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PAPER
Aggregated to Pipelined Structure Based Streaming SSN for 1-ms
Superpixel Segmentation System in Factory Automation

Yuan LI†a), Tingting HU††, Ryuji FUCHIKAMI††, Nonmembers, and Takeshi IKENAGA†, Member

SUMMARY 1 millisecond (1-ms) vision systems are gaining increasing
attention in diverse fields like factory automation and robotics, as the ultra-
low delay ensures seamless and timely responses. Superpixel segmentation
is a pivotal preprocessing to reduce the number of image primitives for
subsequent processing. Recently, there has been a growing emphasis on
leveraging deep network-based algorithms to pursue superior performance
and better integration into other deep network tasks. Superpixel Sampling
Network (SSN) employs a deep network for feature generation and em-
ploys differentiable SLIC for superpixel generation. SSN achieves high
performance with a small number of parameters. However, implementing
SSN on FPGAs for ultra-low delay faces challenges due to the final layer’s
aggregation of intermediate results. To address this limitation, this paper
proposes an aggregated to pipelined structure for FPGA implementation.
The final layer is decomposed into individual final layers for each interme-
diate result. This architectural adjustment eliminates the need for memory
to store intermediate results. Concurrently, the proposed structure leverages
decomposed layers to facilitate a pipelined structure with pixel streaming
input to achieve ultra-low latency. To cooperate with the pipelined structure,
layer-partitioned memory architecture is proposed. Each final layer has ded-
icated memory for storing superpixel center information, allowing values to
be read and calculated from memory without conflicts. Calculation results
of each final layer are accumulated, and the result of each pixel is obtained
as the stream reaches the last layer. Evaluation results demonstrate that
boundary recall and under-segmentation error remain comparable to SSN,
with an average label consistency improvement of 0.035 over SSN. From
a hardware performance perspective, the proposed system processes 1000
FPS images with a delay of 0.947 ms/frame.
key words: 1-ms vision system, superpixel segmentation, superpixel sam-
pling network (SSN), real-time, FPGA

1. Introduction

In recent years, machine vision, recognized as a prominent
non-contact inspection technology, has found extensive ap-
plications across diverse domains. A typical machine vision
system comprises a sensing camera, a machine vision al-
gorithm for data processing, and feedback to the actuator.
While some applications, like remote sensing and scien-
tific research, do not demand low latency, their performance
benefits from high-resolution images. Conversely, the im-
perative for ultra-low delay in factory automation (FA) and
robotics stems from the critical necessity for seamless in-
teractions and heightened operational efficiency. The real-
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world scenes change continuously during the algorithm pro-
cessing. In factory automation scenarios, the assembly line
remains in motion while algorithms are being processed.
Lengthy processing delays lead to invalid feedback results
since objects have already shifted positions. Halting the as-
sembly line until processing is complete significantly reduces
efficiency. Similarly, in robotic scenarios, emergencies may
arise suddenly. For instance, if a cup is falling, prolonged
processing times lead to significant scene changes, such as
the cup hitting the ground and breaking. Implementing an
ultra-low delay system ensures minimal changes in the real-
world scene and enables a prompt response from the ac-
tuator. This approach guarantees sustained high efficiency
and effective handling of dynamic real-world situations. As
the actuators are able to work at the frequencies of 1kHz
[1], systems capable of processing 1000 frames per second
(FPS) with processing speeds under 1 ms are desired. Field-
Programmable Gate Arrays (FPGAs) emerge as a prevalent
choice for the realization of 1-ms vision systems, attributed
to their stream-based architecture and parallelism. 1-ms vi-
sion systems have already been realized in various fields,
such as template matching [2], object tracking [3] and line
detection [4].

Superpixel segmentation is the over-segmentation of
images through grouping pixels based on low-level image
properties. This process serves to reduce the number of
image primitives for subsequent processing while capturing
object boundaries. Consequently, superpixel segmentation
is widely applied in machine vision tasks, such as image
classification [5] and stereo matching [6]. Currently, su-
perpixel segmentation is approached through two primary
methods: hand-crafted algorithms and deep network-based
algorithms. Simple linear iterative clustering (SLIC) [7]
characterizes each pixel by 5-dimensional positional and
color features. Linear spectral clustering (LSC) [8] aug-
ments SLIC by projecting these 5-dimensional features to a
10-dimensional space by kernel functions. Li et al. [9], [10]
achieve a 1-ms SLIC by separating iteration of SLIC into
the temporal domain. However, driven by the pursuit of en-
hanced performance and integration into other deep network
tasks, a growing number of researchers have embraced deep
networks for superpixel segmentation. Superpixel sampling
network (SSN) [11] is the first end-to-end trainable network
architecture for superpixel segmentation. SSN leverages a
deep network to generate learned features for each pixel and
employs differentiable SLIC to generate superpixels. The
introduction of task-specific reconstruction loss enables the

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

optimization of superpixels for integration into other deep
network tasks. SCN [12] directly applies the U-net architec-
ture to predict pixel-to-superpixel associations. AINet [13]
introduces an AI module to embed pixel-neighboring grid
relations for pixel–superpixel association.

