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Gate Count of Toffoli-Based Reversible Logic Circuits∗
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SUMMARY We present a time-efficient lower bound 𝜅 on the number
of gates in Toffoli-based reversible circuits that represent a given reversible
logic function. For the characteristic vector 𝒔 of a reversible logic function,
𝜅 (𝒔) closely approximates 𝜎-𝑙𝑏 (𝒔) , which is known as a relatively effi-
cient lower bound in respect of evaluation time and tightness. The primary
contribution of this paper is that 𝜅 enables fast computation while main-
taining a tightness of the lower bound, approximately equal to 𝜎-𝑙𝑏. We
prove that the discrepancy between 𝜅 (𝒔) and 𝜎-𝑙𝑏 (𝒔) is at most one only,
by providing upper and lower bounds on 𝜎-𝑙𝑏 in terms of 𝜅 . Subsequently,
we show that 𝜅 can be calculated more efficiently than 𝜎-𝑙𝑏. An algorithm
for 𝜅 (𝒔) with a complexity of O(𝑛) is presented, where 𝑛 is the dimension
of 𝒔. Experimental results comparing 𝜅 and 𝜎-𝑙𝑏 are also given. The
results demonstrate that the two lower bounds are equal for most reversible
functions, and that the calculation of 𝜅 is significantly faster than 𝜎-𝑙𝑏 by
several orders of magnitude.
key words: reversible logic circuits, Toffoli gates, lower bound, logic
minimization

1. Introduction

Quantum computing has gained the interest of many re-
searchers due to its promising high-performance computing
as well as its potential low-energy consumption. The syn-
thesis of reversible logic circuits is a fundamental part of the
quantum logic field [2]. Figure 1 shows an example of a 4-
bit reversible circuit, consisting of five gates𝐺1, 𝐺2, . . . , 𝐺5.
NOT, CNOT, and Toffoli gates are typically used to synthe-
size reversible logic circuits [3]–[6]. Fredkin and SWAP
gates are also known [7]–[9] as other types of reversible
logic gates. Figure 2 shows an example of Toffoli gates. The
standard Toffoli with three bits, as depicted in Fig. 2(c), is
often generalized to 𝑘-bit Toffoli such as Fig. 2(d). In this
sense, NOT and CNOT can be regarded as 1-bit and 2-bit
Toffoli gates, respectively. A 𝑘-bit Toffoli gate has (𝑘 − 1)
control lines 𝑥1, 𝑥2, . . . , 𝑥𝑘−1, denoted by •, and a single
target line 𝑥𝑘 , denoted by ⊕. The target line maps 𝑥𝑘 to
𝑥𝑘 ⊕ 𝑥1𝑥2 · · · 𝑥𝑘−1 while the remaining lines propagate their
signals without change. That is, a Toffoli gate inverts the
value of the target line if all the control lines are assigned to
1. The set of these 1-, 2-, . . . , 𝑘-bit Toffoli gates is referred
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to as the general Toffoli library. We discuss the reversible
logic synthesis with the general Toffoli library.

The gate count (GC) is one of the most widely-used
cost metrics for reversible logic circuits. There are many
other technology-specific cost metrics [10]–[12], including
the number of elementary gates, quantum cost, delay, depth,
etc. However, their relevance will change depending on fu-
ture developments in quantum technologies. For this reason,
GC is commonly used as a fundamental cost metric. Al-
though different gates require different resources in a more
precise sense, this metric approximately reflects the com-
plexity of circuits.

The upper and lower bounds on the GC have both the-
oretical and practical significance as a measure of the com-
plexity of reversible circuits. Many studies have investi-
gated upper [13], [14] and lower bounds for various classes
of functions. Maslov et al. [15], Shende et al. [16], Soeken et
al. [17], and Zakablukov [18] presented bounds on the GC of
reversible circuits for the class of all 𝑛-input reversible func-
tions under different constraints of ancillae, garbage outputs,
gate types, etc. Popescu et al. [19] and Maslov [20] ana-
lyzed the bounds on the number of particular gate types in
the NOT-CNOT-Toffoli library. Saeedi et al. [21] discussed
the upper bounds for the classes of functions with various
lengths of cycles.

