
602
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.5 MAY 2024

PAPER Special Section on Knowledge-Based Software Engineering

Locating Concepts on Use Case Steps in Source Code∗

Shinpei HAYASHI†a), Member, Teppei KATO†, Nonmember, and Motoshi SAEKI††, Member

SUMMARY Use case descriptions describe features consisting of mul-
tiple concepts with following a procedural flow. Because existing feature
location techniques lack a relation between concepts in such features, it is
difficult to identify the concepts in the source code with high accuracy. This
paper presents a technique to locate concepts in a feature described in a
use case description consisting of multiple use case steps using dependency
between them. We regard each use case step as a description of a con-
cept and apply an existing concept location technique to the descriptions of
concepts and obtain lists of modules. Also, three types of dependencies:
time, call, and data dependencies among use case steps are extracted based
on their textual description. Modules in the obtained lists failing to match
the dependency between concepts are filtered out. Thus, we can obtain
more precise lists of modules. We have applied our technique to use case
descriptions in a benchmark. Results show that our technique outperformed
baseline setting without applying the filtering.
key words: concept location, use case description, dependency analysis

1. Introduction

In software maintenance, it is important to understand fea-
tures [3] to be maintained [4]. The maintenance process in-
cludes the addition of a new feature and the modification of
existing features. Such tasks require the understanding of
existing source code, which is time-consuming [5]. To sup-
port such processes, a technique must be devised or adopted
to reduce the cost of understanding existing code when mod-
ifying them.

Feature or concept location in the source code [6], [7] is
an important task for program understanding, where analysts
identify correspondence between features considered in the
problem domain and modules implemented in the technical
domain. A problem domain is recognized by stakeholders
of a system under discussion, where features are defined in
the documentation or in their mind. However, a technical
domain is recognized by computers, where features are im-
plemented in modules such as classes, functions, methods,
and statements in source code. These two domains must
mutually correspond, but the mapping between them is not

Manuscript received May 9, 2023.
Manuscript revised October 23, 2023.
Manuscript publicized December 20, 2023.

†The authors are with Department of Computer Science, Tokyo
Institute of Technology, Tokyo, 152–8550 Japan.

††The author is with Department of Software Engineering, Fac-
ulty of Science and Technology, Nanzan University, Nagoya-shi,
466–8673 Japan.

∗This paper is extended based on [1], which appeared in pro-
ceedings of the 47th IEEE Annual Computers, Software, and Ap-
plications Conference, © 2023 IEEE.

a) E-mail: hayashi@c.titech.ac.jp
DOI: 10.1587/transinf.2023KBP0004

straightforward. Identifying and understanding the gaps sep-
arating these domains are major obstacles and challenges for
feature location.

Many existing feature or concept location techniques
use a textual query as an input and find relevant modules in
the source code as outputs [7], [8]. However, when analysts
use a structured description as an input, such as a use case
description consisting of multiple use case steps, they might
want to know not only the list of modules relevant to the
whole feature but also those relevant to each sub-step sepa-
rately. Even if they have no use case description, they might
have already known or imagined that a feature is imple-
mented using a set of smaller concepts based on their skills
or domain knowledge. At any of these cases, it is useful to
understand the implementation of all features by obtaining a
set of modules associated with each sub-concept by regard-
ing a feature as a composed set of sub-concepts∗∗ [6], [9].
Here, a sub-concept is a concept of which a feature consists,
e.g., a step in a use case description.

However, it is difficult to obtain the concept location
result of each sub-concept using existing techniques. Most
existing concept location techniques require a single query
as the input. When using the whole description as the input,
it is difficult to recognize which modules in the output are
associated with which sub-concepts. When using a short
description of each sub-concept as input separately and ap-
plying concept location multiple times, the obtained results
do not consider the relations among sub-concepts such as
data passing or transition of the procedural state. Therefore,
the obtained results include irrelevant modules.

As described herein, we propose a feature location tech-
nique for sub-concepts based on their mutual relation. We
can consider several relations among sub-concepts, includ-
ing a time-order (a concept works after another concept) or
data-dependency (data associated with a concept are trans-
ferred to another concept). Our technique checks each mod-
ule of the output of an existing concept location technique
for the ability to satisfy such constraints. By filtering out
modules of no place for satisfying the constraints from the
obtained result, we obtain a better ranking.

We have automated our technique. By comparing the
ranking obtained using it and those using the existing tech-
niques, we demonstrate that it can produce more effective

∗∗For brevity, in this paper we regard our whole target of location
as a feature consisting of sub-concepts. We use feature location for
locating a feature and concept location for locating a sub-concept.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



HAYASHI et al.: LOCATING CONCEPTS ON USE CASE STEPS IN SOURCE CODE
603

Fig. 1 Applying concept location separately for each step. The use case description is from [2] with
modification.

ranking. The main contributions of this paper can be sum-
marized as follows:

1. A new technique for supporting the process of under-
standing existing code in the maintenance phase by lo-
cating the sub-concepts of a structured document based
on a concept location technique.

2. An empirical evaluation demonstrating that the pro-
posed technique is more effective for locating use case
steps compared with existing approaches.

The remainder of this paper is organized as follows. In
Sects. 2 and 3, we respectively describe the motivation of
this research and the proposed technique. Section 4 presents
automation of our approach. Section 5 shows the result of
our evaluation to confirm the effectiveness of our approach
using an experiment. We discuss related work in Sect. 6.
Finally, we conclude our manuscript in Sect. 7.

2. Motivation

Feature location is the process of finding the modules rel-
evant to the given feature in source code for understanding
implementation of it [6], [7]. Most existing feature location
techniques mainly find modules to the given single feature.
These accept the single description of a feature and output a
ranking of modules relevant to the given feature description.

For software development, we sometimes use structured
documents for feature specification. An example of struc-
tured documents is a use case description. We can regard
each use case as a feature, and therefore, we regard a use
case description as a feature description. Because use case
descriptions include rich information of the target use case
(feature), they can be regarded as good inputs for feature
location techniques.