To accelerate deep network on FPGAs with the objec-
tive of achieving ultra-low delay, a hardwired type archi-
tecture has been proposed [14]. This design affords a high
degree of parallelism by directly mapping the entire network
onto the FPGA. Crucially, this architecture removes the lim-
itations of memory access. Contrary to the direct mapping
approach, storing weights, inputs, and outputs in the exter-
nal memory of the FPGA presents challenges to improving
the overall latency due to the limited memory bandwidth
of the external memory. The removal of such memory ac-
cess limitations enables the hardwired type architecture to
attain ultra-low delay performance. However, the hardwired
type architecture imposes strict constraints on the number
of parameters and network size. While SCN and AINet
exhibit superior performance, the U-net structure with skip
connections results in an excess of two million parameters
and imposes substantial computation and memory require-
ments. Their structure makes them hard to implement on
FPGAs to reach ultra-low delay. SSN maintains high per-
formance while constraining parameters under 0.2 million,
it is adopted as the basic structure for a 1-ms deep network-
based superpixel segmentation system. In addition to the
hardwired type architecture, the entire system must be fully
pipelined and handle the input pixel stream promptly. A fully
pipelined structure helps mitigate delays caused by waiting
between modules, while streaming processing ensures the
entire system’s delay from sensor to feedback remains within
1 ms. Implementing SSN on an FPGA requires addressing
the challenges posed by the aggregated structure. The ag-
gregated structure makes it impractical to fully pipeline the
entire system due to prolonged processing time of the aggre-
gated step. Storing intermediate results for the aggregated
step poses challenges for FPGA implementation with lim-
ited memory resources. To achieve streaming processing,
memory conflicts between each step must be addressed. To
handle these problems, this paper proposes an aggregated
to pipelined structure with its system-level hardware imple-
mentation. The contributions of this paper are summarized
as follows:

1. Aggregated to pipelined structure for FPGA implemen-
tation is proposed. The final layer of SSN, originally
designed for aggregating all intermediate results, is de-
composed into discrete final layers corresponding to
each intermediate result. With the proposed structure,
the necessity to store intermediate results is eliminated
and the entire system undergoes pipelining with a pixel
streaming input.

2. Layer-partitioned memory architecture is proposed.
This architecture allocates dedicated memory for su-
perpixel center information to each final layer. Conse-
quently, the outcomes of each final layer are acquired

with pixel streaming, circumventing conflicts arising
from operations.

3. The proposed architecture has been implemented on
an FPGA to develop a 1-ms superpixel segmentation
system. A series of comprehensive experiments have
been conducted to comprehensively validate both the
algorithmic and hardware performance of the system.

The subsequent sections of this paper are organized as
follows. Section 2 provides an overview of related works.
Section 3 shows the proposed methods and implementation
details. Experimental results and their analysis are presented
in Section 4. Finally, Section 5 makes a conclusion.

2. Related Works

2.1 Deep Network-Based Superpixel Algorithms

SEAL [15] employs DNNs to acquire pixel affinity, inputting
these affinities into ERS for superpixel generation. SEN [16]
focuses on learning texture pattern similarity using a deep
network, and then applies the learned features to SNIC for su-
perpixel segmentation. Pan et al. [17] introduce a fast lattice
superpixel generation, merging a deep network with soft K-
means to generate superpixels possessing a lattice topology.
Nevertheless, it is crucial to note that these methodologies
incorporate non-differentiable operations and are not end-to-
end trainable deep networks. SSN [11] is the first end-to-end
trainable network architecture for superpixel segmentation.
SSN is designed to learn pixel features which are then fed
to a differentiable K-means clustering module. It comprises
three scales, each equipped with two convolutional layers
for computational processing. The final layer merges each
scale’s output and the initial input of the entire network, and
outputs the required learned features.

LNS-Net [18] is an unsupervised CNN-based method
dedicated to the non-iterative and lifelong acquisition of su-
perpixels. However, the space transformation and seed dis-
tribution are image-level processing, thereby posing chal-
lenges in achieving ultra-low latency. Suzuki [19] employs
CNN for the unsupervised generation of superpixels with
regular information maximization. The entropy calculation
of each superpixel poses challenges for FPGA implementa-
tion. SCN [12] is a fully-connected convolutional network
that adopts an encoder-decoder structure, which simplifies
the iterative clustering step of SSN by assigning each pixel
into the 9-neighbor grid. AI-Net [13] achieves state-of-
the-art performance by proposing an association implan-
tation module, which provides consistent pixel-superpixel
level context for the superpixel segmentation task. Over-
SegNet [20] comprises an encoder and a decoder, designed
for feature representation and pixel–superpixel association,
respectively. The decoder incorporates a multi-scale convo-
lutional structure with cross-large-scale connections to fa-
cilitate pixel–superpixel association in a coarse-to-fine feed-
forward manner. Notably, the encoder-decoder structure de-
mands a substantial amount of parameters and computational
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resources, making its implementation as a hardwired type ar-
chitecture challenging.

2.2 FPGA Implementation of Superpixel Algorithms

SS [21] is proposed for FPGA implementation of SEEDS.
This method partitions the image into a lattice shape and
employs an energy function for boundary updates. This ap-
proach achieves a throughput of 42.2 FPS. Akagic et al. [22]
realize SLIC segmentation with a delay of 39.63 ms. How-
ever, the requirement for multiple transfers between the host
and the device imposes limitations on the processing speed.
Khamaneh et al. [23] introduce a memory-efficient archi-
tecture for SLIC, where the memory is designed to store the
label of each pixel and RGB color information exclusively.
The proposed architecture attains a frame rate of 24 FPS
when applied to a camera with a resolution of 300×400 pix-
els. Mighani et al. [24] present a framework that substitutes
the cluster-based search operation with a pixel-based pro-
cess during the assignment step. The proposed architecture
achieves a processing speed of 143 FPS for 300×400 reso-
lution. Nonetheless, these works remain iterations of SLIC.
Iterations necessitate frequent reading and writing of labels
to memory, consequently resulting in long processing de-
lays. FP-SLIC [25] adopts a strategy aimed at diminishing
the number of iterations. Limiting the iterations to two times
and implementing a fully pipelined FPGA architecture, the
system achieves a processing delay of 3.86 ms for an im-
age with a resolution of 481×321. Despite this reduction
in delay, it falls short of meeting the requisites for ultra-low
latency applications. Furthermore, the reduction of iteration
times is accomplished at the expense of system robustness.
[9] introduces FPGA-oriented algorithms for 1-ms SLIC and
[10] extends this work and realizes system-level hardware
implementation. 1-ms SLIC segregates iterations into the
temporal domain. Through a single processing within each
frame, the whole system attains a delay of 0.985 ms. But
this work primarily focuses on the hand-crafted SLIC part.
To combine deep network with SLIC to reach heightened
performance and improved integration with other deep net-
work tasks, further research is needed in the development of
a 1-ms SSN-based superpixel segmentation system.

