem of great challenge
and popularity. It serves as an indispensable process of
manifold high level tasks in image processing and computer
vision [1]–[8]. Due to its importance and ill-posed nature,
image denoising has drawn lots of research attentions in
recent years. And a variety of state-of-the-art methods have
been proposed based on low-rank minimization [9]–[15],
sparse representation [16]–[18] and deep learning [19]–[23].

Benefited from the development of convex and noncon-
vex optimization, low-rank minimization has shown excel-
lent performance in image denoising [24], [25]. Essentially,
low-rank minimization is performed on each noise matrix
that has distinctly low-rank properties. After denoising all
of those matrices, the denoised image would be obtained. In
practice, the noisy matrices can be constructed by gathering
the similar structures in the observed image [26]. Math-
ematically, the low-rank minimization associated with the
inputted noisy matrix, denoted as Y, is
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min
X

1
2𝜎2

𝑛

∥Y − X∥2
𝐹 + 𝜆 ·rank(X), (1)

where X is the estimated matrix, ∥·∥𝐹 is the Frobenius norm,
rank(·) is the rank function, 𝜎𝑛 is the standard deviation of
noise, 𝜆 > 0 is the regularization parameter. Unfortunately,
such a rank minimization problem (1) is NP-hard, which
cannot be solved in polynomial time. Inspired by compressed
sensing [27], [28], nuclear norm is used to replace the rank
function, leading to the following nuclear norm minimization
(NNM) problem:

min
X

1
2𝜎2

𝑛

∥Y − X∥2
𝐹 + 𝜆∥X∥∗, (2)

where ∥ · ∥∗ is the nuclear norm. As pointed out by Fazel
[29], the nuclear norm is the convex envelop, i.e., the “best”
convex approximation, to the rank of matrix X on the set
{X ∈ R𝑚×𝑛 : ∥X∥2 ≤ 1}, where ∥X∥2 is the spectral norm.
Moreover, Candès et al. [30] proved that the underlying ma-
trix can be recovered with high accuracy and large probabil-
ity. Solving the convex NNM problem has two advantages.
First, a local optimum is indeed the global optimum. Sec-
ond, there are a number of efficient algorithms to solve it
in polynomial time, such as the interior point method [31],
singular value thresholding [32], and accelerated proximal
gradient with line search [33]. Albeit the theoretical guar-
antees and efficient solvers, NNM still has some limitations.
As pointed out by [9], [34], the nuclear norm performs equal
treatments on all singular values. This practice ignores the
prior that singular values with different magnitude have dif-
ferent importance, and thus should be treated differently.
Consequently, NNM would result in severe deviation be-
tween the recovered matrix and the optimum. To alleviate
this problem, a number of nonconvex low-rank regulariz-
ers have been studied, including weighted norms [14], [15],
truncated nuclear norm [35], [36], and capped nuclear norm
[37], [38]. Those nonconvex regularizers give more flexible
treatments on singular values. And their superiority over
nuclear norm is validated in many studies. The weighted
nuclear norm [14] sets the weights to be inversely propor-
tional to the magnitude of singular values. Therefore, larger
singular values, which quantify more information, are penal-
ized less. The resultant weighted nuclear norm minimization
(WNNM) method is applied to image denoising, achieving
significant improvements over the original NNM. More im-
portantly, the global optimum of WNNM model can be got
in closed-form, which makes WNNM highly efficient.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers
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Fig. 1: Image denoising based on integrating NSS and low-rank minimization.

However, Xie et al. [15] pointed out that weighted nu-
clear norm still tends to over-penalize the dominant singular
values, which would result in WNNM obtaining biased solu-
tions. On the same course, they proposed weighted Schatten
𝑝-norm minimization (WSNM), which achieved state-of-
the-art denoising performance. However, solving WSNM is
expensive since it no longer allows the closed-form solution
and requires dedicated iterative solvers [39].

One common defect of the models aforementioned is
that the low-rank matrix, i.e., X in (1), is estimated only
from its noisy version Y. As the noise become stronger, it is
more difficult to recognize the similar structures and gather
into the noisy matrix. In other words, the low-rank nature
of matrix Y would be weaken. Consequently, the recovery
would deviate from the optimum. To address this problem,
dedicated constraints should be introduced. Rank residual
constraint (RRC) [40] constructs a reference matrix for each
noisy matrix. The reference matrices lead to a more accu-
rate estimation to the underlying clean matrices. However,
RRC model treats rank residual components equally, over-
penalizing the dominant ones. To overcome this drawback,
Zhang et al. [41] replaced the nuclear norm regularizer in
RRC with weighted Schatten 𝑝-norm, and proposed the rank
residual constraint with weighted Schatten 𝑝-norm (SRRC)
model. SRRC model further improves the denoising perfor-
mance over RRC. However, SRRC model requires iterative
solvers [39], which might be expensive when recovering
large images.

Considering the drawbacks of aforementioned models,
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Fig. 2: The output pattern of the NNFN-based proximal op-
erator with 𝜆 = 10. The horizontal axis represents the input,
i.e., the 𝑖th singular value of the observed matrix Y. The
vertical axis represents the output, i.e., the 𝑖th singular value
of the output matrix X. Rational set of 𝛼 will boost the flexi-
bility of shrinkage. Concretely, when 𝛼 = 0, NNFN reduces
to nuclear norm. Thus a constant shrinkage is imposed on
𝜎𝑖 (X). As 𝛼 becomes larger, the resultant NNFN shrinks
less on the large singular values, or even preserves them.
When 𝛼 → +∞, NNFN behaves like Capped nuclear norm,
which only shrinks the small singular values.

in this paper we propose a new low-rank minimization model,
called Nuclear norm minus Frobenius norm Rank Residual
Minimization (NFRRM), and apply it to solve image denois-
ing problem. The proposed model has two major advantages.
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Fig. 3: The schematic framework of the proposed NFRRM method.

Algorithm 1: Image denoising via NFRRM.
Input: Noisy image 𝑌 ;
Output: Denoised image 𝑋;

1 Initialize 𝑋0 = 𝑌, 𝑇, 𝑠, 𝑘, 𝜆, 𝛼;
2 for 𝑖 = 1 : 𝑇 do
3 Iterative regularization 𝑌 (𝑡 ) = 𝑋 (𝑡−1) + 𝛿 (𝑌 − 𝑋 (𝑡−1) );
4 Assign 𝑀 key patches in 𝑌 𝑡 ;
5 for Each key patch K do
6 𝑘-NN: Extract 𝑘 most similar neighbors of K in a

search region;
7 Construct the noisy patch matrix Y;
8 Construct the reference matrix Ĉ;
9 SVD: Ȳ = UDiag(𝝈 (Ȳ) )V⊤;

10 Estimate the optimal X∗ by Theorem 1;
11 Decompose X∗ back to patches; revert them back to

their original places;
12 end
13 end

First, it provides a more flexible treatment on different rank
residual components, which indicates the underlying low-
rank matrix can be estimated with more accuracy. Second,
cheap closed-form solution is allowed [42], which means the
proposed model can be solved with high efficiency. Through
exploiting the framework of nonlocal self-similarity [26]
prior, the proposed NFRRM model is applied to image de-
noising. Extensive experiments demonstrated that the pro-
posed NFRRM method outperforms several state-of-the-art
image denoising methods.