Given a use case description as a feature description,
more sophisticated locations of the features are desired. Each
step in the use case description clearly specifies the procedu-
ral behavior of the target feature. Therefore, understanding
the whole feature by understanding each subsequent behav-
ior step-by-step is useful for analysts. For such effective

understanding, obtaining the set of modules related to each
step is necessary.

However, using existing techniques, it is difficult to
obtain the concept location result of each sub-concept effec-
tively. Most existing concept location techniques require a
single query for the input and output of a single list of mod-
ules. When using the whole description as a single input,
it is difficult to recognize which modules in the output are
associated with which sub-concepts. When using a short
description of each sub-concept as input separately and ap-
plying concept location multiple times, the obtained results
do not reflect relations among sub-concepts such as data
passing or transition of the procedural state. Therefore, the
obtained results include irrelevant modules.

An example of application of the existing technique is
shown in Fig. 1. Consider that an analyst regards the use
case description shown in the figure as a feature descrip-
tion. This use case description is a simplified version of
the basic flow of the use case “Set Irrigation Parameters”
in the AquaLush example system introduced in the book by
Fox [2]. This feature is implemented as a sequence of three
steps. Each sentence of the steps is useful for inputs of an
existing lexical-based concept location technique. Each ob-
tains the list of modules relevant to each step. The right
side of Fig. 1 shows three lists of modules, which are the
result of concept location based on the vector space model
(VSM) [10]. The highest modules implementing Steps 1,
2, and 3 that appeared in the obtained lists of modules
are, respectively, SetLevelScrnState.keyPress(...),
SetLevelScrnState.keyPress(...), andIrrigator.-
storeData(). Unfortunately, they appeared in a low rank
so that the analyst must check many modules to reach the
actually relevant modules.

Interactions and dependencies exist between steps, e.g.,
data passing or execution. These dependencies must be
realized in the implementation environment. The located
modules should be followed based on the dependencies. A
module implementing the focused concept should not only
be relevant in terms of behavior of the concept but also
be coordinated with other modules following the specified



604
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.5 MAY 2024

Fig. 2 Overview of our technique.

dependency. Therefore, when applying concept location to
each sub-concept, a technique is desired to output the list of
modules that is not only relevant to the target sub-concept but
which also satisfies the dependencies among sub-concepts.

3. Proposed Technique

3.1 Overview

In this paper, we propose a module extraction technique that
is relevant to each sub-concept of the target feature. Our
technique uses dependency relations between sub-concepts
as constraints on the extracted modules.

An overview of our technique is portrayed in Fig. 2.
Gray nodes in this figure represent the main processes of the
technique. Processes shown with a stickman are performed
manually, whereas others are automated. The input of our
technique is the description of the target feature, in addition
to data related to the target software product such as source
code or execution traces. First, the analyst prepares a struc-
tured query by extracting sub-concepts and their dependency
relations from the given feature description. Our structured
query is a directed graph of which the nodes and edges re-
spectively represent sub-concepts of the target feature and
their relations; a more formal definition will be provided
in the next subsection. This query is used for the constraint
checking as described below. Next, we apply an existing con-
cept location technique using descriptions corresponding to
the extracted sub-concepts as inputs. Thereby, we obtain the
rankings of modules as outputs. We extract dependencies
between modules by analyzing the source code and/or ex-
ecution traces of the target product. We use the structured
query as constraints on the extracted modules for each sub-
concept. The dependency relations specified in the query are
regarded as the constraints by which the extracted modules
obtained using the base concept location should hold. Mod-
ules that do not satisfy the constraints are filtered out from
the list of modules. The analyst can obtain an improved list

of modules.
The main steps of our technique for improving the re-

sults of existing concept location techniques are query prepa-
ration, dependency analysis, and constraint checking. More
detailed procedures for the respective steps are explained
below.

3.2 Preparing Query

First, an analyst extracts sub-concepts from a feature descrip-
tion. In the extraction, analysts should specifically examine
the noun in the procedural sentence. As described in this
paper, a procedural description such as use case description
is used as a feature description as an example. In such a
description, the procedure of the target feature is described
as a sequence of procedural steps. We can regard each step
as a sub-concept of the feature. If the analyst cannot find
such descriptions including detailed steps, then the analyst
can imagine what the features consist of and can then prepare
sub-concepts independently.

Next, the analyst extracts dependency relations between
the extracted sub-concepts and writes them as a structured
query. A structured query in this paper is represented as
a labeled directed graph: Q = (C,▷), of which nodes C
and edges ▷ ⊂ C × C × L are sub-concepts and constraints
between them. Here, C and L denote sets of sub-concepts
and a set of labels specifying the type of constraint ▷. We
write a constraint between the concepts c1 and c2 labeled
with l as c1 ▷l c2.

We have defined the following constraints of three types:

▷t: Time constraint. We write a time constraint c1 ▷t c2
if the concept c2 should work after the concept c1 works.
In a description, we can extract time constraints by the
sequential order of steps because the steps are enumer-
ated in a time order. We often extract time constraints
of c1 to c2, c2 to c3, . . . because use case steps in a
flow are expected to be executed in the order of top to



HAYASHI et al.: LOCATING CONCEPTS ON USE CASE STEPS IN SOURCE CODE
605

Fig. 3 Extracting structured queries. The descriptions are from [2] with
modification to (a).

bottom.
▷c: Invocation constraint. We write an invocation con-

straint c1 ▷c c2 if c2 should be invoked during the
execution of c1. In a description, if a step in the basic
flow has its alternative flow, then we can extract the in-
vocation constraint between the sub-concept in the basic
flow and those in the alternative flow. Users can also
extract this constraint when a step is expected to trigger
another step, which leads to an invocation from one to
another. The invocation constraint can be regarded as
a subclass of the the time constraint because an invoca-
tion leads to time elapsed between the invocation of the
caller and that of the callee.

▷d: Data constraint. We write a data constraint c1 ▷d c2
if data modified during the execution of c1 should be
read during the execution of c2. In a description, a step
such as “An actor inputs x” suggests the data written of
x. The steps mentioning x suggest the data read of x.
Data constraints can be specified between sub-concepts
associated with these steps.