For individual reversible functions, a circuit simplified
by a heuristic synthesizer [3]–[5], [7], [9], [22], [23] can be
seen as an upper bound for the exact minimum circuit. In
this context, a lot of methods to determine upper bounds for
given functions have already been studied.

Compared to upper bounds, works for the lower bounds
for individual reversible functions are fewer. We deal with
fully-specified 𝑛-variable reversible functions, and their cir-
cuit realization with the general Toffoli library without
adding ancillae or garbage lines. Regarding the lower bounds
for given functions, some bounds have been proposed based
on the Positive Polarity Reed-Muller expressions [24], [25].
This type of bounds has practical applications as well as the-
oretical significance. They can be used to evaluate the com-
plexity of functions in heuristic synthesis algorithms [26]
or to reduce the search space in branch-and-bound algo-
rithms [27]. For these applications, not only is the tightness
of the bound essential, but low-cost computation is also cru-
cial because the bound calculation is repeated extensively
throughout the execution of algorithms.

𝜎-𝑙𝑏(𝒔), presented in the literature[25], is a lower

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Fig. 1 Example of a reversible circuit

(a) NOT (b) CNOT

(c) Toffoli (d) 4-bit Toffoli

Fig. 2 Example of Toffoli gates.

bound on the GC of Toffoli-based reversible logic circuits
of a given reversible logic function, where 𝒔 is its character-
istic vector. Although the bound 𝜎-𝑙𝑏(𝒔) is tighter than the
other ones proposed so far, its computation time is an ob-
stacle to its application to synthesis algorithms of reversible
circuits. Basically, the calculation of 𝜎-𝑙𝑏(𝒔) involves an
exhaustive search within an 𝑛-ary tree, where 𝑛 denotes the
dimension of the vector 𝒔. For a characteristic vector 𝒔 of a
reversible function, the depth of the 𝑛-ary tree is proportional
to 𝑛 in maximum. It follows that the time complexity of the
computation is roughly O(𝑛𝑐𝑛), where 𝑐 is a constant. As
such, the computation of 𝜎-𝑙𝑏(𝒔) is time-consuming. In this
paper, we investigate the upper and lower bounds on 𝜎-𝑙𝑏(𝒔)
and present a new lower bound 𝜎̃(𝒔) and its faster version
𝜅(𝒔). The value of 𝜅(𝒔) is almost the same as 𝜎-𝑙𝑏(𝒔); the
discrepancy between 𝜅(𝒔) and 𝜎-𝑙𝑏(𝒔) is at most one only.
Meanwhile, 𝜅(𝒔) can be calculated quickly from 𝒔 with a
time complexity of O(𝑛).

The paper is organized as follows. Section 2 introduces
the necessary preliminaries. It reviews the previous lower
bound 𝜎-𝑙𝑏 and gives our new lower bound 𝜎̃. To make
a theoretical comparison, Sections 3 and 4 present bounds
on 𝜎-𝑙𝑏 in terms of 𝜎̃. In Section 5, a fast version of 𝜎̃
is proposed and termed 𝜅. The experimental results are
reported in Section 6. We conclude in Section 7.

2. Preliminaries

To discuss lower bounds on the gate count (GC) of reversible
circuits, we define a characteristic vector 𝜦(𝐹) of a reversible
function 𝐹 by using positive polarity Reed-Muller expres-
sions (PPRMs) and then briefly refer to the previous lower
bound 𝜎-𝑙𝑏 [25]. Similar to “𝜦,” we employ boldface to
denote arithmetic functions that produce a vector.

It is known that any logic function can be uniquely
represented by PPRM [28], [29]. For example, the logic
function 𝑥1𝑥2 + 𝑥2 is written as 𝑥1 ⊕ 𝑥2 ⊕ 𝑥1𝑥2 in PPRM,

where “⊕” denotes the EXOR operation.