2. Related Works

2.1 Nonlocal Self-Similarity

As an ill-posed problem, image denoising has no unique solu-

Fig. 4: Ten test images. The first row, from left-to-right:
House, Straw, Lake, Starfish, and Kodim. The second row,
from left-to-right: Monarch, Plants, Brodatz, Parrots, and
Boat.

tion. And the solutions vary discontinuously for small input
changes. Therefore, prior knowledge should be introduced
to regularize the solution space. The nonlocal self-similarity
(NSS) [26] is one of the exemplary image prior. NSS de-
scribes the property that there spread many similar patterns
across a natural image. Through gathering those similar
structures, a flurry of low-rank matrices, called patch matri-
ces, would be constructed. Low-rank minimization models
should be conducted on each patch matrix, estimating its un-
derlying denoised version. Eventually, the denoised image
would be obtained by concatenating all denoised matrices.

Figure 1 depicts the detailed procedure about generating
a patch matrix from the observed image. Concretely, given a
noisy image 𝑌 , a number of key patches are assigned across
it. Those key patches are spaced an equal distance apart,
and each spans 𝑝 × 𝑝 pixels. For each key patch, its 𝑘

most similar neighbors (i.e., patches) are identified via 𝑘-
Nearest Neighbors (𝑘-NN) algorithm. The similar neighbors
are found in a squared search region around the key patch,
instead of the whole image. The distance between the key
patch K ∈ R𝑝×𝑝 and its 𝑖th neighbor P𝑖 ∈ R𝑝×𝑝 is measured
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(a) Ground Truth (b) Noisy: 22.08dB, 0.5372 (c) BM3D: 29.56dB, 0.8727 (d) GLIDE: 29.03dB, 0.8541 (e) OGLR: 27.53dB, 0.8735

(f) GSRC: 30.09dB, 0.8770 (g) RRC: 30.01dB, 0.8770 (h) SRRC: 30.05dB, 0.8761 (i) NSSRC: 30.07dB, 0.8770 (j) NFRRM: 30.17dB, 0.8777

Fig. 5: Denoising results of Starfish with 𝜎𝑛 = 20. The subtitle format is “method: PSNR, SSIM”.

by

𝑑 (K,P𝑖) = ∥K − P𝑖 ∥𝐹 , (3)

where 𝑖 ∈ {1, 2, . . . , 𝑆2}, and 𝑆 is the side length of the
squared search region. After that, the chosen 𝑘 most similar
patches are stretched to column vectors, denoted as y𝑖 ∈ R𝑝2

for 𝑖 ∈ {1, 2, . . . , 𝑘}. Those 𝑘 vectors are stacked to form a
patch matrix Y = C + N ∈ R𝑝2×𝑘 ,where C,N are the under-
lying clean matrix and the noise matrix, respectively. Note
that the relationship between key patches and patch matrices
is one-to-one. As patch matrix Y groups similar structures,
it has clear low-rank property. Therefore, low-rank mini-
mization can be conducted on Y. And the corresponding
denoised version X, which is desired to be as closed to the
ground truth C as possible, can be estimated. In summary,
NSS prior bridges the gap between the low-rank minimiza-
tion and image denoising problem, promoting the proposal
of numerous low-rank based image denoising methods [13]–
[15], [43], [44].

2.2 The Constraint of Rank Residual

As discussed in Introduction, defective results would be ob-
tained by the traditional low-rank models since they estimate
the underlying clean matrix only from its corresponding
noisy observation. To address this issue, dedicated con-
straints should be introduced to regularize the solutions. In

[40], Zha et al. proposed a novel low-rank minimization-
based method with rank residual constraint (RRC) for image
denoising and achieved the competitive results.

Mathematically, the rank residual, denoted as Γ, is
defined as the difference between the the estimated ma-
trix X and the underlying ground truth matrix C, that is
Γ

𝑑𝑒 𝑓
= X − C.However, the clean matrix C is unavailable

in image denoising problem. Therefore, accurate estima-
tor should be introduced, for example, the nonlocal means
[45]. Denote the estimated clean matrix as Ĉ. Then the rank
residual can be modified as

Γ
𝑑𝑒 𝑓
= X − Ĉ. (4)

Finally, a general form of low-rank minimization model with
rank residual can be formulated as

min
X

1
2
∥Y − X∥2

𝐹 + 𝜆𝑟 (X − Ĉ), (5)

where 𝑟 (·) denotes a low-rank regularizer that promotes the
rank residual to be low-rank. It remains an open problem
what regularizer fits for rank residual better [41].

2.3 Nuclear Norm Minus Frobenius Norm

Nuclear norm Minus Frobenius norm (NNFN) is a non-
convex regularizer with multiple merits. Mathematically,
NNFN of matrix X ∈ R𝑚×𝑛 is defined as
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Table 1: PSNR(dB) results of all competing methods.
𝜎𝑛 = 20 𝜎𝑛 = 30

Images BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM
House 33.77 32.76 32.61 33.93 33.74 33.80 33.87 33.90 32.14 30.34 30.08 32.49 32.32 32.36 32.49 32.52
Straw 27.05 26.71 25.68 27.65 27.56 27.56 27.64 27.64 25.01 24.76 23.86 25.46 25.39 25.39 25.48 25.51
Lake 28.85 28.01 27.27 29.16 29.07 29.16 29.10 29.22 26.84 25.96 26.82 26.89 26.89 26.94 26.95 27.02

Starfish 29.56 29.03 27.53 30.09 30.01 30.05 30.07 30.17 27.54 26.92 25.32 28.02 27.98 27.99 28.01 28.04
Kodim 29.41 28.04 28.73 29.58 29.38 29.44 29.71 29.57 27.35 25.90 26.97 27.46 27.41 27.42 27.55 27.60

Monarch 30.43 29.51 28.38 30.99 31.02 31.03 30.88 31.09 28.40 27.50 26.42 28.80 28.80 28.81 28.78 28.90
Plants 32.68 31.29 30.37 32.84 32.82 32.80 32.86 32.88 30.63 28.95 28.26 30.87 30.90 30.79 30.79 31.05

Brodatz 26.64 25.53 26.56 27.25 27.20 27.26 27.39 27.33 24.45 23.35 24.41 25.15 25.05 25.13 25.22 25.22
Parrots 32.30 31.13 30.65 32.28 32.39 32.45 32.46 32.59 30.30 29.47 28.47 30.26 30.52 30.60 30.51 30.78
Boat 31.33 29.96 29.17 31.54 31.46 31.47 31.57 31.44 29.24 27.79 26.88 29.41 29.28 29.30 29.37 29.38

Average 30.20 29.20 28.70 30.53 30.46 30.50 30.56 30.58 28.19 27.09 26.59 28.48 28.45 28.47 28.51 28.60
𝜎𝑛 = 40 𝜎𝑛 = 50