Examples of a structured query are presented in Fig. 3.
The top of Fig. 3 (a) is the use case description, which is
the same as that in Fig. 1, as the source of the query. This
use case description has three steps. These three steps can
be sources of the sub-concepts of the target feature. The
sub-concepts c1, c2, and c3 can be extracted respectively
from the steps. For extraction of the constraints between
these sub-concepts, we also use the given use case descrip-
tion. By observing the order of steps, two time constraints
c1 ▷t c2 and c2 ▷t c3 are extracted. Next, we can find
the fact that the data “critical moisture levels” input by the
user in Step 1 is read in Step 2 for confirmation. Then, a
data constraint c1 ▷d c2 is extracted. Finally, another data
transfer suggests another data constraint c2 ▷d c3. In this
data transfer, the data “new settings” confirmed in Step 2
are recorded, and are then used in Step 3. As a result, a
structured query shown at the bottom of Fig. 3 is obtained:

Q = ({c1, c2, c3}, {(c1, c2,t), (c2, c3,t), (c1, c2,d), (c2, c3,d)}).
The fact that an analyst prepares this query means that he/she
expects that the target feature consists of three concepts
c1 (“Operator sets . . . ”), c2 (“AquaLush validates . . . ”), and
c3 (“AquaLush records . . . ”). They are executed in order,
and data passing occurs in order. The query does not include
▷c because the analyst could not find possibilities of invo-
cations between steps. In contrast in Fig. 3 (b), the analyst
extracted an invocation constraint between c1 and c2 because
he/she expected the turning by AquaLush in Step 2 could be
triggered by the set of the mode in Step 1.

Cost of query preparation. It is obvious that our tech-
nique requires an additional cost of preparing the structural
query representing the constraints between use case steps.
However, the preparation of queries is mostly not a heavy
task because the preparation strategy explained in this section
is easy to follow. We asked a student developer to prepare
six structured queries for the use case descriptions used in
our evaluation in Sect. 5. As a result, the average time used
for a use case description (of 4.8 steps in average) was 175 s,
and the maximum time used was 363 s for a use case de-
scription of eight steps. These results should be considered
within an allowance. Although we have not conducted any
controlled experiments of preparing queries, we believe that
the cost of preparing queries does not lead to a considerable
expenditure of time. The exact time spent to prepare each
structured query by this developer is shown in Table 1.

Of course, the cost of query preparation may increase
with a large use case description, as demonstrated by the
above results. Therefore, implementing automated support
to reduce the cost of query preparation for large use case
descriptions would be beneficial. For example, a tool that
identifies data constraints through recognizing word rela-
tionships within use case steps, indicated by terms such as
“it” or “the X”, and subsequently suggests relevant words
as the candidate of constraints would be helpful. Following
the methodology that identifies patterns in data constraints
within descriptions [11], extracting constraints based on nat-
ural language patterns stands as a viable approach to enhance
query preparation.

3.3 Concept Location

A concept location technique is used for each sub-concept
c ∈ C for obtaining the ordered list of modules relevant to c:
Rc ⊆ M (ordered set). Here, M denotes a set of modules in
the source code. Hereinafter, we simply call the ordered list
of modules relevant to a concept a ranking for the concept.

The key idea in this process is reduction of the costs
of extracting modules which satisfy given constraints. To
verify the constraints among sub-concepts, we analyze the
whole set of modules in the source code. However, it in-
cludes a large amount of modules that are irrelevant to the
target concept, which engenders inefficiency of detection.
Our approach is the first to detect modules related to each
sub-concept separately to exclude low-relevance modules in
advance and then to make the search space a reasonable size.



606
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.5 MAY 2024

By checking the constraints among modules that are rele-
vant to each sub-concept, we expect the resulting ranking of
relevant modules of high accuracy.

Our approach allows some flexibility as to which base
concept location technique is used. Several perspectives
when selecting the base concept location technique embed-
ded in our approach are as follows.

• The technique must use natural language descriptions
as its inputs because the description of a sub-concept is
a part of a structured document.

• The technique is encouraged to specifically examine
textual information rather than dependencies between
modules. Since the proposed technique performs filter-
ing based on dependency analysis, the base technique
can benefit more from the proposed technique if it fo-
cuses on text processing; in that case, two techniques
can work complementary, resulting in improved perfor-
mance.

3.4 Dependency Analysis

In our technique, we extract dependencies among modules
by checking the constraint among sub-concepts. They can
be examined by static and/or dynamic analyses, depending
on their type.

Time dependency. We extract a time dependency
mi →t mj if a module mi should be executed after the
module mj is executed. As described in this paper, we ex-
tract a weaker relation by which the modules are executed in
the following order:

mi →t mj ⇐⇒ ∃ti ≤ tj • mi@ti ∧ mj@tj .

Here, m@t denotes the fact that the module m is executed at
time t in an execution trace. As a natural way of checking
the order of two method invocation events, we use dynamic
analysis to collect when they were executed.

Call dependency. We extract a call dependency
mi →c mj if a module mi invokes another module mj . Call
dependencies can be extracted either via static or dynamic
analyses. If we use static analysis in case of dynamic analysis
inapplicable, then all the possible invocations are collected;
invocations occurring in source code are collected. In con-
trast, using dynamic analysis, an invocation is collected only
if the invocation is actually observed.

Data dependency. We extract data dependency mi →d
mj if a module mi modifies a variable and another module
mj reads the variable after that. Our technique extracts data
dependencies using both static and dynamic analyses. A
module reads/writes a variable by referencing the variable
identifier or by assignment of the variable. We extract such
expressions in source code via static analysis†. Furthermore,
we deduce additional access patterns such as invocations of
collection utilities or accessor methods as data access.

†This is just one of the approaches; extraction via dynamic
analysis is also possible.

Fig. 4 Conversion from constraints to dependencies.

mi →d mj ⇐⇒ wv
mi

∧ rvm j
∧ mi →t mj ∧

�m, ti < t < tj • mi@ti ∧ mj@tj ∧ m@t ∧ wv
m.

Here, rvm and wv
m respectively denote the occurrence of read

and write accesses for the variable v in module m. It holds if
and only if a data transfer from mi to mj via variable v exists,
and there is no method that writes to the variable v after the
write access of mi and before the read access of mj .