2.3 CNN FPGA Implementation

FPGAs are widely utilized for accelerating neural networks.
Zhang et al. [26] introduce a double signed-multiplication
correcting circuit to reduce the computational time of CNNs.
WinoNN [27] introduces an efficient encoding format to
minimize the online encoding overhead caused by activation
sparsity. However, the reliance on external memory makes
it challenging to improve the overall latency of the system.
Some approaches focus on reducing memory access. Li et
al. [28] use a kernel partition technique to reduce repeated
access to input feature maps and kernels, achieving a process-
ing time of 6.279 ms for AlexNet. Xuan et al. [29] propose
a dataflow to process the depthwise separable convolution

layer end-to-end, reducing memory accesses for intermedi-
ate feature maps. Yan et al. [30] propose multiple paral-
lel strategies for different convolution types of MobileNet,
with a processing time of 3.31 ms. A flexible and efficient
FPGA accelerator [31] allows depthwise convolution to be
executed directly after standard convolutions without exter-
nal memory access, achieving a processing time of 4.5 ms
for MobileNetV2. Nguyen et al. [32] employ mixed preci-
sion and mixed data flow, resulting in a latency of 9.15 ms,
with off-chip access reduced to 0 Mb through the line buffer
pipeline. However, intermediate results and parameters still
need to be stored in BRAM inside the FPGA. Although these
structures implement deep networks within several millisec-
onds, the constrained memory bandwidth of external and
internal memory presents challenges in achieving ultra-low
delay. For BNNs, LUTNet [33] and PolyLUT [34] take a
different approach compared to methods relying on XNOR
gates and additions. Instead, LUTNet encodes weights in
its LUT masks, leading to greater logic density. PolyLUT
goes even further by utilizing LUTs to represent polynomial
evaluations. This approach allows for mapping sparse and
quantized polynomial neural networks to netlists of LUTs,
resulting in significant improvements in latency and area
efficiency. In the pursuit of ultra-low delay CNN imple-
mentation, Zhang et al. [14] map CNNs directly on FPGA
to avoid memory utilization. While it may limit the flexi-
bility of models, it prioritizes ultra-low latency for specific
applications.

3. Proposed Method

The comparisons between the structure of SSN and the pro-
posed method are delineated in Fig. 1. In the SSN frame-
work, 5-dimensional features encompassing both color and
positional information serve as input to the deep network.
These features traverse through three scale convolutional
layers, ultimately reaching the final layer. Notably indicated
by red lines, the final layer aggregates the outputs of all scales
along with the initial input. The acquired learned features are
subsequently utilized for the computation of pixel-superpixel
associations. After obtaining all pixels’ results, superpixel
centers are updated. The updated center information is then
employed for a subsequent iteration of pixel-superpixel as-
sociation computation. This iterative process persists until
a predefined number of iterations is reached. Not only iter-
ations within differentiable SLIC contribute to a long delay,
but the aggregated structure of the deep network renders the
achievement of ultra-low latency unfeasible. The aggregated
structure requires sustainable storage resources to accommo-
date all intermediate results from each scale and input. Even
with sufficient resources, frequent memory access imposes
constraints on the overall processing speed of the system.
Most importantly, even if all these results are stored in reg-
isters and memory access is not a concern, the significant
size of the final layer would still require extended processing
times. This hinders fully pipelining and contributes to an
overall increase in system latency.
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Fig. 1 Comparisons between the structure of SSN and the proposed method. (a) SSN structure; (b)
Proposed structure.

The structural representation of the proposed method is
illustrated in Fig. 1(b). Inspired by 1-ms SLIC, the itera-
tions within the SLIC part are separated into the temporal
domain. The formulation of the proposed structure is artic-
ulated through the following equations.

𝐹
𝑛×𝑘

= F (𝐼), (1)

𝑄𝑐𝑢𝑟
𝑝𝑖 = 𝑒−∥𝐹𝑝−𝑆𝑝𝑟𝑒

𝑖 ∥2
. (2)

In the context of the entire image 𝐼
𝑛×5

, where 𝑛 de-
notes the number of pixels and each pixel encompasses 5-
dimensional features, the learned features 𝐹

𝑛×𝑘
from the deep

network are derived. Here, 𝑘 represents the dimensions
of the learned features, encompassing the original input’s
5 dimensions. 𝑆

𝑚×𝑘
embodies the features of 𝑚 superpixel

centers. For the computation involving pixel 𝑝 and super-
pixel 𝑖, the pixel-superpixel association in the current frame,
denoted as 𝑄𝑐𝑢𝑟

𝑝𝑖
, is determined by Eq. 2. In this equation,

𝑐𝑢𝑟 and 𝑝𝑟𝑒 denote current frame and previous frame, re-
spectively. The output from the previous frame, serving as
superpixel center information, is utilized in computing the
pixel-superpixel association for the current frame. Follow-
ing a single processing iteration, the output result for the
current frame is obtained.