Definition 1: Let 𝑥0 and 𝑥1 denote 1 and 𝑥, respectively.
The logical expression in the form:⊕

0≤𝑖≤2𝑛−1
𝑎𝑖 · 𝑥𝑖𝑛𝑛 𝑥𝑖𝑛−1

𝑛−1 · · · 𝑥
𝑖1
1 (1)

is a positive polarity Reed-Muller expression (PPRM), where
(𝑖𝑛, 𝑖𝑛−1, . . . , 𝑖1) is the binary representation of 𝑖, and 𝑎𝑖 ∈
{0, 1} is a constant. □

Definition 2: A multiple-output logic function 𝐹 :
{0, 1}𝑛 → {0, 1}𝑛 is reversible if and only if 𝐹 is bĳective.
The number of product terms in the PPRM of a single-output
logic function 𝑓 is denoted by 𝜏( 𝑓 ). Suppose that 𝐹 is a re-
versible function of 𝑛 input variables (𝑥1, 𝑥2, . . . , 𝑥𝑛) and
𝑛 output functions ( 𝑓1, 𝑓2, . . . , 𝑓𝑛). 𝜦(𝐹) is defined as the
vector [𝜏(𝑥1 ⊕ 𝑓1), 𝜏(𝑥2 ⊕ 𝑓2), . . . , 𝜏(𝑥𝑛 ⊕ 𝑓𝑛)] and is called
the characteristic vector of 𝐹. □

𝜏(𝑥𝑖⊕ 𝑓𝑖) is called the Hamming distance in the Reed-Muller
spectrum between 𝑥𝑖 and 𝑓𝑖 [26].

Example 1: Let 𝐹 be the reversible function of the circuit in
Fig. 1, in which the output functions are represented in PPRM
form as 𝑓1 = 𝑥1 ⊕ 𝑥4, 𝑓2 = 𝑥2 ⊕ 𝑥1𝑥3 ⊕ 𝑥4 ⊕ 𝑥1𝑥4 ⊕ 𝑥3𝑥4, 𝑓3 =
𝑥3 ⊕ 𝑥1𝑥3 ⊕ 𝑥1𝑥2𝑥3 ⊕ 𝑥4 ⊕ 𝑥1𝑥4 ⊕ 𝑥2𝑥4 ⊕ 𝑥1𝑥2𝑥4 ⊕ 𝑥3𝑥4 ⊕
𝑥2𝑥3𝑥4, 𝑓4 = 𝑥1𝑥3 ⊕ 𝑥2𝑥3 ⊕ 𝑥1𝑥2𝑥3 ⊕ 𝑥1𝑥4 ⊕ 𝑥2𝑥4 ⊕ 𝑥1𝑥2𝑥4 ⊕
𝑥1𝑥3𝑥4 ⊕ 𝑥2𝑥3𝑥4. Then, 𝜏(𝑥1 ⊕ 𝑓1) = 𝜏(��𝑥1 ⊕��𝑥1 ⊕ 𝑥4) =
𝜏(𝑥4) = 1, 𝜏(𝑥2⊕ 𝑓2) = 𝜏(��𝑥2⊕��𝑥2⊕ 𝑥1𝑥3⊕ 𝑥4⊕ 𝑥1𝑥4⊕ 𝑥3𝑥4 =
𝜏(𝑥1𝑥3 ⊕ 𝑥4 ⊕ 𝑥1𝑥4 ⊕ 𝑥3𝑥4) = 4, 𝜏(𝑥3 ⊕ 𝑓3) = 𝜏(��𝑥3 ⊕��𝑥3 ⊕
𝑥1𝑥3⊕𝑥1𝑥2𝑥3⊕𝑥4⊕𝑥1𝑥4⊕𝑥2𝑥4⊕𝑥1𝑥2𝑥4⊕𝑥3𝑥4⊕𝑥2𝑥3𝑥4) = 8,
𝜏(𝑥4 ⊕ 𝑓4) = 𝜏(𝑥4 ⊕ 𝑥1𝑥3 ⊕ 𝑥2𝑥3 ⊕ 𝑥1𝑥2𝑥3 ⊕ 𝑥1𝑥4 ⊕ 𝑥2𝑥4 ⊕
𝑥1𝑥2𝑥4 ⊕ 𝑥1𝑥3𝑥4 ⊕ 𝑥2𝑥3𝑥4) = 9. Thus, the characteristic
vector of 𝐹 is 𝜦(𝐹) = [1, 4, 8, 9]. □