3.5 Checking Constraints

Using the dependencies obtained from source code analysis
and/or execution trace analysis, we check the constraints be-
tween sub-concepts. A constraint between sub-concepts can
be regarded as a constraint between sets of modules relevant
to the sub-concepts. That is to say, we check whether a de-
pendency between a module relevant to a sub-concept and
another module relevant to the other sub-concept satisfies
the constraint between the sub-concepts. We convert a con-
straint among sub-concepts into another constraint among
modules. A constraint between two sub-concepts ci and cj
can be converted into a constraint among modules m and m′,
where m and m′ are modules that are respectively included
in Rci and Rc j . The resulting rankings of concept location of
sub-concepts ci and cj consist only of modules that satisfy
the converted constraints among modules.

Sometimes a concept is realized not only by a module
but by the interaction of multiple modules. The interaction
can be achieved by method invocation or access of variables.
Therefore, we also allow modules that do not directly satisfy
constraints but which have an association with other mod-
ules and which can satisfy the constraint via the associated
modules. Furthermore, a module in both rankings of the
sub-concepts of which a constraint targets can be regarded
as satisfying the constraint because it can realize both sub-
concepts by itself.

Based on the observations presented above, we convert
constraints among sub-concepts into those among modules.
For example, consider a constraint ci ▷l cj shown in Fig. 4.
If we write a pair of modules mi,mj satisfying the constraint
as mi ▷l mj , then this constraint can be decomposed as a
sequence of conditions as follows:

mi ▷l mj ≜ ∃mk ∈ Rci ,mn ∈ Rc j •
mi →∗ mk →?

l mn →∗ mj .



HAYASHI et al.: LOCATING CONCEPTS ON USE CASE STEPS IN SOURCE CODE
607

Fig. 5 Constraint checking.

Here, →∗ denotes a zero or greater transitive iteration of data
dependency relations (limiting those among the modules in
a specific ranking). The symbol →?

l
denotes a zero-or-one

iteration of dependency of type l.
Figure 5 presents an example of constraint checking.

Using the constraint c1 ▷d c2 shown at the top of the figure,
we filter the rankings of the concepts c1 and c2: Rc1 and
Rc2 . Here, by dependency analysis among modules, we have
data dependency: SetLevelScrnState.keyPress(...)
→d SetLevelScrnState.acceptSettings(...). This
dependency satisfies the constraint. The 47th of Rc1
and the 37th of Rc2 pass the constraint. Additionally, if
we have call dependency Screen.keyPress(...) →c
SetLevelScrnState.keyPress(...), then the 67th of
Rc1 will be a candidate. Moreover, SetLevelScrnState.-
keyPress(...) is included both in Rc1 and Rc2 ; the 178th
of Rc2 holds the condition. Similarly, we can detect the mod-
ules not to satisfy the constraint. For example, the first and
second ranked modules in Rc1 and Rc2 can be candidates
for removal from the ranking because these modules do not
satisfy the constraint.

In our technique, we check all the constraints in the
structured query Q and remove modules that do not satisfy
the constraints from the rankings. The outputs of our tech-
nique are the saturated list of modules. Any modules in the
rankings satisfy all the constraints.

Note that our filtering strategy is rather on the conserva-
tive side. The interpretation of constraints (▷c and ▷d) in the
relation between methods, we relax the constraint matching
to consider transitive relationships between methods. This
decision might lead to keep some irrelevant methods in the
ranked lists because there might be long transitive relations
between the methods. This is an intended decision because
our aim is to filter out clearly inappropriate elements. Rather
than keeping the methods only satisfying strong conditions,
our strategy prefers to remove very irrelevant methods using
weak conditions.

4. Implementation

We have implemented a tool chain for automating technique
for Java programs at the method level. In this toolchain,
we use static information extracted from source code and/or
dynamic traces obtained from executing the target program
as the dependency among methods. The architecture of the

Fig. 6 Architecture of automated implementation.

toolchain is shown in Fig. 6, consisting of existing compo-
nents: yebisu, inFamix, and TraceLab. The arrows and their
labels in the figure respectively represent input–output rela-
tions among components and the types of data sent.

In the toolchain, time and call dependencies are ex-
tracted using a dynamic analysis tool yebisu [12]. The yebisu
outputs the execution traces of method invocation, which in-
clude information related to the actually executed methods
and the call relation between methods. Using them, depen-
dencies of two types can be extracted. Data dependency is
extracted from the static analysis result of inFamix†, includ-
ing the occurrences of method invocations and field refer-
ences in source code. As a basic concept location technique
for filtering, we use a lexical technique based on VSM, which
is a fundamental of existing feature location techniques, and
use TraceLab [10] for implementation of the technique. The
inputs of TraceLab-concept location are the whole source
code of the target project and the natural language descrip-
tion of the target concept to locate. Using the description,
one can obtain the ordered list of methods for each sub-
concept. Finally, the outputs of three components and the
structured query prepared by the analyst are provided to a
newly implemented component named DependCalc. Then
we obtain filtered lists of methods. This tool checks the de-
pendency among methods in the given list according to the
constraints in the given query, and filters out methods that

†http://www.intooitus.com/products/infamix (accessed at
2012–02–03). Because the production company has already been
closed, it is no longer available.



608
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.5 MAY 2024

do not satisfy the constraints.
Different software components can be used as alterna-

tives for the implementation of the proposed method. For
example, the dynamic analysis component (yebisu) can be
replaced by other implementations that can obtain execution
traces, such as SELogger [13]. The base concept location
component (TraceLab) produces a ranking based on the tex-
tual similarity between the use case description and source
code, which is substitutable to other systems that can have
similar ability, such as Gensim [14]. The static analysis com-
ponent (inFamix) extracts the relationship among methods
and fields, and such an analysis can also be performed by
other systems such as JxPlatform [15].

5. Evaluation

We have evaluated our technique using an experiment. The
purpose of this experiment is to ascertain whether our ap-
proach can improve the rank of correct modules in the result-
ing ranking of concept location compared with the baseline.

5.1 Setup

In order to find the target of evaluation, we set up the follow-
ing criteria:

• Openness: The product materials are available on the
web for reproducibility.

