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On Easily Reconstructable Logic Functions
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SUMMARY This paper shows that sum-of-product expression (SOP)
minimization produces the generalization ability. We show this in three
steps. First, various classes of SOPs are generated. Second, minterms of
SOP are randomly selected to generate partially defined functions. And,
third, from the partially defined functions, original functions are recon-
structed by SOP minimization. We consider Achilles heel functions, major-
ity functions, monotone increasing cascade functions, functions generated
from random SOPs, monotone increasing random SOPs, circle functions,
and globe functions. As for the generalization ability, the presented method
is compared with Naive Bayes, multi-level perceptron, support vector ma-
chine, JRIP, J48, and random forest. For these functions, in many cases,
only 10% of the input combinations are sufficient to reconstruct more than
90% of the truth tables of the original functions.
key words: complexity of logic function, random function, monotone func-
tion, threshold function, logic minimization, partially defined function, clas-
sification, data mining, machine learning, generalization ability

1. Introduction

Memorization is to memorize the training set, and can be
performed by just storing the training set into a memory
device. On the other hand, learning not only memorizes
the training set, but also predicts outputs for unknown in-
puts that occur in the test set. Thus, learning includes the
generalization ability. In machine learning, increasing the
generalization ability is a very important issue.

In [21], we showed that a logic minimizer can be used
for machine learning in handwritten digit recognition, where
unknown values are predicted by assigning 0 or 1 to don’t
care values by a logic minimizer. However, it was not known
if the statement is true for other classes of functions.

In this paper, we investigate how a logic minimizer pre-
dicts the unknown values for special classes of functions.
We are interested in the class of functions that are easy to
reconstruct. Functions that have simple representations are
easy to reconstruct. Our method is as follows: Given a
function f represented by a simple sum-of-products expres-
sion (SOP), randomly select the minterms of f to generate
a partially defined function f̂ . From f̂ , we reconstruct the
original function f using an SOP minimizer.

When the faction of the selected minterms is large,
the original function can be reconstructed easily. However,
when the fraction of the selected minterms is small, the
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reconstruction of the original function is difficult. Bench-
mark functions include: Achilles heel functions; symmet-
ric threshold functions; randomly generated non-monotone
SOP, randomly generated monotone SOP, circle functions,
and globe functions. For these functions, we compare the
performance of machine learning methods including:

• SOP minimization of partially defined function.
• Naive Bayes method.
• Multi-level perceptron (neural network).
• Support vector machine.
• Decision tree.
• Random forest.

The rest of this paper is organized as follows: Sect. 2
shows definitions of various functions and their properties.
Section 3 shows the method to perform experiments. Sec-
tion 4 shows the method to evaluate the performance of the
reconstruction. Section 5 compares the performance of var-
ious machine learning methods. Section 6 shows the exper-
iments with multi-valued input functions. Section 7 surveys
related works. Section 8 concludes the paper.

Preliminary versions of this paper were presented in
[23] and [24].

2. Definitions

Definition 2.1: Let ON , OFF, and DC be subsets of Bn,
where B = {0,1}, ON ∩OFF = �, ON ∩ DC = �, OFF ∩
DC = �, and ON ∪ OFF ∪ DC = Bn. Consider a function
f such that, for any ®a ∈ Bn,

®a ∈ ON ⇒ f (®a) = 1,
®a ∈ OFF ⇒ f (®a) = 0.

When DC = �, f is totally defined, while when DC , �,
f is partially defined.

Problem 2.1: Given a partially defined function f , find the
simplest sum-of-products expression (SOP) that is consistent
with f .

This process is called logic minimization. However, it
can be also used for reconstruction of a function.

Definition 2.2: A minimum sum-of-products expression
(minimum SOP) for f satisfies the following conditions:

1. It has the fewest products.
2. It has the fewest literals subject to the condition 1).

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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When n is small (say n ≤ 10), we can use the Quine-
McCluskey method [13] to derive a minimum SOP. How-
ever, when n is large, exact minimization is too time-
consuming. So, we have to resort to a heuristic minimiza-
tion algorithm such as MINI [8] to obtain near minimum
solutions.

Lemma 2.1: [20] A minimum SOP can be represented as
a sum of only prime implicants (PIs).

Definition 2.3: The SOP degree of f is the maximum num-
ber of literals in a product of a minimum SOP for f across
all products.