To accommodate hardware resource constraints and
align with the SSN architecture, the feature dimension is
configured to 10. To capitalize on the information from each
pixel, given the pixel stream characteristics of FPGA, a stride
of 1 is employed between layers. Aggregated to pipelined
structure is proposed in the deep network part. Layer-

partitioned memory architecture is proposed for the FPGA
implementation of differentiable SLIC with the streaming
dataflow. Details are explained in the following subsections.

3.1 Aggregated to Pipelined Structure for FPGA Imple-
mentation

In the SSN framework, the final layer merges the initial in-
put with the outputs from all three scales to derive learned
features. Although adopting a hardwired implementation
type eliminates the need to store weights, inputs, and out-
puts of each layer in memory, implementing the aggregated
structure on an FPGA still falls short of achieving a 1-ms
implementation. As depicted in Fig. 2(a), the final layer ag-
gregates all intermediate results from each scale and input.
The extended processing time poses challenges in realizing a
pipelined structure. Moreover, to accommodate the simulta-
neous input of all data into the final layer, substantial memory
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Fig. 2 Conceptual difference. (a) Aggregated structure of SSN; (b) Pro-
posed pipelined structure for FPGA implementation.
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Table 1 Proposed network structure.

Layer
Name

Input
Source

Output
Channels

Layer
Name

Input
Source

Output
Channels

Final0 Input 2 Conv3 Conv2 16
Conv0 Input 16 Final2 Conv3 1
Conv1 Conv0 16 Pool1 Conv3 16
Final1 Conv1 1 Conv4 Pool1 16
Pool0 Conv1 16 Conv5 Conv4 16
Conv2 Pool0 16 Final3 Conv5 1

resources become a must. This storage not only consumes
significant resources but also introduces speed limitations
due to frequent memory access, making a pipelined structure
impractical. In conclusion, the aggregated structure presents
challenges in realizing a pipelined structure, hindering the
achievement of ultra-low delay.

For the proposed pipelined structure, the original SSN
network structure undergoes a change. Specifically, the final
layer is decomposed into several individual final layers, as
illustrated in Fig. 2(b). Each scale, along with the input,
is allocated an individual final layer, obviating the neces-
sity to store intermediate results. This decomposition of
the final layer mitigates pipeline blockage during the final
layer processing, thereby enabling the realization of ultra-
low latency. After processing each final layer, the respective
dimensions of superpixel center information are read from
memory for pixel-superpixel association computation. The
entire structure operates in a fully pipelined manner. Once
the association computation for the last final layer is com-
pleted, the label of each pixel is written into memory for
the label map. The update of superpixel center informa-
tion occurs after the computation of the entire frame. The
original SSN final layer comprises 5 channels designed for
5-dimensional learned features. To enhance information ex-
traction from the input and retain more input details, the
final layer responsible for handling the input is assigned two
channels, while the remaining three final layers each have
one channel. The proposed pipelined network structure is
elucidated in Table 1.

3.2 Layer-Partitioned Memory Architecture

Building upon the transition from an aggregated to a
pipelined structure, the final layer is subdivided into sev-
eral individual final layers. This enables the entire system
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scale1
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input
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scale3
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on of 

scale2

BRAM 

for scale1

BRAM 

for scale2
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for scale3

Associati

on of 

scale3

BRAM 

for input

Fig. 3 Layer-partitioned memory architecture.

to achieve full pipelining. To ensure that the system’s delay
from sensing to feedback remains within 1 ms, streaming
processing is necessary with the pixel stream input. With
the fully pipelined structure and streaming processing, each
layer of the network simultaneously processes different pixel
information. The deployment of a single memory unit to
store all dimensions of superpixel center features for pixel-
superpixel association computation often leads to frequent
memory reading conflicts. The adoption of a sequential su-
perpixel center reading strategy becomes a must under these
circumstances. Nonetheless, this strategy imposes limita-
tions on the processing speed of the entire system, presenting
challenges in attaining a processing delay of 1 ms.

To align with the pipelined structure, a layer-partitioned
memory architecture is proposed. This architecture involves
the division of memory dedicated to superpixel center fea-
tures based on individual final layers. For instance, the first
final layer is configured to generate 2-dimensional learned
features from the input. Within the association computa-
tion module of this final layer, a dedicated memory unit is
allocated to store the 2-dimensional learned features of the
superpixel centers from the previous frame. Upon the arrival
of the pixel stream at this final layer’s association computa-
tion stage, the center information corresponding to this pixel
is read from the allocated memory. Upon completion of the
association map for the entire frame, the memory is utilized
to update the 2-dimensional learned features of the super-
pixel centers for the current frame. The representation of the
layer-partitioned memory architecture is depicted in Fig. 3.

Utilizing this memory architecture, pixel-superpixel as-
sociations are computed as the pixel stream traverses the
structure. This approach effectively mitigates memory oper-
ation conflicts. Additionally, as indicated by the red arrows
in Fig. 3, computation results are accumulated. The associ-
ation result for a given pixel is derived once the pixel stream
reaches the association computation stage of the last final
layer. The entire proposed system is fully pipelined for the
streaming dataflow.