Images BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM
House 30.76 28.88 29.03 31.22 31.10 31.15 31.37 30.96 29.84 27.69 26.81 30.47 29.93 30.00 30.39 30.03
Straw 23.21 23.32 22.54 23.93 23.92 23.93 23.95 24.04 22.39 22.02 21.56 22.79 22.80 22.84 22.90 22.99
Lake 25.25 24.65 23.73 25.52 25.50 25.53 25.52 25.61 30.21 28.59 27.91 30.78 30.89 30.93 30.87 24.56

Starfish 25.89 25.39 23.81 26.53 26.47 26.48 26.54 26.55 24.89 24.10 22.93 25.36 25.36 25.36 25.44 25.40
Kodim 25.80 24.61 23.81 25.87 25.90 25.92 26.03 26.03 24.81 23.49 24.21 24.93 24.78 24.86 25.08 25.03

Monarch 26.78 26.13 25.41 27.35 27.34 27.35 27.32 27.43 25.72 25.07 23.66 26.25 26.22 26.23 26.28 26.30
Plants 29.00 27.79 26.30 29.42 29.51 29.36 29.38 29.60 27.93 26.61 26.62 28.25 28.32 28.21 28.27 28.49

Brodatz 22.20 21.85 23.25 23.41 23.49 23.55 23.66 23.68 21.81 20.66 22.25 22.24 22.20 22.26 22.48 22.53
Parrots 28.63 28.11 26.69 28.70 29.16 29.24 29.18 29.35 28.00 27.09 25.57 28.02 28.04 28.14 28.12 28.38
Boat 27.81 26.31 25.69 27.98 27.88 27.88 27.93 27.82 26.58 25.13 24.33 26.92 26.81 26.81 26.96 26.81

Average 26.53 25.70 25.03 26.99 27.03 27.04 27.09 27.11 25.63 24.55 23.99 25.97 25.90 25.91 26.04 26.05
𝜎𝑛 = 75 𝜎𝑛 = 100

Images BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM
House 27.45 25.17 24.64 28.61 27.99 27.99 28.59 28.28 25.87 23.57 22.43 26.72 26.38 26.35 26.92 26.76
Straw 20.61 19.55 19.94 20.67 21.04 21.06 21.04 21.07 19.57 18.34 18.84 19.02 19.34 19.87 19.85 19.88
Lake 22.59 21.77 20.72 22.61 22.64 22.64 22.63 22.86 21.45 20.65 19.63 21.32 21.37 21.42 21.41 21.65

Starfish 22.93 22.04 21.05 23.32 23.37 23.38 23.41 23.55 21.85 20.92 19.76 21.86 21.98 22.05 22.06 22.26
Kodim 23.19 21.36 22.47 23.37 23.29 23.30 23.50 23.51 21.83 20.45 21.04 22.11 22.15 22.09 22.41 22.52

Monarch 23.72 22.71 21.73 24.35 24.24 24.23 24.28 24.50 22.31 20.80 19.21 22.87 22.76 22.76 22.82 23.11
Plants 26.09 24.82 23.66 26.18 26.40 26.28 26.21 26.61 24.70 23.74 22.30 24.18 24.91 24.93 24.92 25.24

Brodatz 19.94 18.43 20.29 20.21 20.10 20.18 20.28 20.37 18.70 16.98 18.77 19.07 19.14 19.12 19.25 19.34
Parrots 26.08 24.76 23.47 26.15 26.23 26.24 26.17 26.41 24.54 23.43 22.50 24.78 24.83 24.82 24.76 25.01
Boat 24.73 23.16 22.56 24.95 24.80 24.77 25.00 25.02 23.41 21.88 21.11 23.30 23.38 23.34 23.49 23.70

Average 23.73 22.38 22.05 24.04 24.01 24.01 24.11 24.22 22.42 21.08 20.56 22.52 22.62 22.67 22.79 22.95

∥X∥∗−𝐹 = ∥X∥∗−𝛼∥X∥𝐹 =

𝑙∑︁
𝑖=1

𝜎𝑖 (X)−𝛼
( 𝑙∑︁
𝑖=1

𝜎𝑖 (X)2
) 1

2
,

(6)

where 𝛼 ≥ 0, 𝑙 = min(𝑚, 𝑛), and 𝜎𝑖 (X) is the 𝑖th singular
value of X. As shown in Figure 2, NNFN is adequate to treat
singular values with much flexibility. More importantly, the
optimization model with NNFN, which can be formulated as

min
X

1
2
∥Y − X∥2

𝐹 + 𝜆∥X∥∗−𝐹 , (7)

allows the global optimum being obtained in closed-form
[42], [46]. The NNFN-based low-rank models have achieved
promising performance in matrix completion [46], recom-
mendation system [46], and color image denoising [13].

3. The Proposed Model

3.1 Problem Formulation

Image denoising aims to recover the original clean image 𝐶

from its noisy observation 𝑌 , which can be formulated as

𝑌 = 𝐶 + 𝑁, (8)

where 𝑁 ∈ R𝑚×𝑛 is the Gaussian white noise with each
entry 𝑁𝑖 𝑗 ∼ N(0, 𝜎2

𝑛). Problem (8) is severely ill-posed.
Therefore, prior knowledge should be exploited to charac-
terize the statistical features of the observed image 𝑌 . In
this paper, NSS prior is introduced to concentrate the similar
structures, form the low-rank matrices, and deliver them to
the proposed model. As shown in Figure 3, two matrices
should be prepared for our model.

1) Patch matrix
Given the observed image 𝑌 ∈ R𝐻×𝑊 , we set 𝑀 key
patches across it. A key patch sizes 𝑝 × 𝑝 pixels. And
the key patches are 𝑠 pixels apart. In this paper, we set
𝑠 = min(4, 𝑝 − 1). Hence we have

𝑀 = ⌈(𝐻 − 𝑝)/𝑠⌉ × ⌈(𝑊 − 𝑝)/𝑠⌉, (9)

where ⌈·⌉ is the ceil function. For each key patch, 𝑘 most
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Table 2: SSIM results of all competing methods.
𝜎𝑛 = 20 𝜎𝑛 = 30

Images BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM
House 0.8726 0.8579 0.9156 0.8688 0.8665 0.8667 0.8680 0.8663 0.8480 0.8244 0.8832 0.8533 0.8529 0.8530 0.8525 0.8536
Straw 0.8962 0.8845 0.8545 0.9124 0.9120 0.9118 0.9120 0.9122 0.8320 0.8218 0.7780 0.8540 0.8562 0.8531 0.8547 0.8581
Lake 0.8798 0.8482 0.8685 0.8840 0.8809 0.8860 0.8845 0.8883 0.8286 0.7962 0.8268 0.8303 0.8323 0.8338 0.8345 0.8407

Starfish 0.8727 0.8541 0.8735 0.8770 0.8770 0.8761 0.8770 0.8777 0.8219 0.8045 0.8062 0.8327 0.8337 0.8333 0.8332 0.8351
Kodim 0.8645 0.7986 0.8498 0.8602 0.8594 0.8549 0.8694 0.8604 0.8029 0.7102 0.8040 0.7959 0.7935 0.7922 0.7973 0.8050