Example 2.1: Consider the partially defined function f̂
whose ON and OFF sets are shown in Table 1. Suppose
that Table 1 is the training set. Predict the output for the
function for the input ®a = (x1, x2, x3, x4) = (1,1,0,1). Since
the vector ®a is not contained in the training set, nobody knows
the output for this input.

Figure 1 shows the map for f̂ , where blank cells denote
don’t cares. If we perform an SOP minimization using the
map in Fig. 2, we have the simplified expression for f̂ :
F = x1x2. Although the value of f (®a) is undefined, if the
value is 1, and if the values of f for other blank cells are
0, then the SOP for f becomes simpler. Occam’s razor [7]

Table 1 Partially defined function.

Fig. 1 Partially defined function f̂ .

Fig. 2 Simplified SOP for the function f̂ .

recommends to use simple rules. So, we assume that the
function value for ®a to be 1.

Next, predict the output value for the input ®b =
(0,0,0,1). In this case, the output is assumed to be 0, since
this makes the SOP simpler. Such operation is called gener-
alization in machine learning.

Definition 2.4: Ach(k,m) is the Achilles heel function of
k × m variables. Each product of the minimum SOP of
Ach(k,m) has k literals, and the SOP has m products, where
all literals are distinct.

Example 2.2:

Ach(2,6) = x1y1 ∨ x2y2 ∨ x3y3 ∨ x4y4 ∨ x5y5 ∨ x6y6

Ach(3,4) = x1y1z1 ∨ x2y2z2 ∨ x3y3z3 ∨ x4y4z4

Ach(4,3) = x1y1z1w1 ∨ x2y2z2w2 ∨ x3y3z3w3

Ach(6,2) = x1y1z1w1u1v1 ∨ x2y2z2w2u2v2

Lemma 2.2: The SOP degrees of functions are

• 1 for n-variable OR function.
• n for n-variable AND, and parity function.
• r + 1 for (2r + 1)-variable majority function.
• k for Achilles heel function Ach(k,m).

Example 2.3: Consider the Achilles heel function:

Ach(2,3) = x1y1 ∨ x2y2 ∨ x3y3.

The complement of Ach(2,3) is

Ach(2,3) = (x̄1 ∨ ȳ1)(x̄2 ∨ ȳ2)(x̄3 ∨ ȳ3)
= x̄1 x̄2 x̄3 ∨ x̄1 x̄2 ȳ3 ∨ x̄1 ȳ2 x̄3 ∨ x̄1 ȳ2 ȳ3∨
ȳ1 x̄2 x̄3 ∨ ȳ1 x̄2 ȳ3 ∨ ȳ1 ȳ2 x̄3 ∨ ȳ1 ȳ2 ȳ3.

The last SOP is the minimum, and the maximum number of
literals is three. So, the SOP degree of Ach(2,3) is three.

Example 2.4: Consider the partially defined function f in
Table 2, where the OFF and the ON sets are shown. Note
that the ON set consists of two vectors: { ®a1, ®a2}, while the
OFF set consists of two vectors:{®b1, ®b2}.

The minimal SOPs for f are F1 = x1x4 ∨ x̄1 x̄4, and
F2 = x̄2 ∨ x3. The maps for these SOPs are shown in Figs. 3
and 4. The minimal SOPs for f̄ are F3 = x1 x̄4 ∨ x̄1x4, and
F4 = x2 x̄3. Thus, F4 is the exact minimum. The maps
of these SOPs are shown in Figs. 5 and 6. The maximum
number of literals in a product is two. Note that these SOPs
depend on only two variables.

Table 2 Partially defined function.
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Fig. 3 SOP for f : F1.

Fig. 4 SOP for f : F2.

Fig. 5 SOP for f̄ : F3.

Fig. 6 SOP for f̄ : F4.

Definition 2.5: Let ®a and ®b be elements of Bn. If f satisfies
f (®a) ≥ f (®b), for any vectors such that ®a ≥ ®b, then f is a
monotone increasing function.

Theorem 2.1: [20] Let f be a monotone increasing func-
tion of n variables. Then,

1) All the prime implicants of f are essential prime impli-
cants.

2) There is a unique minimum SOP for f .

3. Experiments

3.1 SOP Minimizer for Machine Learning

In this experiment, a modified version of the MINI [8], [9]
logic minimizer was used. In MINI, the number of products
is reduced as the primary objective, and the number of lit-
erals is reduced as the secondary objective. The following
algorithm shows the outline:

Algorithm 3.1: (MINI13)

1. From the ON and the OFF sets, generate the DC set by
DC = ON ∪ OFF.

2. Simplify the SOP for the ON set, and the SOP for the
OFF set using DC, independently.

3. Count the products in the simplified SOPs. Let f1 and
f0 be the totally defined functions for the simplified
SOPs for the ON and the OFF sets, respectively.