We present the following proposition on the maximum
value of elements in 𝜦(𝐹) because the number of product
terms in the PPRM of an 𝑛-variable function is at most 2𝑛−1.
In this paper, the term “proposition” indicates a theorem that
is well known, elementary, or immediately obvious without
proof.

Proposition 1: Let 𝐹 be a reversible function of 𝑛 variables.
Every element in 𝜦(𝐹) is a non-negative integer less than or
equal to 2𝑛 − 1. □

Definition 3: Among all reversible circuits that realize a
reversible function 𝐹, those with the exact minimum GC are
called the minimum circuits of 𝐹. The GC of a minimum
circuit of 𝐹 is denoted by 𝛾(𝐹). □
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Theorem 1 (Lower Bound Theorem [25]): For any re-
versible function 𝐹,

𝛾(𝐹) ≥ 𝜎-𝑙𝑏(𝜦(𝐹))

holds. □

Theorem 1 shows that 𝜎-𝑙𝑏(𝜦(𝐹)) is a lower bound on the
GC of a minimum circuit of 𝐹. The definition of 𝜎-𝑙𝑏 is
described below.

Definition 4: The set of non-negative integers is denoted
by N0, and the 𝑛-dimensional space of N0 is denoted by N𝑛

0 .
An index is an integer in {1, 2, . . . , 𝑛}. Suppose that 𝒔 is a
vector [𝑠1, 𝑠2, . . . , 𝑠𝑛] ∈ N𝑛

0 , and 𝑎 is an index. The function
𝜱(𝒔, 𝑎) = [𝑠′1, 𝑠′2, . . . , 𝑠′𝑛] is defined as follows.

𝑠′𝑖 =

{
⌊𝑠𝑖/2⌋ (𝑖 = 𝑎)
⌈𝑠𝑖/2⌉ (otherwise)

We extend𝜱 to allow it to accept a sequence of indices
as its second argument:{

𝜱(𝒔, 𝜀) = 𝒔
𝜱(𝒔, 𝑎𝛼) =𝜱(𝜱(𝒔, 𝑎), 𝛼),

where 𝜀 denotes the empty sequence and 𝛼 ∈ {1, 2, . . . , 𝑛}∗
is a sequence of indices. □

Throughout this paper, the dimension of a vector is 𝑛.

Example 2: Let 𝒔 = [1, 4, 8, 9]. 𝜱(𝒔, 1) =
[⌊1/2⌋, ⌈4/2⌉, ⌈8/2⌉, ⌈9/2⌉] = [0, 2, 4, 5], 𝜱(𝒔, 2) =
[⌈1/2⌉, ⌊4/2⌋, ⌈8/2⌉, ⌈9/2⌉] = [1, 2, 4, 5], 𝜱(𝒔, 3) =
[⌈1/2⌉, ⌈4/2⌉, ⌊8/2⌋, ⌈9/2⌉] = [1, 2, 4, 5], 𝜱(𝒔, 4) =
[⌈1/2⌉, ⌈4/2⌉, ⌈8/2⌉, ⌊9/2⌋] = [1, 2, 4, 4]. Let 𝒔 =
[1, 4, 8, 9] and the sequence of indices 𝛼 = 1; 4; 2; 3; 4.
𝜱(𝒔, 1; 4; 2; 3; 4) = 𝜱(𝜱( [1, 4, 8, 9], 1), 4; 2; 3; 4) =
𝜱(𝜱([0, 2, 4, 5], 4), 2; 3; 4) = 𝜱(𝜱([0, 1, 2, 2], 2), 3; 4) =
𝜱(𝜱([0, 0, 1, 1], 3), 4) =𝜱([0, 0, 0, 1], 4) = [0, 0, 0, 0].