• Existence of use case descriptions: The requirements
documents including use case descriptions are pro-
vided.

• Ease of oracle preparation: The associated modules for
each use case step were already specified, or enough
information to prepare them is provided.

As our evaluation target, We used AquaBench [16],
a benchmark for traceability based on the AquaLush case
study [2]. We chose AquaBench because each implemented
feature has a use case description. Furthermore, the trace-
ability among use case descriptions, other specifications,
and source code are maintained in the benchmark. There-
fore, it offers ease of preparation of sub-concepts, structured
queries, and the controlled set for evaluating the detected re-
sults. AquaBench consists of 119 classes and 463 methods.
AquaBench has eight use case descriptions. Because two of
them were not associated with automated test cases, we used
the remaining six of them as targets of evaluation. All steps
in the basic flow of the use case descriptions are regarded as
sub-concepts to locate. The name of each use case, the size
of each use case and the prepared query, and the time spent
to prepare the structured query as mentioned in Sect. 3.2 are
shown in Table 1. The structured queries used for these use
case descriptions are shown in Fig. 7.

We compared our approach with the baseline approach.
For comparison, we prepared both types of results: only
static information and using dynamic traces. We prepared
resulting lists of modules of four types:

(1) using an existing technique,

Table 1 Use cases used in this study

Fig. 7 Structured queries.

(2) using our approach,
(3) using an existing technique with filtering via dynamic

trace, and
(4) using our approach with filtering via dynamic trace.

Baselines (1) and (3) were intended, respectively, to be com-
pared with our approaches (2) and (4). We used VSM as
the baseline concept location technique, which can also be
used for the base concept location technique embedded in
our technique. This means that our technique produces the
same results as the baseline technique before applying the fil-
tering process. VSM was selected because it is well-known,
enough simple to clarify the effectiveness of our technique,
and is regarded as a good approach to measure the textual
similarity for IR-based software engineering tasks [17]. We
used TraceLab [18] for computing the VSM score. For (1)
and (2), we used static analysis results for call dependencies.
For (3) and (4), we prepared a dynamic trace by executing
each use case and filtered out the modules that did not appear
in the trace.

For comparison of the obtained rankings, we used sev-
eral measures. First, we used the effectiveness measure [19],
defined as the rank of the highest correct module in the given
ranking. We compared the average of effectiveness measure
values of all the sub-concepts for each feature. To calculate
the average, we used only sub-concepts for which rankings
include at least one correct module. Additionally, we used
the mean average precision (MAP) and the mean reciprocal
rank (MRR), which are the standards for comparing ranks.



HAYASHI et al.: LOCATING CONCEPTS ON USE CASE STEPS IN SOURCE CODE
609

We prepared the oracle, the correct set of modules for
each use case, to evaluate the result of the proposed tech-
nique. We first extracted traceable design information from
the use case descriptions of AquaBench. Since AquaBench
provides the traceability information between use case de-
scriptions and modules, we succeeded to obtain the candi-
date modules to be located. Next, we obtained dynamic
traces by executing automated tests associated with respec-
tive use case descriptions. The modules in the intersection
of this information were the oracle candidates. We manually
searched relevant modules from the candidates. Two of the
authors prepared the relevant modules separately and com-
pared them. We finalized a set of modules by removing some
modules prepared by each author based on a discussion of
differences between the results.

The structured queries among sub-concepts were also
prepared by one author, precisely following the strategies
shown in Sect. 3.2.

5.2 Results

The summarized results are presented in Fig. 8, for the ef-
fectiveness measure, MAP, and MRR. The bar chart in these
figures represents the average values of the measure for each
sub-concept obtained using several approaches. The four
bars associated with a sub-concept respectively denote the
values using (1) existing technique, (2) our approach, (3)
existing technique filtered out using dynamic trace, and (4)
our approach filtered out using dynamic trace. The right-
most bars represent the average/mean of all the values of six
sub-concepts. Results must be compared based on their data
used: we compared the results of (1) with (2), and (3) with
(4). We respectively designate the results of first and second
comparisons as static results and dynamic results.

Results show that our approach was able to reduce the
average values of these measures for every sub-concept for
the comparison of static results, and for 4 out of 6 use cases
(features) for comparison of dynamic results. This fact in-
dicates that our approach can improve the rank of correct
modules by filtering out irrelevant modules from the results
obtained using baseline approaches. Completely, on average
we were able to obtain 7.33 percent reduction of effective-
ness measure for comparisons using static information, and
2.33 percent reduction for the comparison of dynamic in-
formation. The most effective result was that UC 1, which
produced reduction of 17 percent for the comparison using
static information and 7 percent for the comparison using the
dynamic information. However, our technique with dynamic
traces produced a worse result than the baseline for UC 6,
mainly because the top correct module was filtered out by
the constraint checking.

5.3 Discussion

As described above, some correct modules were filtered out
by checking constraints. We verified the reason why these
modules were filtered out. Results show that they were un-

Fig. 8 Experimental results.

der another type of dependency we had not expected. For
example, a data constraint exists between sub-concepts c1
and c2 of UC 6. Actual dependencies among modules in the
rankings are shown in Fig. 9. In this figure, with data ob-
tained by moduleB c1, the correct module of c1, is transferred
to moduleC via moduleA. Because our constraint does not
hold in this situation, the correct modules were filtered out.
We must improve the pattern of conversion from constraints
among sub-concepts to those among modules by fixing this



610
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.5 MAY 2024

Fig. 9 Example structure by which the technique fails to detect.

problem.

5.4 Threats to Validity

The possibility exists that the creation process of the oracle
modules entails a bias. AquaBench, the system we used, a
benchmark of software traceability recovery, and includes
sufficient information for creating the oracle by us. Addi-
tionally, we carefully prepared the candidates of oracles by
separated environments by two of the authors and discussed
our conclusions well. We believe that our efforts at minimiz-
ing the bias can contribute to the validity of the experiment.