4. If the simplified SOP for f1 has fewer products, then
replace the SOP for f0 by the simplified SOP for f0 f1.
Otherwise, replace the simplified SOP for f1 by the
simplified SOP for f1 f0.

This logic minimizer has two outputs (Fp,Fn): (1,0)
shows the positive class (1), (0,1) shows the negative class
(0), and (0,0) shows unknown. Thus, the minimizer has
a three-valued output, and shows more information than a
binary logic minimizer. When the minimizer cannot de-
cide whether an input is positive or negative, it produces
unknown outputs. Multiple classifiers of this type can be
combined to create a multi-class classifier [21]. Let FP be
an SOP for f1, and let FN be an SOP for f0 f̄1. Note that
FP · FN=0, but FP ∨ FN is not necessarily a tautology:
FP ∨ FN only covers a part of the entire combinations.

The last step of Algorithm 3.1 is used to make the
resulting SOPs disjoint. Also, it improves the generalization
ability for imbalanced data sets, which will be shown in
Sect. 5.1.

In the expand-minority strategy†, the SOP for the
minority class is simplified as the first priority.

3.2 Achilles Heel Function

Example 3.5: Consider the following Achilles heel func-
tions: Ach(2,6), Ach(3,4), Ach(4,3), and Ach(6,2). These
functions all have 12 variables. Thus, the total numbers
of input combinations are 212 = 4096. The numbers of
minterms in the ON sets for Ach(2,6), Ach(3,4), Ach(4,3),
and Ach(6,2) are 3367, 1695, 721, and 127, respectively.

We generated partially defined functions with different
numbers of selected minterms, and tried to reconstruct the
original functions by logic minimization (MINI13). The re-
sults are shown in Table 3. In the table, ⃝ shows that the logic
minimizer successfully reconstructed the original function,

†The expand operation in MINI [8] reduces the number of lit-
erals in a product.
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Table 3 Reconstruction of Achilles heel functions (n = 12).

Table 4 Reconstruction of other monotone increasing functions (n = 8).

while × represents a function that was not reconstructed. A
single difference in even one minterm was deemed to not be
reconstructable.

This result shows that Ach(3,4) and Ach(4,3) are easier
to be reconstructed, while Ach(6,2) is harder to be recon-
structed. Also, with the increase the number of selected
minterms, the reconstruction of functions became easier.

3.3 Other Monotone Increasing Functions

A symmetric threshold function with n variables and
threshold T is defined as

T h(n,T)(x1, x2, . . . , xn) = 1 iff
n∑
i=1

xi ≥ T .

It is a monotone increasing function.
Th(8,4) is an 8-variable symmetric threshold function,

where the threshold is four. The SOP for Th(8,4) has
(8
4
)
= 70

prime implicants, while the SOP for Th(8,4) has
(8
5
)
= 56

prime implicants.
Table 4 shows the experimental results. SOP minimiza-

tions could not reconstruct Th(n,T). For these functions, re-
construction did not occur because the number of the prime
implicants is too large.

A monotone cascade function (MCF) can be realized
by a cascade of two-input logic cells, where OR cells and
AND cells are connected alternately. Specifically,

MCF(8) = (((x1 ∨ x2)x3 ∨ x4)x5 ∨ x6)x7 ∨ x8.

The numbers of the prime implicants of MCF(n) is ⌊ n2 ⌋ + 1,
while that of the complement of MCF(n) is ⌈ n2 ⌉.

Table 4 also shows the results for an MCF function.
Reconstruction of the original functions from the MCF(n)
functions with randomly selected minterms was easier than
from the Th(n,T) function with randomly selected minterms.

3.4 Functions Generated by Random Expressions

To specify the complexity of SOPs, we use the following
parameters: n is the number of variables; m is the number
of products; and k is the number of literals, in each product.

Table 5 Reconstruction of random functions (n = 8).

SOP(n,m, k) is a randomly generated non-monotone
SOP with n variables, m products, and k literals in each
product. We carefully selected values of n, m, and k so that
SOPs represent non-constant 1 functions [11]. To select k
variables out of n variables, we used the algorithm in [3] and
a pseudo random number generator.