Monarch 0.9211 0.8986 0.9198 0.9246 0.9274 0.9270 0.9240 0.9279 0.8845 0.8585 0.8769 0.8939 0.8960 0.8957 0.8925 0.8978
Plants 0.8811 0.8492 0.8493 0.8835 0.8812 0.8807 0.8840 0.8818 0.8363 0.7938 0.7916 0.8453 0.8459 0.8412 0.8453 0.8498

Brodatz 0.9141 0.8778 0.8950 0.9235 0.9239 0.9223 0.9243 0.9225 0.8564 0.8059 0.8323 0.8715 0.8763 0.8699 0.8713 0.8762
Parrots 0.8985 0.8805 0.9120 0.8993 0.9007 0.8998 0.8997 0.9000 0.8705 0.8482 0.8677 0.8740 0.8765 0.8759 0.8718 0.8781
Boat 0.8897 0.8528 0.8773 0.8921 0.8893 0.8876 0.8927 0.8855 0.8392 0.7991 0.7971 0.8450 0.8427 0.8409 0.8437 0.8425

Average 0.8890 0.8602 0.8815 0.8925 0.8918 0.8913 0.8935 0.8923 0.8420 0.8063 0.8247 0.8496 0.8506 0.8489 0.8497 0.8537
𝜎𝑛 = 40 𝜎𝑛 = 50

Images BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM
House 0.8282 0.7964 0.8582 0.8398 0.8395 0.8393 0.8415 0.8368 0.8150 0.7657 0.7819 0.8310 0.8248 0.8246 0.8300 0.8257
Straw 0.7459 0.7559 0.6967 0.7904 0.7983 0.7964 0.7900 0.8024 0.6810 0.6765 0.5957 0.7261 0.7461 0.7391 0.7339 0.7453
Lake 0.7809 0.7527 0.7381 0.7912 0.7921 0.7925 0.7928 0.8026 0.7440 0.7132 0.7183 0.7492 0.7571 0.7535 0.7581 0.7655

Starfish 0.7812 0.7550 0.7570 0.7957 0.7951 0.7950 0.7946 0.7974 0.7400 0.7035 0.7132 0.7540 0.7607 0.7599 0.7614 0.7611
Kodim 0.7243 0.6534 0.7411 0.7296 0.7219 0.7211 0.7284 0.7412 0.6762 0.6018 0.6981 0.6737 0.6777 0.6717 0.6861 0.6913

Monarch 0.8504 0.8255 0.8355 0.8620 0.8651 0.8645 0.8613 0.8686 0.8199 0.7941 0.7951 0.8308 0.8361 0.8352 0.8331 0.8422
Plants 0.7897 0.7534 0.7167 0.8138 0.8151 0.8061 0.8134 0.8196 0.7621 0.7193 0.7855 0.7814 0.7789 0.7707 0.7843 0.7877

Brodatz 0.7780 0.7337 0.7983 0.8165 0.8224 0.8173 0.8146 0.8248 0.7417 0.6772 0.7434 0.7401 0.7654 0.7577 0.7589 0.7709
Parrots 0.8413 0.8126 0.8294 0.8522 0.8555 0.8550 0.8502 0.8595 0.8298 0.7947 0.7790 0.8363 0.8372 0.8369 0.8327 0.8445
Boat 0.7994 0.7503 0.7611 0.8083 0.8051 0.8047 0.8053 0.8061 0.7584 0.7095 0.7237 0.7763 0.7738 0.7719 0.7765 0.7763

Average 0.7919 0.7589 0.7732 0.8099 0.8110 0.8092 0.8092 0.8159 0.7568 0.7156 0.7240 0.7699 0.7758 0.7721 0.7755 0.7811
𝜎𝑛 = 75 𝜎𝑛 = 100

Images BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM BM3D GLIDE OGLR GSRC RRC SRRC NSSRC NFRRM
House 0.7601 0.7018 0.7339 0.8083 0.7952 0.7946 0.8068 0.8000 0.7203 0.6332 0.6330 0.7803 0.7655 0.7637 0.7810 0.7725
Straw 0.5344 0.4423 0.3696 0.5346 0.6227 0.6210 0.5885 0.5887 0.4115 0.3028 0.2214 0.3317 0.3689 0.5069 0.4672 0.4695
Lake 0.6675 0.6293 0.5962 0.6772 0.6822 0.6798 0.6767 0.6933 0.6070 0.5701 0.5263 0.6173 0.6233 0.6215 0.6218 0.6378

Starfish 0.6616 0.6119 0.6097 0.6712 0.6811 0.6797 0.6778 0.6868 0.5977 0.5461 0.5085 0.6006 0.6081 0.6132 0.6093 0.6208
Kodim 0.5864 0.4840 0.5967 0.6012 0.5932 0.5902 0.6025 0.6066 0.5171 0.4295 0.5352 0.5294 0.5287 0.5229 0.5412 0.5614

Monarch 0.7490 0.6978 0.7006 0.7779 0.7783 0.7778 0.7771 0.7869 0.6956 0.6311 0.5975 0.7302 0.7312 0.7300 0.7271 0.7409
Plants 0.6926 0.6479 0.5776 0.7188 0.7172 0.7110 0.7157 0.7270 0.6434 0.5945 0.5041 0.6642 0.6680 0.6683 0.6734 0.6805

Brodatz 0.6164 0.5162 0.6264 0.6055 0.6315 0.6151 0.6089 0.6215 0.5288 0.4032 0.4766 0.5189 0.5299 0.5236 0.5308 0.5551
Parrots 0.7750 0.7463 0.7089 0.8043 0.8028 0.8023 0.8004 0.8053 0.7330 0.6979 0.6798 0.7776 0.7729 0.7720 0.7712 0.7725
Boat 0.6876 0.6252 0.6183 0.7093 0.7003 0.6981 0.7093 0.7123 0.6348 0.5509 0.5557 0.6461 0.6428 0.6398 0.6521 0.6613

Average 0.6731 0.6103 0.6138 0.6908 0.7004 0.6970 0.6964 0.7028 0.6089 0.5359 0.5238 0.6196 0.6239 0.6362 0.6375 0.6472

Table 3: The settings of 𝜆 and 𝛼.
Noise 𝜆 𝛼

𝜎𝑛 = 20 0.95 2.400
𝜎𝑛 = 30 0.93 2.125
𝜎𝑛 = 40 0.92 2.110
𝜎𝑛 = 50 0.93 1.855
𝜎𝑛 = 75 0.93 1.000
𝜎𝑛 = 100 0.94 0.900

similar patches are identified via 𝑘-NN algorithm. The
selected 𝑘 similar patches are then scratched to column
vectors, denoted as y𝑖 ∈ R𝑝2 for 𝑖 ∈ {1, 2, . . . , 𝑘}. The
vectors are stacked to form a patch matrix, denoted as
Y ∈ R𝑝2×𝑘 . The detailed procedure of generating the
patch matrix can be found in section 2.1.