3.3 Hardware Implementation

The proposed system is implemented on the hardware archi-
tecture illustrated in Fig. 4. The components include the
BASLER acA2000-340 camera and the ZCU104 FPGA. For
the specifications of the high frame rate camera, to attain
the frame rate of 1000 FPS, each image has a maximum of
360 lines. Increasing the number of lines in the input image

High frame rate 

camera

FPGA

Fig. 4 Components of the high frame rate and ultra-low delay system for
realworld applications [10]. High frame rate camera is BASLER acA2000-
340, FPGA is AMD Xilinx Zynq UltraScale+ MPSoC ZCU104.
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Fig. 5 Hardware structure of the proposed streaming SSN superpixel
segmentation system.

leads to a corresponding increase in transmission time for
the camera, causing it to fail to meet the requirement of 1
ms. The hardware structure of the proposed streaming SSN
superpixel segmentation system is depicted in Fig. 5. The
processing system (PS) is implemented on one chip with
programmable logic. The incoming from the camera under-
goes a conversion process through the camera link receiver,
resulting in a pixel stream operating at a frequency of 300
MHz. This processed pixel stream serves as the input for the
image processing core within the FPGA. The output result of
the image processing core is the label assigned to each pixel,
which is transmitted to the PS for subsequent post-processing
via the WISHBONE BUS. Furthermore, DDR4-SDRAM
is available as external memory for potential post-analysis
tasks. The superpixel segmentation system is implemented
in the image processing core of the FPGA. The pixel stream
is first transformed to YCbCr color space. While the orig-
inal SSN framework utilizes the CIELAB color space, the
RGB-to-CIELAB conversion involves computationally in-
tensive operations such as divisions and exponentials. To
preserve the perceptual lightness channel without compu-
tationally intensive mathematical operations, YCbCr color
space is employed. Following the determination of posi-
tional coordinates for each pixel, the resulting 5-dimensional
features serve as the input to the deep network.

To implement the deep network on the FPGA, floating-
point operations are quantized to 8-bit integers utilizing QAT
[35], a commonly employed and effective technique. In
adapting the original network structure for hardware imple-
mentation, characterized as a hardwired type, the number of
channels per layer is reduced from 64 to 16. Further param-
eter reduction is achieved through the adoption of depthwise
separable convolution [36]. Upon completing the calculation
of each final layer, the corresponding learned features are in-
put into the SLIC module to compute with the surrounding
nine superpixels. The outcomes are stored in a register for
accumulation alongside results from other final layers. As
the pixel stream reaches the last final layer, the label for each
pixel is determined based on the smallest association among

the surrounding superpixels. This label is then stored in the
BRAM for the superpixel label map. After the completion
of the entire frame’s label assignment, the superpixel center
information is updated and stored in BRAM.

The superpixel label map and superpixel center infor-
mation from the previous frame serve as inputs for the as-
sociation computation in the current frame. A label map is
instrumental in determining the surrounding nine superpixel
centers corresponding to a given pixel. BRAM for super-
pixel center information is divided into individual BRAMs
based on layer-partitioned memory architecture. A ping-
pong BRAM structure is implemented for both BRAMs,
allowing simultaneous read access to the previous frame’s
results and write access to the current frame’s results. Upon
the completion of reading and writing operations for the
current frame, the roles of these BRAMs are exchanged in
preparation for the next frame.

4. Experimental Results

4.1 Algorithm Evaluation

4.1.1 Dataset and Evaluation Metrics

The experiments are conducted on both factory assembly line
dataset and indoor scenes dataset to demonstrate the efficacy
in the fields of factory automation and robotics. Consistent
with the settings of 1-ms SLIC [10], component images from
the Halcon example images [37] are employed to generate
factory assembly line dataset. For simulating indoor scenes
relevant to robotics applications, images from the NYUV2
dataset [38] are utilized. Both datasets feature videos with a
resolution of 500×340 pixels. Each dataset has four differ-
ent motion patterns including horizontal translation, vertical
translation, rotation, and scale change. Examples of these
datasets are visually presented in Fig. 6.

To objectively evaluate the segmentation results, three
standard metrics are employed in this work. High boundary
quality is essential for image segmentation [39], as various
downstream applications directly benefit from more precise
boundaries [40]. Therefore, as suggested by previous work
[7], the most important property of a superpixel method is
its ability to adhere to image boundaries. Boundary Recall

(a)

(b)

Fig. 6 Examples of datasets [10]. (a) Factory assembly line dataset;
(b) Indoor dataset. Horizontal and vertical translation datasets move at
1 pixel/frame; Rotation dataset rotates at 0.1 degree/frame; Scale dataset
scales at 0.001 times/frame.
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Table 2 Evaluation results on indoor datasets.
Horizontal translation Vertical translation Rotation Scale change

[10] SSN Proposed [10] SSN Proposed [10] SSN Proposed [10] SSN Proposed
BR ↑ 0.825 0.859 0.870 0.807 0.879 0.886 0.814 0.889 0.879 0.812 0.878 0.883
UE ↓ 0.057 0.044 0.046 0.057 0.041 0.042 0.063 0.049 0.049 0.062 0.049 0.047

ASA ↑ 0.943 0.956 0.954 0.943 0.959 0.958 0.937 0.951 0.951 0.938 0.951 0.953
CO ↑ 0.350 0.325 0.302 0.360 0.335 0.306 0.370 0.338 0.311 0.380 0.336 0.318
LC ↑ 0.858 0.830 0.871 0.839 0.794 0.841 0.915 0.944 0.955 0.813 0.798 0.824

Table 3 Evaluation results on factory assembly line datasets.