MoSOP(n,m, k) is a randomly generated monotone
SOP with n variables, m products, and k positive literals
in each product. Table 5 shows the experimental results for
8-variable functions.

3.5 Circle and Globe Functions

Here, we define two mathematical functions†.

Definition 3.6: The Circle function is

Circle(X,Y ) =
{

1 if X2 + Y2 ≥ R2

0 otherwise.

The Globe function is

Globe(X,Y, Z) =
{

1 if X2 + Y2 + Z2 ≥ R2

0 otherwise.

Assume that X , Y , and Z are represented by n-bit binary
numbers, and R = 2n − 1. The Circle function has nt = 2n
variables, while the Globe function has nt = 3n variables.

Example 3.6: (Circle Function)
When n = 3, X and Y are represent by 3-bit numbers,

and R = (1,1,1)2 = 7.
When X = (1,0,1)2 = 5 and Y = (1,0,0)2 = 4, we have

X2 + Y2 = 52 + 42 = 25 + 16 = 41 < (72 = 49).

Thus, Circle(5,6) = 0.
When X = (1,1,0)2 = 6 and Y = (1,1,1)2 = 7, we have

X2 + Y2 = 62 + 72 = 36 + 49 = 85 > (72 = 49).

Thus, Circle(6,7) = 1.

In the case of circle functions, when n is large, the
number of false minterms is proportional to π

4 R2, while the
number of true minterms is proportional to R2 − π

4 R2. Thus,
with the increase of n,

the number of true minterms
the number of false minterms

→ 4 − π
π
=

4
π
− 1 ≈ 0.2732.

†A circuit function is considered in [4], but the definition is
different.
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Table 6 Confusion matrix.

Thus, the circle function is an imbalanced function.
In the case of globe function, the ratio approaches

6 − π
π
=

6
π
− 1 ≈ 0.90986,

as n increases. So, the globe function is not so imbalanced
as the circle function.

By randomly selecting the minterms of these functions,
we have partially defined functions.

4. Evaluation of Methods

To evaluate classifiers, we use the confusion matrix shown
in Table 6, where TP is the number of true positives, FP
is the number of false positives, FN is the number of false
negatives, and TN is the number of true negatives.

Here, we use four measures: Accuracy, Precision, Re-
call and Matthews Correlation Coefficient (MCC) [5]

Definition 4.7:

Accuracy =
TP + T N

TP + FP + FN + T N

Precision =
TP

TP + FP

Recall =
TP

TP + FN

MCC =
TP · T N − FP · FN√

(TP+FP) · (TP+FN) · (T N+FP) · (T N+FN)

If the classifier reconstructed the original function per-
fectly, then FN = FP = 0, and Accuracy = Precision =
Recall = MCC = 1.00.

When, the fraction of the positive instances is very
small, the classifier that classifies all the instances to Negative
has a very high Accuracy. However, both Precision and
Recall are zero. Thus, the predictive power of the classifier
for the positive instances is zero.

When, the fraction of the positive or negative instances
is small, the data set is called imbalanced. To show the
real performance for imbalanced data sets, MCC is used.
MCC shows the quality of two-class classifications. When
FN = FP = 0, MCC = 1.00, while when T N = TP = 0,
MCC = −1.00. For the classifier that classifies all the
instances to Negative (TP = FP = 0), or all the instances to
Positive (T N = FN = 0), MCC is undefined (UD). In this
case, the denominator of MCC is zero.

Example 4.7: Consider the function shown in Fig. 7. It is
an Achilles heel function with 4 variables:

Ach(2,2) = x1x2 ∨ x3x4.

Fig. 7 Achilles heel function f .

Fig. 8 Function after logic minimization of f̂ .

Consider the function shown in Fig. 1, where eight minterms
are randomly selected. The blank cells are don’t cares.

Figure 8 shows the minimized function. The colored
cells are predicted by the logic minimizer. Among them, red
cells are incorrectly predicted, while green cells are correctly
predicted. From Fig. 8, we have the confusion matrix:[

TP FN
FP T N

]
=

[
4 3
0 9

]
From this, we have Accuracy = 0.8125, and MCC = 0.6547.

In Sect. 3, a logic minimizer reconstructed the original
functions from the functions whose minterms were randomly
selected. In Tables 3, 4 and 5, instances with ⃝ show that
the reconstructions are perfect. That is FP = FN = 0, and
Accuracy = MCC = 1.00.

These experiments show that SOP minimization in-
creased generalization ability.