□

Definition 5: For a vector 𝒔 ∈ N𝑛
0 , 𝜎-𝑙𝑏(𝒔) is defined as

𝜎-𝑙𝑏(𝒔) = min{|𝛼 | | 𝛼 ∈ {1, 2, . . . , 𝑛}∗, 𝜱(𝒔, 𝛼) = 0},

where |𝛼 | denotes the length of the index sequence 𝛼, and 0
denotes the zero vector [0, 0, . . . , 0]. □

𝜎-𝑙𝑏(𝒔) represents the minimum number of application
times of 𝜱 to transform a given vector 𝒔 into 0. Since
the result of 𝜱 varies according to the index 𝑎 provided as
its second argument, many patterns of index sequences are
searched to obtain 𝜎-𝑙𝑏(𝒔). This process is computationally
intensive, leading to a time complexity of O(𝑛𝑐𝑛), where 𝑐
is a constant. In this paper, we introduce a simpler version
of 𝜱, denoted as 𝜱̃, in order to estimate 𝜎-𝑙𝑏(𝒔) with quick
computation.

Definition 6: Suppose that 𝒔 is a vector [𝑠1, 𝑠2, . . . , 𝑠𝑛] ∈
N𝑛

0 . 𝜄(𝒔) denotes the minimum index 𝑖 in {1, 2, . . . , 𝑛} such
that 𝑠𝑖 = 1:

𝜄(𝒔) =
{

0 (𝑠𝑖 ≠ 1 for all 𝑖 ∈ {1, 2, . . . , 𝑛})
min{𝑖 | 𝑠𝑖 = 1, 𝑖 ∈ {1, 2, . . . , 𝑛}} (otherwise)

Note that 𝜄(𝒔) = 0 if there are no 1’s in the elements of 𝒔.
The function 𝜱̃(𝒔) = [𝑠′1, 𝑠′2, . . . , 𝑠′𝑛] is defined as fol-

lows.

𝑠′𝑖 =


0 (𝑠𝑖 = 1 and 𝑖 = 𝜄(𝒔))
1 (𝑠𝑖 = 1 and 𝑖 ≠ 𝜄(𝒔))
⌊𝑠𝑖/2⌋ (otherwise)

□

For a given vector 𝒔, the output of 𝜱(𝒔, 𝑎) varies based on
the chosen index 𝑎. In contrast, 𝜱̃(𝒔) consistently produces
a unique vector. Hence, 𝜱̃(𝒔) is simpler in its functionality.
Utilizing 𝜱̃, we define a function analogous to 𝜎-𝑙𝑏.

Definition 7: For a vector 𝒔 ∈ N𝑛
0 , 𝜎̃(𝒔) is defined as fol-

lows.

𝜎̃(𝒔) =
{

0 (𝒔 = 0)
𝜎̃(𝜱̃(𝒔)) + 1 (otherwise)

□

In other words, 𝜎̃(𝒔) is defined by the number of ap-
plications of 𝜱̃ required until the nested application of
𝜱̃(𝜱̃(· · · 𝜱̃(𝒔) · · · )) reaches 0 for the first time.

Example 3: Let 𝒔 = [1, 4, 8, 9]. 𝜎̃(𝒔) = 𝜎̃(𝜱̃([1, 4, 8, 9]))+
1 = 𝜎̃(𝜱̃([0, 2, 4, 4])) + 2 = 𝜎̃(𝜱̃( [0, 1, 2, 2])) +
3 = 𝜎̃(𝜱̃( [0, 0, 1, 1])) + 4 = 𝜎̃(𝜱̃([0, 0, 0, 1])) + 5 =
𝜎̃( [0, 0, 0, 0]) + 5 = 5. □

In the next two sections, we show that 𝜎-𝑙𝑏 can be
approximated by using 𝜎̃. Specifically, we give the upper
and lower bounds on 𝜎-𝑙𝑏 in terms of 𝜎̃. With these bounds,
we prove that the value of 𝜎̃ is theoretically almost equivalent
to 𝜎-𝑙𝑏.