2) Reference matrix
To calculate the rank residual in (4), a reference matrix
should be constructed for each patch matrix. To recap,
for each key patch, 𝑘 most similar patches are extracted

by 𝑘-NN. For each similar patch P𝑖 (𝑖 ∈ {1, 2, . . . , 𝑘}),
its contribution, i.e., weight, to the reference matrix is

𝑤𝑖 =
1

∥w∥1
𝑒−

∥K−P𝑖 ∥2
ℎ , (10)

where w = [𝑤1, 𝑤2, . . . , 𝑤𝑘]⊤, K is the key patch, and ℎ

is a constant. Intuitively, the weight 𝑤𝑖 depends on the
similarity between the key patch K and the neighbor
P𝑖 . And the similarity is modeled by a decreasing
function of the Euclidean distance. After obtaining
the weight vector w, the reference matrix Ĉ can be
calculated. Concretely, the 𝑗 th column of Ĉ is given by
( 𝑗 ∈ {1, 2, . . . , 𝑘})

Ĉ(1: 𝑝2, 𝑗) = Y(1: 𝑝2, 1: 𝑘 − 𝑗 +1) ·w(1: 𝑘 − 𝑗 +1),
(11)

where Y ∈ R𝑝2×𝑘 is the noisy patch matrix of key patch
K, the subscript in w(1 : 𝑘 − 𝑗 + 1) means selecting the
1st through the 𝑝2th elements of w. The mechanism
in (11) stems from the nonlocal means [45]. And the
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(a) Ground Truth (b) Noisy: 18.56dB, 0.3849 (c) BM3D: 26.84dB, 0.8286 (d) GLIDE: 25.96dB, 0.7962 (e) OGLR: 26.82dB, 0.8268

(f) GSRC: 26.89dB, 0.8303 (g) RRC: 26.89dB, 0.8323 (h) SRRC: 26.94dB, 0.8338 (i) NSSRC: 26.95dB, 0.8345 (j) NFRRM: 27.02dB, 0.8407

Fig. 6: Denoising results of Lake with 𝜎𝑛 = 30. The subtitle format is “method: PSNR, SSIM”.

constructed reference matrix Ĉ ∈ R𝑝2×𝑘 is adequate to
approximate the underlying clean patch matrix C with
sufficient accuracy. It is worth emphasizing that a key
patch will correspond with only one patch matrix and
one reference matrix.

To estimate the clean patch matrix X with high accuracy
and more efficiency, the Nuclear norm minus Frobenius norm
Rank Residual Minimization (NFRRM) model is proposed.
Mathematically, NFRRM model can be formulated as

min
X

1
2𝜎2

𝑛

∥Y − X∥2
𝐹 + 𝜆∥X − Ĉ∥∗−𝐹 , (12)

where 𝜎𝑛 is the standard deviation of noise, 𝜆 is the regular-
ization parameter, Y and Ĉ are the inputted patch matrix and
reference matrix, respectively.

After the patch matrix X ∈ R𝑝2×𝑘 being estimated, it is
decomposed back to 𝑘 patches. Those denoised patches are
then reverted back to their original places. Finally, the de-
noised image would be obtained by concatenating the results
all denoised patch matrices.

The above procedure is carried out several rounds in
order to obtain better denoising performance. Denote the
inputted image and outputted image at 𝑡-th iteration as 𝑌 (𝑡 )

and 𝑋 (𝑡 ) , respectively. To reduce the method noise, the
following iterative regularization is adopted:

𝑌 (𝑡 ) = 𝑋 (𝑡−1) + 𝛿(𝑌 − 𝑋 (𝑡−1) ), (13)

where 𝑡 ∈ N+, and 𝛿 ∈ [0, 1) controls the step-back in
consecutive iterations.

3.2 Optimization

The optimization problem in (12) can be equivalently rewrit-
ten as follows:

min
X

1
2
∥Ȳ − X̄∥2

𝐹 + 𝜆𝜎2
𝑛 ∥X̄∥∗−𝐹 , (14)

where Ȳ = Y − Ĉ, and X̄ = X − Ĉ. The following Theorem
is proposed to show that the global optimum of problem (14)
can be obtained in closed-form.

Theorem 1: Assume that Ȳ admits singular value decom-
position (SVD) as UȲ𝚺ȲV⊤

Ȳ, where 𝚺Ȳ = Diag(𝝈(Ȳ)).
Then the global optimum of problem (14) is

X∗ = UȲDiag(𝝆∗)V⊤
Ȳ + Ĉ, (15)

with

𝜌∗𝑖 = (1 + 𝜆𝛼𝜎2
𝑛

∥𝒔∥2
) · 𝑠𝑖 , (16)

where 𝑠𝑖 = max(𝜎𝑖 (Ȳ) − 𝜆𝜎2
𝑛 , 0).

Proof 1: Assume that X̄ ∈ R𝑝×𝑞 admits SVD as UX̄𝚺X̄V⊤
X̄,

𝑙 = min(𝑝, 𝑞). Denote 𝜆 ·𝜎2
𝑛 as Λ. Then the loss term in
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(a) Ground Truth (b) Noisy: 16.06dB, 0.3153 (c) BM3D: 25.80dB, 0.7243 (d) GLIDE: 24.61dB, 0.6534 (e) OGLR: 23.81dB, 0.7411

(f) GSRC: 25.87dB, 0.7296 (g) RRC: 25.90dB, 0.7219 (h) SRRC: 25.92dB, 0.7211 (i) NSSRC: 26.03dB, 0.7284 (j) NFRRM: 26.03dB, 0.7974

Fig. 7: Denoising results of Kodim with 𝜎𝑛 = 40. The subtitle format is “method: PSNR, SSIM”.

problem (14) can be rewritten as

1
2
∥Ȳ − X̄∥2

𝐹 =
1
2
(
∥Ȳ∥2

𝐹 − 2⟨Ȳ, X̄⟩ + ∥X̄∥2
𝐹

)
. (17)

According to the Von Neumann’s trace inequality [47], we
have

⟨Ȳ, X̄⟩ ≤ Tr(𝜎(Ȳ)⊤𝜎(X̄)). (18)

The equality occurs if and only if

UȲ = UX̄ and VȲ = VX̄. (19)

Then, for problem (14), we have

min
X

1
2
∥Ȳ − X̄∥2

𝐹 + Λ∥X̄∥∗−𝐹 (20)

=min
X

1
2
∥Ȳ∥2

𝐹 − Tr(𝜎(Ȳ)⊤𝜎(X̄)) + 1
2
∥X̄∥2

𝐹

+ Λ

( 𝑙∑︁
𝑖=1

𝜎𝑖 (X̄) − 𝛼(
𝑙∑︁

𝑖=1
𝜎𝑖 (X̄)2) 1

2

)
(21)

=min
X

𝑙∑︁
𝑖=1

(1
2
𝜎𝑖 (X̄)2 − 𝜎𝑖 (Ȳ) ·𝜎𝑖 (X̄) + Λ·𝜎𝑖 (X̄)

)
− Λ𝛼

( 𝑙∑︁
𝑖=1

𝜎𝑖 (X̄)2
) 1

2 (22)

Denote the objective function of (22) as 𝐽 (𝝈(X̄)). The

minimum point of 𝐽 (𝝈(X̄)), denoted as 𝝆∗ ∈ R𝑙 , is given by
the following first-order optimality condition:

𝜕𝐽

𝜕𝝈(X̄)
= 0, (23)

where 0 ∈ R𝑙 is a zero vector. Formula (23) can be rewritten
as (

1 − Λ𝛼

∥𝝈(X̄)∥2

)
𝝈(X̄) = 𝝈(Ȳ) − Λ1, (24)

where 1 ∈ R𝑙 is a vector with all elements equal to 1. The
solution of (24) is

𝜌∗𝑖 =
(
1 + Λ𝛼

∥s∥2

)
·𝑠𝑖 , (25)

where 𝑠𝑖 = max(𝜎𝑖 (Ȳ) − Λ, 0). Therefore, the global opti-
mum of X̄ is

X̄∗ = UȲDiag(𝝆∗)V⊤
Ȳ. (26)

Thus the global optimum of the original problem (12) is

X∗ = X̄∗ + Ĉ. (27)

Finally, the whole procedure of our image denoising method
is summarized in Algorithm 1.