Horizontal translation Vertical translation Rotation Scale change
[10] SSN Proposed [10] SSN Proposed [10] SSN Proposed [10] SSN Proposed

BR ↑ 0.990 0.999 0.991 0.979 0.998 0.994 0.994 0.998 0.994 0.991 0.998 0.994
UE ↓ 0.018 0.013 0.015 0.020 0.013 0.014 0.024 0.019 0.021 0.024 0.019 0.021

ASA ↑ 0.982 0.987 0.985 0.980 0.987 0.986 0.976 0.981 0.979 0.976 0.981 0.979
CO ↑ 0.445 0.457 0.475 0.457 0.459 0.481 0.465 0.456 0.478 0.468 0.457 0.482
LC ↑ 0.877 0.847 0.908 0.880 0.863 0.909 0.943 0.958 0.974 0.847 0.833 0.870

(BR) and Under-segmentation Error (UE) are standard mea-
sures for evaluating boundary adherence [41]. Achievable
Segmentation Accuracy (ASA) is applied to estimate the up-
per bound on the achievable segmentation accuracy when
utilizing superpixel as a pre-processing step. Additionally,
Compactness (CO) is employed to evaluate the visual qual-
ity of the segmentation algorithms. Label consistency (LC),
as defined in [42], is employed to evaluate the stability of
superpixels across consecutive frames in a video sequence.
LC shows how effectively superpixels track parts of objects
over time, playing a pivotal role in subsequent tasks such as
classification or tracking. When label consistency is low, it
may lead to unstable or flickering classification outcomes,
significantly impacting robotic tasks in practical scenarios
[43].

4.1.2 Evaluation Results and Analysis

Comparisons among 1-ms SLIC, SSN, and the proposed
method are detailed in Table 2 and Table 3. In these experi-
ments, the expected number of superpixels is set to 400. The
proposed system demonstrates comparable values of BR,
UE, and ASA for both datasets comparing with SSN. How-
ever, due to the aggregated structure of SSN, it is impossible
to be implemented on FPGA to achieve ultra-low delay. De-
spite the decrease in CO observed in indoor dataset, the pro-
posed system exhibits an average increase of more than 3.74
% in LC in comparison to SSN. As the results are utilized
for feedback in factory automation and robotics scenarios,
CO, which reflects visual quality, only serves as a supple-
mentary evaluation metric. With the integration of a deep
network, the proposed method improves BR of the indoor
dataset by an average of 7.89 % compared to the 1-ms SLIC
method. This demonstrates the proposed method’s ability
to adhere to boundaries in complex scenes. The less pro-
nounced improvement in the FA dataset is due to its already
clear boundaries against a simple background, resulting in
a BR of average 0.989 for the 1-ms SLIC method. The
proposed method achieves an average improvement in UE
of 24.19 % for the indoor dataset and 17.92 % for the FA

dataset. These improvements in BR and UE highlight the
significant enhancement in boundary adherence achieved by
the proposed method compared to the previous 1-ms SLIC
method. Notably, the proposed method even outperforms in
LC compared to 1-ms SLIC.

To highlight the efficacy of the proposed methods, thor-
ough comparisons are conducted with other well-known al-
gorithms. Quantitative experiments are performed, utilizing
the horizontal translation of the indoor dataset as an illustra-
tive example. In addition to SSN, the comparative analysis
involves various hand-crafted algorithms, including SLIC
[7], SNIC [44], SEEDS [45], LSC [8], ERS [46], ETPS
[47], and 1-ms SLIC [10]. The red line in Fig. 7 signi-
fies the performance of the proposed method. Among all
algorithms, ERS exhibits superior performance across the
metrics of BR, UE, and ASA. Nonetheless, owing to its re-
liance on global processing and complex calculations, the
implementation of ERS within an ultra-low delay system
poses inherent challenges. Excluding ERS, the proposed
method shows superior performance in BR, UE, and ASA
compared with other algorithms and is comparable to SSN.
In terms of CO, ETPS demonstrates the best performance.
However, it does not perform well in the other evaluation
metrics. Given that the network places a stronger emphasis
on boundary adherence, CO yields only moderate results.
Nevertheless, in terms of LC, the proposed method achieves
the highest performance.

Comparisons with other deep network-based algorithms
are additionally carried out on indoor datasets. The exper-
iments involve the utilization of pre-trained modules from
SEAL, SCN, and AINet. To uphold fairness in the evalu-
ations, the expected number of superpixels of the proposed
system is standardized to 750. The evaluation results are
presented in Table 4. While SEAL exhibits excellent per-
formance in BR, it demonstrates a significant decrease com-
pared to other works in the other four evaluation metrics.
Although the proposed method is primarily designed for
FPGA implementation to achieve ultra-low delay, it shows
comparable performance with other deep learning methods
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Fig. 7 Quantitative evaluation results. (a) Boundary recall; (b) Under-segmentation error; (c) Achiev-
able segmentation accuracy; (d) Compactness; (e) Label consistency.

Table 4 Comparisons with deep learning algorithms in indoor dataset.

Horizontal translation Vertical translation Rotation Scale change

SEAL SCN AINet This
work SEAL SCN AINet This

work SEAL SCN AINet This
work SEAL SCN AINet This

work
BR ↑ 0.948 0.892 0.892 0.908 0.947 0.927 0.903 0.918 0.952 0.919 0.903 0.922 0.954 0.916 0.908 0.918
UE ↓ 0.085 0.035 0.036 0.039 0.085 0.031 0.034 0.037 0.093 0.040 0.043 0.042 0.092 0.041 0.043 0.043

ASA ↑ 0.915 0.965 0.964 0.961 0.915 0.969 0.966 0.963 0.907 0.960 0.957 0.958 0.908 0.959 0.957 0.957
CO ↑ 0.121 0.369 0.350 0.352 0.121 0.373 0.353 0.357 0.122 0.369 0.348 0.361 0.121 0.369 0.349 0.360
LC ↑ 0.807 0.843 0.823 0.855 0.769 0.806 0.786 0.824 0.955 0.948 0.933 0.953 0.633 0.781 0.762 0.792

in BR. Despite an inferior performance in UE, ASA, and CO,
the proposed method excels LC, a crucial metric highlighting
the stability of superpixels.