5. Comparison with other Methods

5.1 Performance of the Proposed Method

Here, we analyze ten cases with × marks in Tables 3, 4
and 5. Tables 7 and 8 show experimental results. The
last line headed with MINI13 in Tables 7 and 8 show the
Accuracy and MCC obtained by the proposed method. In
Tables 7 and 8, bold figures show the largest MCC. These
data show that the logic minimizer predicted unknown data
fairly well. The Accuracy is, in many cases, acceptable.
However, MCC for Ach(2,6) and Ach(6,2) is lower. Note
that for Ach(2,6), |ON | = 3369 and |OFF | = 727, while for
Ach(6,2), |ON | = 127 and |OFF | = 3969. In other words,
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Table 7 Accuracy and MCC for various classifiers (Two-valued inputs).

Table 8 Accuracy and MCC for various classifiers (Two-valued inputs).

Table 9 Accuracy and MCC for circle and globe functions.

Table 10 Comparison of two minimizers on circle and globe functions.

these data sets are imbalanced. Experimental results show
that imbalanced data sets are hard to reconstruct [12].

Table 9 shows accuracy and MCC for circle and globe
functions. For example, when n = 4, the Circle function has
nt = 4× 2 = 8 input variables. Thus, the total number of the
input combinations is 28 = 256. The number of elements in
the ON set is P = 63, while the number of elements in the
OFF set is N = 193. Each group of three columns headed
with i/32 shows the results when the number of minterms
is s = (i/32)2nt for i = 3,4,5. The table shows that with

the increase of the number of minterms, the ACC and MCC
tend to increase. Also, with the increase of n, ACC and MCC
increase. When nt ≥ 12, the experimental result shows that
the training set with only 10% of the total combinations are
sufficient to predict more than 90% of the outputs†.

Table 10 compares the effect of minimization algo-
rithms. The columns headed MINI13 show the case when

†In the globe function with n = 4, ACC and MCC for s = 410
are 0.9147 and 0.8337, respectively.
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Table 11 Accuracy and MCC for random SOPs (Four-valued inputs: MINI13).

MINI13 was used, while the columns headed MINI10 show
the case when MINI10 was used. MINI10 is similar to
MINI13, but step 4 in Algorithm 3.1 is removed. Thus, both
the ON cover and the OFF are expanded, and the positive
and the negative outputs can be true at the same time. This is
called the expand-both strategy. In this case, the classifier
produces four different outputs. (0,0), (0,1), (1,0), and (1,1),
where (0,0) and (1,1) show unknown class. Since MINI10
produced (1,1) outputs, we have TP+FP+FN +T N > 2N .
Although, MINI10 produced solutions with smaller tn than
MINI13, it often produced solutions with lower Accuracy
and MCC than MINI13 when nt ≥ 10.

In Table 10, bold face shows larger MCC values for
the two MCC columns. MINI13 produced higher MCC for
9 functions, while MINI10 produced higher MCC for only
one functions.

5.2 Performance of Other Methods

We investigated the performance of the following classifiers
in the WEKA [26] system.

• Bayes is a statistical learning algorithm based on Bayes’
theorem. It is also called Naive Bayes method. It
assumes that variables are independent.

• MLP (a Multi-Layer Perceptron) is a feed-forward arti-
ficial neural network.

• SMO is an extension of a support vector machine using
a sequential minimal optimization algorithm [16].

• JRIP is a rule learner based on the RIPPER (Repeat-
edly Incremental Pruning to Produce Error Reduction)
algorithm [6].

• J48 is a decision tree classifier, and is a Java implemen-
tation of C4.5 algorithm [17].

• Random Forest (RF) is an ensemble classifier that con-
sists of many decision trees.

The parameters for classifiers were set to default values of
WEKA. As for the test data, we used the set of all input
combinations, i.e., 2n vectors, since we know the correct
values for all possible input combinations†.

Tables 7 and 8 also compare the performance of other
methods: Bayes, MLP, SMO, JRIP, J48, and RF.

• The bold numbers show the highest MCCs.
• The method that produced rules with the highest MCC
†This is different from a common method to measure the accu-

racy, since generation of all possible input combinations are usually
impractical.

also produced rules with the highest Accuracy.
• Bayes produced the lowest MCCs for five functions.
• MLP produced the highest MCCs for Th(8,2) and

Th(8,4).
• SMO produced the highest MCCs for Th(8,4). This

result is reasonable, since Th(8,4) can be represented
by a simple threshold gate.