In our experiment, we applied our technique only to
AquaBench. To demonstrate validity, we must apply our
technique to other systems. However, finding appropriate
systems for evaluation of our techniques is not easy. Most
open systems do not include well-written structured docu-
ments. We also checked some benchmark projects of re-
lated area, but could not find appropriate projects at all.
For example, although TraceLab [18] project provided some
benchmark projects, they did not fit our criteria, e.g., diffi-
culty in preparing oracle because the use case descriptions
are written in non-English language. As the first step for this
research, we believe that our evaluation in this paper is valu-
able although it targeted only one system, while maintaining
the criteria of evaluation targets: openness, existence of use
case descriptions, and ease of oracle preparation.

A gap separating the use case steps and the concepts
should be identified. Actually, use case descriptions describe
a dialog between an actor and systems. Fundamentally, odd
steps in use case descriptions begin with “Actor inputs . . . ”
and the other even steps “The system does . . . ”. The former
steps might not be associated with implementation. How-
ever, most software systems have user interfaces. They can
be a trigger of the internal features.

6. Related Work

Existing feature location techniques are classifiable into
static analysis, dynamic analysis, information retrieval, and
their combinations, according to the type of analysis they
use to relate features and modules in source code. Recently,
Dit et al. provided a comprehensive survey of this area [7].
Because our approach is based on dynamic analysis, we em-
phasize feature location techniques similar to ours in this
section. Other kinds of feature location techniques are ex-
plained in the literature [7].

6.1 Hybrid Approaches

Marcus et al. compared feature location techniques of three
kinds based on static analysis: pattern matching using reg-
ular expression, dependency search, and latent semantic in-
dexing. They pointed out that each technique has its own
benefits and shortcomings [20]. Several hybrid approaches
combine textural and dynamic analyses, but their purposes
and approaches differ from ours.

The first approach is the combination of ranking. By
combining the ranking obtained using textual analysis and
that using dynamic analysis, several approaches yielded
more accurate feature location results [19], [21]. These ap-
proaches apply two techniques in combination, whereas our
approach uses textural analysis to filter out the resulting rank-
ing obtained.

Another approach is to reduce the textual analysis search
space by limiting the target as the modules included in the
given dynamic trace [22]. This approach is intended to re-
duce the number of applied dynamic analyses, whereas our
approach uses dynamic analysis for checking the constraints
among sub-concepts.

Several approaches similar to our approach exist to use
the dependencies between concepts [23], [24]. However,
these approaches differ from ours from the viewpoint of the
construction of the approach. They do not filter out the
results of existing concept location techniques.

A filtering-based approach for supporting the compre-
hension of software systems using use cases has also been
proposed [25]. This approach filters out entities that are
common to a high percentage of use cases for simplifying
the complex structure of the whole system. However, they
did not use the dependencies between two concepts as con-
straints for filtering the results of concept location.

6.2 Use of Structured Queries

Several approaches exist for seeking some information for
modules using structured queries, such as [26]–[29]. How-
ever, most approaches are undertaken to seek modules or
snippets of the whole source code or a set of software prod-
ucts. In contrast, our approach used structured queries to
filter the results of concept location.

Hill et al. claimed the need for annotating feature loca-
tion results by their roles [30]. In our technique, the prepara-
tion of structured queries for a use case description involves
the identification of roles of each use case step and their
connections.

6.3 FCA-Based Feature Location Techniques

Eisenbarth et al. [31] proposed a feature location technique
that combines formal concept analysis (FCA), and dynamic
and static analyses to identify the correspondence between
features and modules in source code. Following their tech-
nique, a concept lattice is obtained from the binary rela-



HAYASHI et al.: LOCATING CONCEPTS ON USE CASE STEPS IN SOURCE CODE
611

tion between scenarios and modules observed in execution
traces. Then the lattice is analyzed using mapping be-
tween scenarios and features specified by domain experts.
Koschke and Quante [32] improved the dynamic feature lo-
cation technique proposed by Eisenbarth et al. [31] to in-
corporate scenario-feature mapping into a formal context.
Based on the case study of two compilers, they discussed
tradeoffs among granularity of modules, information gain,
and the cost of feature location, changing a level of granular-
ity from routines to basic blocks. They also showed that their
technique works well when the number of features is small,
but there is a limitation in the numbers of features and scenar-
ios because the number of concepts increases exponentially.
Poshyvanyk et al. combined latent semantic indexing (LSI)
and FCA [33] to demonstrate that it reduces search effort
compared to a simple LSI-based technique, which obtains a
ranked list of modules according to the relevance to a user-
specified query. They apply FCA to organize modules and
domain terms taken from search results filtered by certain
relevance criteria. By limiting the number of search results,
this technique has maintained a concept lattice on a human-
readable scale.

6.4 Interactive Approaches

Several human-assisted incremental feature location tech-
niques have been proposed [34]. However, they have specif-
ically examined the refinement of feature location, and have
not assumed that features are ambiguous or unknown to an-
alysts. A typical interactive approach is the use of relevance
feedback [35], which enables developers to give hints for
improving feature location results [8], [36]–[38]. The work
by Chen and Rajlich [39] proposes to select and understand
each of the code fragments. FEAT [40] explores a structural
program model interactively and finds code fragments that
are related to a feature. However, they offer no mechanisms
for giving feedback to users during intermediate steps of FL.

7. Conclusion

As described in this paper, we have proposed a technique
for locating procedural steps using concept location. The
technique regards a feature a set of mutually related sub-
concepts. By defining and checking the constraints among
sub-concepts, the results of concept location for each sub-
concept are filtered out. Then we were able to obtain the
ranking of each sub-concept. We have defined constraints of
three dependency types and automated our technique. The
evaluation showed that our approach was able to improve
the accuracy of concept location compared with an existing
approach.

We summarize our future work as follows:

• Consideration of other types of constraints, e.g., one
using control dependencies,

• Improvement of dependency patterns of constraints
to remedy difficulties that occurred in the experiment,

• Implementation of a semi-automated support of
query preparation to help identify constraints among
concepts, and

• Comparison and selection of base concept location
techniques for comprehensive improvement of the ef-
fectiveness of our approach.

Acknowledgments

This work was partly supported by JSPS Grants-in-Aid
for Scientific Research Nos. JP22H03567, JP21H04877,
JP21K18302, and JP21KK0179.