3.3 Complexity Analysis

We discuss the time complex of the steps in the inner for-
loop of Algorithm 1. Step 6 costs O(𝑆2𝑙𝑜𝑔𝑆), where 𝑆 is
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(a) Ground Truth (b) Noisy: 16.06dB, 0.3034 (c) BM3D: 26.78dB, 0.8504 (d) GLIDE: 26.13dB, 0.8255 (e) OGLR: 25.41dB, 0.8355

(f) GSRC: 27.35dB, 0.8620 (g) RRC: 27.34dB, 0.8651 (h) SRRC: 27.35dB, 0.8645 (i) NSSRC: 27.32dB, 0.8613 (j) NFRRM: 27.43dB, 0.8686

Fig. 8: Denoising results of Monarch with 𝜎𝑛 = 40. The subtitle format is “method: PSNR, SSIM”.

the side length of the squared search region. Step 7 costs
O(𝑝4𝑘), where 𝑝 is the side length of a patch and 𝑘 is the
number of most similar neighbors. Step 8 costs O(𝑝2𝑘2)
since there are 𝑝2 (1 + 2 + . . . + 𝑘) = 𝑝2

2 𝑘 (𝑘 + 1) entries to
be calculated. Step 9 (SVD) costs O(𝑝2𝑘2). Step 10 and
11 cost O(𝑝4𝑘 + 𝑝2𝑘2) and O(𝑝2𝑘), respectively. Among
them, the dominant cost lies in step 8. Therefore, the total
time complexity of the proposed method is O(𝑝2𝑘2 ·𝑀 ·𝑇).
And solving the proposed NFRRM model (i.e., step 9 and
10) costs O(𝑝2𝑘2).

4. Experimental Results

To validate the effectiveness of the proposed NFRRM
method, extensive experiments are implemented on image
denoising. Seven state-of-the-art methods are chosen for
comparison, including the block matching and 3d filtering
(BM3D) [16], global image denoising (GLIDE) [48], op-
timal graph Laplacian regularization (OGLR) [49], group
sparsity residual constraint with nonlocal priors (GSRC)
[18], rank residual constraint (RRC) [40], SRRC [41],
and Nonconvex Structural Sparsity Residual Constraint
(NSSRC) [50]. The codes of all competing methods are
obtained from their authors. The default parameters are
kept. Both peak signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) are considered to quantify the de-
noising performance. The higher PSNR and SSIM indicate
the better quality of the denoised image. The competition be-

tween methods are conducted on ten widely used images, the
thumbnails of which are shown in Figure 4. The noisy obser-
vations are generated by zero-mean Gaussian with standard
deviation 𝜎𝑛 ∈ {20, 30, 40, 50, 75, 100}.

For the proposed NFRRM method, parameters are set
with respect to different noise levels. Concretely, the size
of a patch 𝑝 × 𝑝 is set as 6 × 6, 7 × 7, 7 × 7, 7 × 7, 8 ×
8, 9 × 9 for 𝜎𝑛 = 20, 30, 40, 50, 75, 100, respectively. The
number of similar neighbors 𝑘 is set as 60, 60, 70, 80, 90, 100
for 𝜎𝑛 = 20, 30, 40, 50, 75, 100, respectively. The size of
search region 𝑆 × 𝑆 = 25 × 25 for all noise levels. The
iterative regularization parameter 𝛿 = 0.1. The upper bound
of iteration 𝑇 = 81. And the settings of 𝜆 and 𝛼 are listed in
Table 3.

The PSNR results for all competing methods are pre-
sented in Table 1. The best results are highlighted in bold.
The proposed NFRRM method achieves the highest PSNR in
42 out of 60 cases. Importantly, NFRRM outperforms other
rank residual-based methods, i.e., RRC and SRRC, in all of
60 cases. The average improvements of NFRRM over RRC
are 0.10dB, 0.13dB, 0.14dB, 0.19dB, 0.20dB, 0.38dB for
𝜎𝑛 = 20, 30, 40, 50, 75, 100, respectively. The improvement
becomes more significant as the noise becomes larger. More-
over, NFRRM also outperforms the group sparse residual-
based methods, i.e., GSRC and NSSRC.

The SSIM results are shown in Table 2. The pro-
posed NFRRM achieves the best SSIM on 41 out of 60
cases. Concretely, NFRRM outperforms its counterparts,
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(a) Ground Truth (b) Noisy: 14.12dB, 0.1176 (c) BM3D: 27.93dB, 0.7621 (d) GLIDE: 26.61dB, 0.7193 (e) OGLR: 26.62dB, 0.7855

(f) GSRC: 28.25dB, 0.7814 (g) RRC: 28.32dB, 0.7789 (h) SRRC: 28.21dB, 0.7707 (i) NSSRC: 28.27dB, 0.7843 (j) NFRRM: 28.49dB, 0.7877

Fig. 9: Denoising results of Plants with 𝜎𝑛 = 50. The subtitle format is “method: PSNR, SSIM”.

i.e., RRC and SRRC, in 53 out of 60 cases. The average
improvements of NFRRM over SRRC are 1.6 × 10−3, 2.6 ×
10−3, 5.8 × 10−3, 6.3 × 10−3, 1.02 × 10−2, 1.83 × 10−2 for
𝜎𝑛 = 20, 30, 40, 50, 75, 100, respectively. When 𝜎𝑛 = 20,
NFRRM fails to achieve the best average SSIM, narrowly
losing to NSRRC. However, NFRRM achieves the highest
average SSIM under all of the other noise levels. In summary,
the proposed NFRRM method not only achieves the highest
PSNR and SSIM in most cases, but also outperforms other
state-of-the-art rank residual-based methods significantly.