4.1.3 Ablation Study

In the proposed aggregated to pipelined structure for FPGA
implementation, two channels are allocated to the final layer
to capture more information from the input. Ablation stud-
ies are performed on alternative decomposed network struc-
tures. f0 denotes assigning two channels to final0. While f1,
f2, and f3 correspond to assigning two channels to final1, fi-
nal2 and final3, respectively. The experiments are conducted

using the indoor dataset as an example, and the results are
presented in Table 5. Due to the enhanced extraction of input
information, the adopted structure exhibits better boundary
adherence and segmentation accuracy.

To further demonstrate the robustness and applicability
of the proposed method, we examined the relationship be-
tween image size and superpixel segmentation performance
using horizontal translation of the indoor dataset as an exam-
ple. The evaluation results are presented in Table 6. Larger
image sizes result in higher BR for the same desired num-
ber of superpixels, while increasing image sizes decreases
segmentation performance. Conversely, smaller image res-
olutions yield more compact superpixels. Regarding label
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Table 5 Ablation studies of different decomposed network structures.

Horizontal translation Vertical translation Rotation Scale change
f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3

BR ↑ 0.870 0.861 0.861 0.861 0.886 0.885 0.885 0.885 0.879 0.879 0.879 0.879 0.883 0.875 0.875 0.875
UE ↓ 0.046 0.046 0.046 0.046 0.042 0.043 0.043 0.043 0.049 0.048 0.048 0.048 0.047 0.049 0.049 0.049

ASA ↑ 0.954 0.954 0.954 0.954 0.958 0.957 0.957 0.957 0.951 0.952 0.952 0.952 0.953 0.951 0.951 0.951
CO ↑ 0.302 0.309 0.309 0.309 0.306 0.312 0.312 0.312 0.311 0.315 0.315 0.315 0.318 0.356 0.326 0.326
LC ↑ 0.871 0.873 0.873 0.873 0.841 0.845 0.845 0.845 0.955 0.955 0.955 0.955 0.824 0.825 0.825 0.825

Table 6 Relationship between different image resolutions and superpixel
segmentation performance.

Number of lines BR ↑ UE ↓ ASA ↑ CO ↑ LC ↑
200 0.716 0.029 0.971 0.429 0.880
300 0.767 0.039 0.961 0.358 0.874
400 0.880 0.043 0.957 0.304 0.877

Office Desk Bookshelf

Bedroom Storage Room

Fig. 8 Examples of cluttered datasets.

consistency, all demonstrate similar performance levels.

4.1.4 Experiments on cluttered dataset

To broaden the applicability of the proposed method, several
cluttered images from NYUV2 are adopted to generate test-
ing datasets. The generation strategy for these datasets mir-
rors that of the indoor dataset. Fig. 8 showcases examples
of the cluttered datasets, featuring office desk, bookshelf,
bedroom, and storage room scenes, respectively.

The evaluation results for the cluttered datasets are pre-
sented in Table 7. Across all datasets, the boundary recall ex-
ceeds 0.83, and achievable segmentation accuracy surpasses
0.89. This demonstrates the applicability of the proposed
methods to a wide range of applications.

4.2 Hardware Evaluation

Processing speed and the utilization of hardware resources
are pivotal concerns, given that the ultimate objective of this
work is the development of a 1-ms superpixel segmentation
system. The synthesis and implementation are performed on
the ZCU104 FPGA board utilizing Vivado 2021.2. BRAM
is configured to support a capacity of up to 512 superpixels.
Even with the reduced 16-channel configuration and 8-bit
integer calculations, the original aggregated structure of SSN
still requires 65.3 Mb of BRAM resources. Implementing it
without external memory and achieving ultra-low latency are
impossible. Therefore, comparisons were conducted with 1-
ms SLIC, and the hardware evaluation results are presented in

Table 7 Evaluation results on cluttered datasets.

Dataset Motion BR ↑ UE ↓ ASA ↑ CO ↑ LC ↑

Office
Desk

Horizontal
translation 0.832 0.088 0.912 0.321 0.853

Vertical
translation 0.843 0.085 0.915 0.315 0.810

Rotation 0.854 0.093 0.907 0.319 0.939
Scale

change 0.842 0.094 0.906 0.323 0.788

Bookshelf

Horizontal
translation 0.902 0.076 0.924 0.267 0.747

Vertical
translation 0.926 0.070 0.930 0.271 0.812

Rotation 0.921 0.085 0.915 0.265 0.914
Scale

change 0.923 0.088 0.912 0.265 0.731

Bedroom

Horizontal
translation 0.845 0.079 0.921 0.320 0.841

Vertical
translation 0.869 0.077 0.923 0.321 0.832

Rotation 0.863 0.086 0.914 0.319 0.949
Scale

change 0.863 0.083 0.917 0.319 0.792

Storage
Room

Horizontal
translation 0.871 0.096 0.904 0.282 0.841

Vertical
translation 0.870 0.093 0.907 0.282 0.788

Rotation 0.878 0.108 0.892 0.277 0.941
Scale

change 0.886 0.102 0.898 0.278 0.768

Table 8 Hardware performance and resource utilization of the proposed
system and 1-ms SLIC.