References

[1] S. Hayashi, T. Kato, and M. Saeki, “Locating procedural steps in
source code,” Proc. 47th IEEE Annual Computers, Software, and
Applications Conference, pp.1607–1612, 2023.

[2] C. Fox, Introduction to Software Engineering Design: Processes,
Principles and Patterns with UML2, Addison-Wesley, 2006.

[3] The Institute of Electrical and Electronics Engineers (IEEE), “830-
1998 - IEEE Recommended Practice for Software Requirements
Specifications,” 1998.

[4] G.C. Murphy, M. Kersten, M.P. Robillard, and D. Čubranić, “The
emergent structure of development tasks,” Proc. 19th Annual Meet-
ing of the European Conference on Object-Oriented Programming,
LNCS, vol.3586, pp.33–48, 2005.

[5] T. Vestdam and K. Nørmark, “Maintaining program understanding:
Issues, tools, and future directions,” Nordic Journal of Computing,
vol.11, no.3, pp.303–320, 2004.

[6] V. Rajlich and N. Wilde, “The role of concepts in program compre-
hension,” Proc. 10th International Workshop on Program Compre-
hension, pp.271–278, 2002.

[7] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature loca-
tion in source code: A taxonomy and survey,” Journal of Software:
Evolution and Process, vol.25, no.1, pp.53–95, 2013.

[8] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of rele-
vance feedback in IR-based concept location,” Proc. 25th IEEE Inter-
national Conference on Software Maintenance, pp.351–360, 2009.

[9] V. Rajlich, Software Engineering: The Current Practice, CRC Press,
2011.

[10] B. Dit, E. Moritz, and D. Poshyvanyk, “A TraceLab-based solution
for creating, conducting, and sharing feature location experiments,”
Proc. 20th IEEE International Conference on Program Comprehen-
sion, pp.203–208, 2012.

[11] J.M. Florez, L. Moreno, Z. Zhang, S. Wei, and A. Marcus, “An em-
pirical study of data constraint implementations in java,” Empirical
Software Engineering, vol.27, no.5, 119, pp.1–46, 2022.

[12] H. Kazato, S. Hayashi, T. Oshima, S. Miyata, T. Hoshino, and M.
Saeki, “Extracting and visualizing implementation structure of fea-
tures,” Proc. 20th Asia-Pacific Software Engineering Conference,
pp.476–484, 2013.

[13] K. Shimari, T. Ishio, T. Kanda, N. Ishida, and K. Inoue, “NOD4J:
Near-omniscient debugging tool for Java using size-limited execution
trace,” Science of Computer Programming, vol.206, 120630, pp.1–
13, 2021.

[14] R. Řehůřek and P. Sojka, “Software framework for topic modelling
with large corpora,” Proc. LREC 2010 Workshop on New Challenges
for NLP Frameworks, pp.45–50, 2010.

[15] K. Maruyama, “JxPlatform3.” https://github.com/
katsuhisamaruyama/jxplatform3, 2022.

[16] E. Ben Charrada, D. Caspar, C. Jeanneret, and M. Glinz, “Towards
a benchmark for traceability,” Proc. 12th International Workshop
on Principles of Software Evolution and the 7th Annual ERCIM

http://dx.doi.org/10.1109/ieeestd.1998.88286
http://dx.doi.org/10.1109/ieeestd.1998.88286
http://dx.doi.org/10.1109/ieeestd.1998.88286
http://dx.doi.org/10.1007/11531142_2
http://dx.doi.org/10.1007/11531142_2
http://dx.doi.org/10.1007/11531142_2
http://dx.doi.org/10.1007/11531142_2
http://dx.doi.org/10.1109/wpc.2002.1021348
http://dx.doi.org/10.1109/wpc.2002.1021348
http://dx.doi.org/10.1109/wpc.2002.1021348
http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1007/s10664-022-10175-w
http://dx.doi.org/10.1007/s10664-022-10175-w
http://dx.doi.org/10.1007/s10664-022-10175-w
http://dx.doi.org/10.1016/j.scico.2021.102630
http://dx.doi.org/10.1016/j.scico.2021.102630
http://dx.doi.org/10.1016/j.scico.2021.102630
http://dx.doi.org/10.1016/j.scico.2021.102630
http://dx.doi.org/10.1145/2024445.2024451
http://dx.doi.org/10.1145/2024445.2024451
http://dx.doi.org/10.1145/2024445.2024451


612
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.5 MAY 2024

Workshop on Software Evolution, pp.21–30, 2011.
[17] M.M. Rahman, S. Chakraborty, G. Kaiser, and B. Ray, “Toward

optimal selection of information retrieval models for software en-
gineering tasks,” Proc. 19th International Working Conference on
Source Code Analysis and Manipulation, pp.127–138, 2019.

[18] J. Cleland-Huang, Y. Shin, E. Keenan, A. Czauderna, G. Leach, E.
Moritz, M. Gethers, D. Poshyvanyk, J.H. Hayes, and W. Li, “To-
ward actionable, broadly accessible contests in software engineer-
ing,” Proc. 34th International Conference on Software Engineering,
pp.1329–1332, 2012.

[19] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Feature location using probabilistic ranking of methods
based on execution scenarios and information retrieval,” IEEE Trans.
Softw. Eng., vol.33, no.6, pp.420–432, 2007.

[20] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev,
“Static techniques for concept location in object-oriented code,” Proc.
13th International Workshop on Program Comprehension, pp.33–42,
2005.

[21] M. Revelle, B. Dit, and D. Poshyvanyk, “Using data fusion and web
mining to support feature location in software,” Proc. 18th Interna-
tional Conference on Program Comprehension, pp.14–23, 2010.

[22] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature location
via information retrieval based filtering of a single scenario exe-
cution trace,” Proc. 22nd IEEE/ACM International Conference on
Automated Software Engineering, pp.234–243, 2007.

[23] M. Harman, N. Gold, R. Hierons, and D. Binkley, “Code extraction
algorithms which unify slicing and concept assignment,” Proc. 9th
Working Conference on Reverse Engineering, pp.11–20, 2002.