The visual comparison between all competing methods
are shown in Figure 5 ∼ Figure 10. The proposed NFRRM
removes the Gaussian noise completely in all of the chosen
six cases. Meanwhile, the textures, edges, and image de-
tails are preserved well by NFRRM. Concretely, NFRRM
present a better recovery on textures of the sea bed in Figure
5, the eave in Figure 7, and the multiple kinds of surfaces
in 10. In contrast, GSRC, RRC, and NSSRC over-smooth
those textures, as shown in their highlighted windows. In
the highlighted windows of Figure 8, NFRRM reconstructs
more structures on the mouthpart of the monarch and the
flowers in the left-bottom corner. In contrast, the OGLR
and GLIDE over-smooth the image and generate too much
artifacts. In Figure 6 and Figure 9, NFRRM preserves the
edges better. While BM3D, GLIDE, and OGLR failed to
reconstruct those edges and details. In summary, the pro-
posed NFRRM method presents strong denoising capability,
recovering the images with promising visual qualities while

achieving high PSNR and SSIM.
We also compare the proposed NFRRM model with a

state-of-the-art deep learning model BoostNet [51]. For fair-
ness, we use one NFRRM model (𝜆 = 0.93, 𝛼 = 1.855) and
one BoostNet model (trained for exactly𝜎𝑛 = 50) to test all of
noise levels 𝜎𝑛 ∈ {20, 30, 40, 50, 75, 100}. The PSNR and
SSIM results are listed in Table 4 and Table 5, respectively.
For 𝜎𝑛 = 50, NFRRM is narrowly inferior to BoostNet since
it only obtains higher PSNR and SSIM in 4 images while
BoostNet obtains 6. However, for𝜎𝑛 ∈ {20, 30, 40, 75, 100},
the proposed NFRRM outperforms BoostNet significantly,
achieving the higher PSNR and SSIM on all of the 50 test
cases. Moreover, the denoising results of BoostNet (trained
for 𝜎𝑛 = 50) become unreasonable when the tested noise
levels becomes far from 50. As shown in Figure 12, Boost-
Net (for 𝜎𝑛 = 50) over-smooths the images corrupted by
𝜎𝑛 ∈ {20, 30, 40}; while it remains too much noise in the
images which are previously corrupted by 𝜎𝑛 = {75, 100}.
On the contrary, the proposed NFRRM shows much more
robustness since a same NFRRM model is adequate to obtain
satisfactory denoising results in all of the six noise levels.

5. Sensitivity Analyses of Hyper-Parameters

In this section, we discuss the sensitivity of 𝜆, 𝛼, and 𝑠. All
of the tests are carried out on the image “Starfish” corrupted
by noise ∼ N(0, 302).
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(a) Ground Truth (b) Noisy: 10.60dB, 0.3223 (c) BM3D: 19.94dB, 0.6164 (d) GLIDE: 18.43dB, 0.5162 (e) OGLR: 20.29dB, 0.6264

(f) GSRC: 20.21dB, 0.6055 (g) RRC: 20.10dB, 0.6315 (h) SRRC: 20.18dB, 0.6151 (i) NSSRC: 20.28dB, 0.6089 (j) NFRRM: 20.37dB, 0.6251

Fig. 10: Denoising results of Brodatz with 𝜎𝑛 = 75. The subtitle format is “method: PSNR, SSIM”.

Table 4: PSNR results of a BoostNet model (trained for 𝜎𝑛 = 50) and a NFRRM model (𝜆 = 0.93, 𝛼 = 1.855).
𝜎𝑛 = 20 𝜎𝑛 = 30 𝜎𝑛 = 40 𝜎𝑛 = 50 𝜎𝑛 = 75 𝜎𝑛 = 100

# BoostNet NFRRM BoostNet NFRRM BoostNet NFRRM BoostNet NFRRM BoostNet NFRRM BoostNet NFRRM
1 31.32 33.91 31.19 32.51 30.93 31.28 30.44 30.03 18.46 27.85 14.13 25.84
2 22.70 27.64 22.92 25.51 23.13 24.04 23.15 22.99 17.33 21.17 13.77 20.03
3 24.67 29.23 24.77 27.03 24.80 25.65 24.57 24.56 18.47 22.71 14.35 21.31
4 25.46 30.16 25.48 28.04 25.41 26.56 25.15 25.40 18.11 23.42 14.15 21.90
5 25.33 29.57 25.35 27.61 25.35 26.07 25.27 25.03 18.11 23.32 14.08 22.05
6 27.27 31.10 27.21 28.91 27.00 27.48 26.64 26.30 18.35 24.30 14.16 22.55
7 29.02 32.91 28.93 31.06 28.65 29.68 28.19 28.49 18.90 26.44 14.45 24.84
8 21.51 27.33 21.59 25.22 21.71 23.68 21.76 22.53 17.23 20.34 13.67 19.10
9 28.85 32.60 28.55 30.79 28.07 29.44 27.44 28.38 18.46 26.23 14.22 24.52
10 27.49 31.48 27.54 29.41 27.49 27.95 27.16 26.81 18.13 24.72 14.00 23.01
Avg. 26.36 30.59 26.35 28.61 26.25 27.18 25.98 26.05 18.16 24.05 14.10 22.52

(a) (b) (c)

Fig. 11: The effects of 𝜆. (a) 𝜆 = 0.01: PSNR=18.56dB,
SSIM=0.3929. (b) 𝜆 = 1: PSNR=27.97dB, SSIM=0.8329.
(c) 𝜆 = 100: PSNR=11.43, SSIM=0.5027.

5.1 Regularization Parameter 𝜆

Regularization parameter 𝜆 balances the influence of the fi-
delity term (∥·∥2

𝐹
) and the regularization term (∥ · ∥∗−𝐹). As

the value of 𝜆 becomes too small, the NFRRM model would
mostly minimize the fidelity term, which makes the yielded
image contain too much noise, as shown in Figure 11a. As
the value of 𝜆 becomes too large, the NFRRM model would
mostly minimize the regularization term. Consequently, the
yielded image would be over-smoothed and lose lots of de-
tails, as shown in Figure 11c.

Figure 13 investigates the sensitivity of 𝜆. As 𝜆 be-
comes larger, the denoising performance (PSNR and SSIM)
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Table 5: SSIM results of a BoostNet model (trained for 𝜎𝑛 = 50) and a NFRRM model (𝜆 = 0.93, 𝛼 = 1.855).
𝜎𝑛 = 20 𝜎𝑛 = 30 𝜎𝑛 = 40 𝜎𝑛 = 50 𝜎𝑛 = 75 𝜎𝑛 = 100

# BoostNet NFRRM BoostNet NFRRM BoostNet NFRRM BoostNet NFRRM BoostNet NFRRM BoostNet NFRRM
1 0.8354 0.8667 0.8354 0.8537 0.8352 0.8406 0.8356 0.8257 0.2056 0.7948 0.1018 0.7543
2 0.6771 0.9114 0.7010 0.8573 0.7280 0.7992 0.7509 0.7453 0.4447 0.6117 0.2573 0.5043
3 0.7401 0.8883 0.7473 0.8403 0.7559 0.8011 0.7637 0.7655 0.3506 0.6961 0.1908 0.6420
4 0.7367 0.8781 0.7418 0.8348 0.7492 0.7961 0.7597 0.7611 0.3535 0.6849 0.1888 0.6100
5 0.6557 0.8606 0.6612 0.8043 0.6664 0.7404 0.6803 0.6913 0.3351 0.6063 0.1787 0.5562
6 0.8567 0.9280 0.8563 0.8977 0.8537 0.8686 0.8502 0.8422 0.3560 0.7833 0.2079 0.7223
7 0.7786 0.8828 0.7796 0.8497 0.7788 0.8200 0.7835 0.7877 0.2224 0.7233 0.0954 0.6633
8 0.6966 0.9221 0.7055 0.8758 0.7213 0.8217 0.7461 0.7709 0.5475 0.6328 0.3680 0.5604
9 0.8469 0.9006 0.8454 0.8779 0.8431 0.8587 0.8435 0.8445 0.2516 0.8031 0.1193 0.7571
10 0.7798 0.8871 0.7852 0.8431 0.7909 0.8068 0.7973 0.7763 0.2817 0.7068 0.1416 0.6429
Avg. 0.7604 0.8926 0.7659 0.8535 0.7723 0.8153 0.7811 0.7811 0.3349 0.7043 0.1850 0.6413