• JRIP produced the highest MCCs for three functions.
• RF produced the highest MCCs for two functions.
• MINI13 produced the highest MCCs for four functions.
• For Ach(6,2), two algorithms SMO and J48 produced

MCC with UD. In these cases, the algorithms classified
all the data into the negative class. Thus, TP = FP = 0,
and the values of MCC and Precision are undefined
(UD). And, Recall is 0.00. This function is imbalanced,
and is hard to reconstruct.

In addition to the Accuracy and MCC, we have to con-
sider the complexity of the models (rules). In general, MLP,
J48 and RF are too complex to analyze, while SOPs gener-
ated by JRIP and MINI13 are relatively easy to analyze.

6. Extension to Multi-Valued Input Functions

In this part, we extend the theory to multi-valued input func-
tions. For simplicity, we consider the data sets for the func-
tions that are generated by random SOPs:

f : {0,1,2,3}5 → {0,1}.

We assume that each SOP has m products and k literals, and
each literal has one of the following forms:

X {3},X {2,3},X {1,2,3},X {0,1,2,3} .

This implies that the functions are monotone increasing. UCI
benchmark functions [25] such as Breast Cancer Wisconsin
(Original), Car Evaluation, and Nursery have such a prop-
erty.

We did similar experiments to the two-valued cases.
Table 11 shows the experimental results. The first column
shows the function name: MVSOP(n,m, k), where n denotes
the number of variables, m denotes the number of products,
and k denotes the number of literals in each product. Note
that the total numbers of input combinations for these func-
tions are 45 = 1024. The first row of Table 11 shows that
to reconstruct MVSOP(5,3,2), 100 selected minterms were
not sufficient, but with 150 selected minterms, MINI13 could
reconstruct the original function. With the increase of the
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Table 12 Accuracy and MCC for random SOPs (Four-valued inputs: JRIP).

selected minterms, the Accuracy and MCC tend to increase.
Also, with the increase of the numbers of products (m) and
literals (k), the reconstruction tend to be more difficult.

When the numbers of products m and the number of
literals k in each product are small, less than 10% of the
input combinations are sufficient to reconstruct more than
90% of the truth table of the original functions. Thus, SOP
minimizations improved the generalization ability in the case
of multi-valued inputs.

To compare with an existing method, we did a similar
experiment using the JRIP program, which is a rule-based
method for machine learning [6]. Table 12 shows the results.
In Tables 11 and 12, boldface shows larger MCC values
across MINI13 (Table 11) and JRIP (Table 12). Table 11
has 17 boldface entries, while Table 12 has 11 boldface
entries. Thus, roughly speaking, MINI13 performed better
than JRIP.

7. Related Works

Learning of Boolean functions was considered in the pa-
pers [1], [2], and [15]. Especially, Aizenstein and Pitt [1]
considered the number of selected minterms to reconstruct
the original SOPs.

Muselli and Ferrari [14] used SOPs with limited degree
as a model for machine learning. They considered the re-
construction of partially defined monotone increasing logic
functions, and analyzed computational complexity of the
learning algorithm. They analyzed the complexity of com-
puting. Hong [9] showed that a logic minimizer for circuit
design [8] can be used for machine learning. The results
of IWLS contest for reconstruction of logic functions are
summarized in [18]. Learning of logic functions using sup-
port vector machines was considered in the paper [19]. It
compared its performance with C4.5 and Naive Bayes clas-
sifiers. Experimental results of a rule-based classifier for
various benchmark functions were also shown in the pa-
per [10]. Sasao et al. [21] designed an MNIST character
recognition circuit using LUTs. They used a ternary output
SOP minimizer to improve generalization ability for multi-
class problems.

8. Conclusion

In this paper, we showed that SOP minimization produces
the generalization ability for various classes of functions.
Experimental results showed that the following functions
are easily reconstructable:

• Functions with a small number of products in their
SOPs.

• Functions with a small number of literals in each prod-
ucts in their SOPs.

• Monotone functions.
• Circuit and globe functions.

Especially, in circle and globe functions with nt ≥ 12,
only 10% of the input combinations are sufficient to re-
construct more than 90% of the truth tables of the original
functions.

Also, we compared the expand-minority strategy in
MINI13 algorithm, and the expand-both strategy in MINI10
algorithm, and found that the expand-minority strategy of-
ten produces better Accuracy and MCC than the expand-both
strategy.
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