3. Lower Bound on 𝝈-𝒍𝒃

In this section, we compare 𝜎̃ and 𝜎-𝑙𝑏, and then prove that
𝜎̃ is a lower bound on 𝜎-𝑙𝑏. This result confirms that 𝜎̃ is
also a lower bound on the GC of reversible circuits.

Definition 8: For two vectors 𝒔 = [𝑠1, 𝑠2, . . . , 𝑠𝑛] and
𝒔′ = [𝑠′1, 𝑠′2, . . . , 𝑠′𝑛], we say 𝒔 ≤ 𝒔′ if 𝑠𝑖 ≤ 𝑠′𝑖 for all
𝑖 ∈ {1, 2, . . . , 𝑛}. Likewise, we say 𝒔 ≥ 𝒔′ if 𝑠𝑖 ≥ 𝑠′𝑖 for
all 𝑖 ∈ {1, 2, . . . , 𝑛}. □

By the definitions of 𝜎̃ and 𝜎-𝑙𝑏, we have the following
proposition.

Proposition 2: Suppose that 𝒔 and 𝒔′ are vectors inN𝑛
0 , and

“≍” is one of the following relations: “=,” “≤,” and “≥”. If
𝒔 ≍ 𝒔′, then 𝜎̃(𝒔) ≍ 𝜎̃(𝒔′) and 𝜎-𝑙𝑏(𝒔) ≍ 𝜎-𝑙𝑏(𝒔′). □

Definition 9: Let 𝒔 = [𝑠1, 𝑠2, . . . , 𝑠𝑛] and 𝒔′ =
[𝑠′1, 𝑠′2, . . . , 𝑠′𝑛] be vectors in N𝑛

0 . Let 𝜋 be a permutation
of the set {1, 2, . . . , 𝑛}. If there exists a permutation 𝜋 such
that 𝑠𝜋 (𝑖) = 𝑠′𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑛}, then 𝒔 is P-equivalent
to 𝒔′, which is denoted by 𝒔 ∼ 𝒔′. □
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Proposition 3: Let 𝒔 and 𝒔′ be vectors in N𝑛
0 . If 𝒔 ∼ 𝒔′,

then 𝜎̃(𝒔) = 𝜎̃(𝒔′) and 𝜎-𝑙𝑏(𝒔) = 𝜎-𝑙𝑏(𝒔′). □

Lemma 1: For a vector 𝒔 ∈ N𝑛
0 and an index 𝑎,

𝜎̃(𝜱(𝒔, 𝑎)) ≥ 𝜎̃(𝜱̃(𝒔)). □

Proof. Suppose that 𝒔 = [𝑠1, 𝑠2, . . . , 𝑠𝑛], 𝒔′ = 𝜱(𝒔, 𝑎) =
[𝑠′1, 𝑠′2, . . . , 𝑠′𝑛], and 𝒔̃ = 𝜱̃(𝒔) = [𝑠1, 𝑠2, . . . , 𝑠𝑛].

Let us consider the case of 𝜄(𝒔) = 0. There are no
elements 𝑠𝑖 such that 𝑠𝑖 = 1. Then, 𝑠′𝑖 ≥ 𝑠𝑖 for all 𝑖 ∈
{1, 2, . . . , 𝑛} since ⌈𝑠𝑖/2⌉ ≥ ⌊𝑠𝑖/2⌋. Hence, 𝒔′ ≥ 𝒔̃, and
therefore 𝜎̃(𝒔′) ≥ 𝜎̃( 𝒔̃) by Proposition 2.