Item [10] Proposed

Resource
utilization

#LUT 177618 (77.9%) 163330 (70.89%)
#LUTRAM 3281 (3.22%) 52745 (51.83%)
#FF 227166 (49.30%) 104665 (22.71%)
#BRAM 188 (60.26%) 311.5 (99.84%)
#DSP 210 (12.15%) 26 (1.5%)

Performance Frequency 300 MHz 300 MHz
Delay per frame 0.981 ms 0.947 ms

Table 8. For the 1-ms SLIC, operating at a clock frequency
of 100 MHz, the delay is 0.985 ms per frame. However,
when the clock frequency is increased to 300 MHz, only
the calculation time is reduced, as the transmission time for
the camera remains constant. Consequently, under the 300
MHz scenario, the processing time decreases to 0.981 ms
per frame.

As the entire deep network is directly mapped onto the
FPGA in a hardwired type for a 1-ms delay, the utilization
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Fig. 9 Schematic diagram of the proposed system.
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Fig. 10 Detailed timing flow of the proposed system.

of LUT exceeds 70 %. The simplified schematic diagram of
the proposed system is depicted in Fig. 9. The parameter 𝑁
in this figure depends on the number of addition operations,
which correlates with the channel number. Multiplications
are mapped to LUTs, while additions are mapped to both
LUTs and CARRYs. FFs are utilized to ensure the synchro-
nization of each calculation. The hardwired implementation
fully leverages LUTs resources to execute the calculations of
the neural network.

Because of the streaming structure of the proposed su-
perpixel segmentation system, the computational resources
only depend on the dimensions of the learned features in the
deep network part. BRAM is employed for storing the label
map and superpixel center information, with a ping-pong
BRAM structure being adopted. Consequently, the utiliza-
tion of BRAM has nearly reached its upper limit. Notably,
for the proposed method, the superpixel center necessitates
10-dimensional features, whereas 1-ms SLIC only requires
positional information. Consequently, the BRAM utilization
for the proposed method surpasses that of 1-ms SLIC. The
proposed system, serving as the pre-processing stage, has al-
ready utilized the majority of the hardware resources in pur-
suit of achieving a 1 ms delay. To integrate with subsequent
processes, a FPGA with greater resources would be neces-
sary. Alternatively, deploying multiple FPGAs is another
available option, facilitated by the reduced data transmission
resulting from superpixel segmentation.

Operated at a frequency of 300 MHz, the processing
delay for the proposed system is 0.947 ms per frame. The
detailed timing flow is illustrated in Fig. 10. Predominantly,
the computational workload is centered around the deep net-
work calculations. For the deep network part, it takes 18.27
µs from the first layer to the last final layer. Subsequently,
the update of superpixel center information commences after
the completion of pixel-superpixel association computation,
requiring 3.38 µs.

Fig. 11 shows the impact of image sizes on hardware
performance. Because the industrial camera’s specification
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Fig. 11 Impact of image sizes on hardware performance. (a) Memory
usage; (b) Processing speed.

dictates a fixed transmission time for each line, the number
of lines varies in the experiments. Increasing the image size
primarily impacts the memory allocated for storing the label
map. Since the majority of memory usage is occupied by
resources for storing superpixel center information, the im-
pact of increasing image size on overall memory usage is not
significant. However, when the number of lines reaches 400,
the memory of the FPGA board is fully utilized, reaching
100 %. Regarding processing speed, as the number of lines
in the image increases, the processing time also increases.
When the number of lines reaches 400, the processing time
exceeds 1.050 milliseconds, failing to meet the requirement
for ultra-low delay. Increasing the number of lines in the
input image results in a proportional increase in processing
time for the proposed algorithms, further deviating from the
1 ms requirement.

To integrate with other DNN tasks, the weights can be
changed using the task-specific reconstruction loss function.
For instance, when combining with semantic segmentation
networks, semantic labels can be included as pixel properties
in the reconstruction loss to prompt SSN to learn superpixels
aligned with semantic segments. Only the weights need to be
adjusted in the hardwired type implementation for inference
for different applications. In order to improve real-world
applicability, the computational efficiency test on the GPU
is also conducted. Utilizing the RTX 2080, the original SSN
has an inference time of 0.254 seconds per frame, whereas
the proposed method achieves an inference time of 0.099
seconds per frame. Despite being primarily tailored for
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FPGA implementation, the proposed method proves to be
effective on the GPU platform as well.

5. Conclusion

To realize a 1-ms SSN superpixel segmentation system, both
algorithmic and hardware implementation have been pre-
sented in this paper. For the FPGA implementation of the
deep network within SSN, an aggregated to pipelined struc-
ture is proposed. This structure involves the decomposi-
tion of the aggregation layer into multiple individual layers,
thereby obviating the need for intermediate result storage.
Sustainable memory resource requirements are eliminated,
and the entire system is fully pipelined with pixel stream.
Additionally, memory for storing superpixel center informa-
tion is partitioned based on layers. The pixel outcomes are
acquired as the pixel stream traverses through the system.
Experimental results demonstrate that the proposed system
achieves a real-time processing speed of 0.947 ms per frame.
Moreover, its performance remains comparable to SSN and
surpasses other well-known algorithms. In terms of LC, the
proposed system reaches state-of-the-art performance. For
future research, the current algorithm obtains commendable
performance in boundary adherence and segmentation accu-
racy. However, the visual quality of the proposed algorithm
is identified as an area for potential enhancement. Further
research can prioritize the introduction of a loss function
to improve CO results. While deploying multiple FPGAs is
an option for subsequent processing, as the proposed method
aids in reducing communication burdens, optimizing BRAM
utilization further is necessary to enhance efficiency and re-
source consumption for subsequent processing tasks.
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