(a) BoostNet, 𝜎𝑛 = 20, PSNR=25.46 (b) NFRRM, 𝜎𝑛 = 20, PSNR=30.16 (c) BoostNet, 𝜎𝑛 = 30, PSNR=25.48 (d) NFRRM, 𝜎𝑛 = 30, PSNR=28.04

(e) BoostNet, 𝜎𝑛 = 40, PSNR=25.41 (f) NFRRM, 𝜎𝑛 = 40, PSNR=26.56 (g) BoostNet, 𝜎𝑛 = 50, PSNR=25.15 (h) NFRRM, 𝜎𝑛 = 50, PSNR=25.40

(i) BoostNet, 𝜎𝑛 = 75, PSNR=18.11 (j) NFRRM, 𝜎𝑛 = 75, PSNR=23.42 (k) BoostNet, 𝜎𝑛 = 100, PSNR=14.15 (l) NFRRM, 𝜎𝑛 = 100, PSNR=21.90

Fig. 12: Denoising results on “Starfish” of BoostNet model (trained for 𝜎𝑛 = 50) and NFRRM model (𝜆 = 0.93, 𝛼 = 1.855).

improves sharply, and reaches the peak at 𝜆 = 1. Then the
performance continues to decrease as 𝜆 → +∞. In this pa-

per, the suitable values of 𝜆 are determined via experiments.
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Fig. 13: The effects of 𝜆 on the denoising performance of
NFRRM. The corrupted observation is generated by adding
zero-mean Gaussian noise with standard deviation 𝜎𝑛 = 30
on image “Starfish”. Other parameters are all fixed.

(a) (b)

(c) (d)

Fig. 14: The impact of 𝛼. (a) The corrupted observation
(𝜎𝑛 = 20), PSNR = 20.81dB, SSIM = 0.4731. (b) 𝛼 = 0:
PSNR = 27.63dB, SSIM = 0.8292. (c) 𝛼 = 2.4: PSNR =
28.04dB, SSIM = 0.8349. (d) 𝛼 = 10: PSNR = 27.38dB,
SSIM = 0.8258.

5.2 Parameter 𝛼

Parameter 𝛼 controls the shrinkage on singular values. As
it becomes too small (𝛼 → 0), the NNFN would behave
like the nuclear norm, which is characterized by the green
line in Figure 2. In that case, the leading singular values
would be over-shrunk during the regularization process of
NFRRM model. Consequently, the output image would be
over-smoothed, losing lots of details, as shown in Figure
14b. As 𝛼 becomes too large (𝛼 → +∞), too many singular
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Fig. 15: PSNR and SSIM results on “Starfish” with different
𝛼.
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Fig. 16: Effects of 𝑠 on denoising performance of NFRRM.
Running time is in seconds.

values would be zero-shrunk, which is characterized by the
yellow line in Figure 2. Consequently, the output image
would contain noise and artifacts at the edges, as shown in
Figure 14d.

Figure 15 investigates the sensitivity of 𝛼. As can be
seen, the best 𝛼 dwells in the midst. In this paper, the suitable
𝛼 is also determined via experiments.

An empirical strategy is devised to choose 𝛼 efficiently.
If the corrupted image has a higher SSIM value (denoted as
𝑆𝑆𝐼𝑀0), a larger 𝛼 is preferred, and vice versa. Considering
the ten images corrupted by 𝜎𝑛 = 50. Their initial SSIM
values, i.e., 𝑆𝑆𝐼𝑀0, are sorted in an ascending order. Then,
those 10 images are divided into two groups according to
their 𝑆𝑆𝐼𝑀0, as shown in Table 6. For each corrupted image,
we search its “best 𝛼”, i.e., an 𝛼 that can make the NFRRM
produce the highest SSIM on that image.) And the “best 𝛼”
for each image are also listed in Table 6. As can be seen, the
averages of “best 𝛼” between two groups have a wide gap.
And for the image in the second group, their “best 𝛼” tend to
be larger. Therefore, the aforementioned empirical strategy
for choosing 𝛼 can be obtained. This empirical strategy is
efficient since it only uses the SSIM value of the corrupted
image, which can be easily obtained.

5.3 The Interval of Key Patches 𝑠

Figure 16 investigates the sensitivity of 𝑠. As 𝑠 becomes
small (8→ 5), the denoising performance would be improved
significantly. That is attributed to that more key patches
are generated, and hence the nonlocal self-similarity of the
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Table 6: The best 𝛼 for each image.

Group1
Image Plants House Parrots Boat Starfish
𝑆𝑆𝐼𝑀0 0.1176 0.1253 0.1351 0.1886 0.2322 Avg.(𝑆𝑆𝐼𝑀0) = 0.1598
Best 𝛼 0.95 1.55 1.20 2.50 2.00 Avg.(𝛼) = 1.69 Std(𝛼) = 0.4259

Group2
Image Lake Kodim Monarch Straw Brodatz
𝑆𝑆𝐼𝑀0 0.2365 0.2446 0.2451 0.3770 0.4834 Avg.(𝑆𝑆𝐼𝑀0) = 0.3173
Best 𝛼 2.60 1.50 6.45 2.80 4.00 Avg.(𝛼) = 3.47 Std(𝛼) = 1.688

image is further exploited. However, as 𝑠 becomes too small
(5 → 1), the running time would increase sharply, while the
PSNR improves little. Therefore, the choice of 𝑠 should be
judicious in order to meet the balance between denoising
performance and running time.

6. Conclusion

In this paper, a new image denoising method, called nu-
clear norm minus Frobenius norm rank residual minimiza-
tion (NFRRM), was proposed. The proposed method con-
verts the ill-posed image denoising problem to a nonconvex
optimization problem by exploiting the frameworks of im-
age NSS prior. The sound NNFN regularizer was chosen to
model the rank residual. With it, the proposed NFRRM
model can treat different rank residual components with
high flexibility. We derived that the global optimum of the
nonconvex optimization problem can be easily obtained in
closed-form. Extensive experimental results demonstrated
that the proposed method outperforms several state-of-the-
art image denoising methods.
Funding: This work was supported by the Science and Tech-
nology Research Program of Chongqing Municipal Educa-
tion Commission under Grant KJQN202303413.
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