[24] N. Gold, M. Harman, Z. Li, and K. Mahdavi, “Allowing overlapping
boundaries in source code using a search based approach to concept
binding,” Proc. 22nd IEEE International Conference on Software
Maintenance, pp.310–319, 2006.

[25] M. Salah, S. Mancoridis, G. Antoniol, and M. Di Penta, “Scenario-
driven dynamic analysis for comprehending large software systems,”
Proc. 10th European Conference on Software Maintenance and
Reengineering, pp.71–80, 2006.

[26] B.P. Eddy and N.A. Kraft, “Using structured queries for source
code search,” Proc. 30th IEEE International Conference on Software
Maintenance and Evolution, 2014.

[27] C.D. Roover and K. Inoue, “The Ekeko/X program transformation
tool,” Proc. 14th IEEE International Working Conference on Source
Code Analysis and Manipulation, pp.53–58, 2014.

[28] X. Wang, D. Lo, J. Cheng, L. Zhang, H. Mei, and J.X. Yu, “Matching
dependence-related queries in the system dependence graph,” Proc.
25th IEEE/ACM International Conference on Automated Software
Engineering, pp.457–466, 2010.

[29] S. Wang, D. Lo, and L. Jiang, “Code search via topic-enriched depen-
dence graph matching,” Proc. 18th Working Conference on Reverse
Engineering, pp.119–123, 2011.

[30] E. Hill, D. Shepherd, and L. Pollock, “Exploring the use of concern
element role information in feature location evaluation,” Proc. 23rd
IEEE International Conference on Program Comprehension, pp.140–
150, 2015.

[31] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in
source code,” IEEE Trans. Softw. Eng., vol.29, no.3, pp.210–224,
2003.

[32] R. Koschke and J. Quante, “On dynamic feature location,” Proc.
20th IEEE/ACM International Conference on Automated Software
Engineering, pp.86–95, 2005.

[33] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” Proc.
15th IEEE International Conference on Program Comprehension,
pp.37–48, 2007.

[34] X. Peng, Z. Xing, X. Tan, Y. Yu, and W. Zhao, “Improving feature
location using structural similarity and iterative graph mapping,”
Journal of Systems and Software, vol.86, no.3, pp.664–676, 2013.

[35] C.T. Meadow, Text Information Retrieval Systems, Academic Press,

1992.
[36] S. Hayashi, K. Sekine, and M. Saeki, “iFL: An interactive environ-

ment for understanding feature implementations,” Proc. 26th IEEE
International Conference on Software Maintenance, pp.1–5, 2010.

[37] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto,
D. Poshyvanyk, and A.D. Lucia, “When and how using structural
information to improve IR-based traceability recovery,” Proc. 17th
European Conference on Software Maintenance and Reengineering,
pp.199–208, 2013.

[38] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental approach and
user feedbacks: a silver bullet for traceability recovery,” Proc. 22nd
IEEE International Conference on Software Maintenance, pp.299–
309, 2006.

[39] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph,” Proc. 8th International Workshop on Program Com-
prehension, pp.241–247, 2000.

[40] M.P. Robillard and G.C. Murphy, “Concern Graphs: Finding and
describing concerns using structural program dependencies,” Proc.
24th International Conference on Software Engineering, pp.406–
416, 2002.

Shinpei Hayashi is an associate professor in
School of Computing at Tokyo Institute of Tech-
nology. He received a B.E. degree in information
engineering from Hokkaido University in 2004.
He also respectively received M.E. and D.E. de-
grees in computer science from Tokyo Institute
of Technology in 2006 and 2008. His research
interests include software evolution and software
development environment.

Teppei Kato received B.E. and M.E. de-
grees in computer science from Tokyo Institute
of Technology in 2012 and 2014, respectively.
His research interests include feature and con-
cept location in the area of software maintenance
and evolution.

Motoshi Saeki received a D.E. degree in
computer science from Tokyo Institute of Tech-
nology in 1983. He was a professor in School of
Computing at Tokyo Institute of Technology. He
is currently a professor in Department of Soft-
ware Engineering at Nanzan University. His re-
search interests include requirements engineer-
ing, software design methods, software process
modeling, and computer supported cooperative
work (CSCW).

http://dx.doi.org/10.1145/2024445.2024451
http://dx.doi.org/10.1145/2024445.2024451
http://dx.doi.org/10.1109/tse.2007.1016
http://dx.doi.org/10.1109/tse.2007.1016
http://dx.doi.org/10.1109/tse.2007.1016
http://dx.doi.org/10.1109/tse.2007.1016
http://dx.doi.org/10.1145/1321631.1321667
http://dx.doi.org/10.1145/1321631.1321667
http://dx.doi.org/10.1145/1321631.1321667
http://dx.doi.org/10.1145/1321631.1321667
http://dx.doi.org/10.1109/wcre.2002.1173060
http://dx.doi.org/10.1109/wcre.2002.1173060
http://dx.doi.org/10.1109/wcre.2002.1173060
http://dx.doi.org/10.1145/1858996.1859091
http://dx.doi.org/10.1145/1858996.1859091
http://dx.doi.org/10.1145/1858996.1859091
http://dx.doi.org/10.1145/1858996.1859091
http://dx.doi.org/10.1109/tse.2003.1183929
http://dx.doi.org/10.1109/tse.2003.1183929
http://dx.doi.org/10.1109/tse.2003.1183929
http://dx.doi.org/10.1145/1101908.1101923
http://dx.doi.org/10.1145/1101908.1101923
http://dx.doi.org/10.1145/1101908.1101923
http://dx.doi.org/10.1016/j.jss.2012.10.270
http://dx.doi.org/10.1016/j.jss.2012.10.270
http://dx.doi.org/10.1016/j.jss.2012.10.270
http://dx.doi.org/10.1109/wpc.2000.852498
http://dx.doi.org/10.1109/wpc.2000.852498
http://dx.doi.org/10.1109/wpc.2000.852498
http://dx.doi.org/10.1109/icse.2002.1007986
http://dx.doi.org/10.1109/icse.2002.1007986
http://dx.doi.org/10.1109/icse.2002.1007986
http://dx.doi.org/10.1109/icse.2002.1007986