Below, we assume that 𝜄(𝒔) ≠ 0. Let 𝑏 = 𝜄(𝒔). 𝑏 may
be equal to 𝑎. For all 𝑖 ∈ {1, 2, . . . , 𝑛} \ {𝑎, 𝑏}, 𝑠′𝑖 ≥ 𝑠𝑖 since
𝑠′𝑖 = ⌈𝑠𝑖/2⌉ = 1 = 𝑠𝑖 if 𝑠𝑖 = 1, and 𝑠′𝑖 = ⌈𝑠𝑖/2⌉ ≥ ⌊𝑠𝑖/2⌋ = 𝑠𝑖
otherwise. For 𝑖 = 𝑏, 𝑠𝑏 = 0 by the definition of 𝜱̃. Then,
𝑠′𝑏 ≥ 𝑠𝑏 since 𝑠′𝑏 is non-negative: 𝑠′𝑏 ≥ 0 = 𝑠𝑏. From
the above argument, we have proven that 𝑠′𝑖 ≥ 𝑠𝑖 for all
𝑖 ∈ {1, 2, . . . , 𝑛} \ {𝑎}. The remaining work to conclude
𝒔′ ≥ 𝒔̃ is to compare 𝑠′𝑎 and 𝑠𝑎.
(Case of 𝑎 = 𝑏): Since 𝑠′𝑏 ≥ 𝑠𝑏, we have 𝑠′𝑎 ≥ 𝑠𝑎. Hence,
𝑠′𝑖 ≥ 𝑠𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑛}. Since 𝒔′ ≥ 𝒔̃, we have
𝜎̃(𝒔′) ≥ 𝜎̃( 𝒔̃) by Proposition 2.
(Case of 𝑠𝑎 ≠ 1 and 𝑎 ≠ 𝑏): By the definitions of 𝜱 and 𝜱̃,
𝑠′𝑎 = ⌊𝑠𝑎/2⌋ = 𝑠𝑎. Hence, 𝑠′𝑖 ≥ 𝑠𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑛}.
Since 𝒔′ ≥ 𝒔̃, we have 𝜎̃(𝒔′) ≥ 𝜎̃( 𝒔̃) by Proposition 2.
(Case of 𝑠𝑎 = 1 and 𝑎 ≠ 𝑏): By the definitions of 𝜱 and 𝜱̃,
𝑠′𝑎 = ⌊1/2⌋ = 0 and 𝑠𝑎 = 1 while 𝑠′𝑏 = ⌈1/2⌉ = 1 and 𝑠𝑏 = 0.
Let 𝒔′′ be the vector obtained by swapping 𝑠′𝑎 and 𝑠′𝑏 in 𝒔′.
Then, 𝒔′′ ≥ 𝒔̃, and therefore 𝜎̃(𝒔′′) ≥ 𝜎̃( 𝒔̃) by Proposition 2.
Since 𝒔′ ∼ 𝒔′′, 𝜎̃(𝒔′) = 𝜎̃(𝒔′′) by Proposition 3. Thus, we
have 𝜎̃(𝒔′) = 𝜎̃(𝒔′′) ≥ 𝜎̃( 𝒔̃). □

The next proposition follows immediately from Defini-
tion 7. This will be used in the proofs of Lemma 2 and some
lemmas in the later sections.

Proposition 4: For a vector 𝒔 ∈ N𝑛
0 \ {0}, 𝜎̃(𝜱̃(𝒔)) =

𝜎̃(𝒔) − 1. □

Lemma 2: Let 𝒔 ∈ N𝑛
0 and 𝛼 ∈ {1, 2, . . . , 𝑛}∗. If𝜱(𝒔, 𝛼) =

0, then |𝛼 | ≥ 𝜎̃(𝒔). □

Proof. The proof is by the mathematical induction on the
length of 𝛼. If 𝜱(𝒔, 𝜀) = 0, then 𝒔 = 0, and therefore
𝜎̃(𝒔) = 0. Thus, the lemma holds for |𝛼 | = 0.

Assume that the lemma holds for |𝛼′ | = 𝑘 , that is,
if 𝜱(𝒔′, 𝛼′) = 0 holds for a vector 𝒔′ in N𝑛

0 and an index
sequence 𝛼′ such that |𝛼′ | = 𝑘 , then |𝛼′ | = 𝑘 ≥ 𝜎̃(𝒔′).
Using this assumption, we prove the lemma for |𝛼 | = 𝑘 + 1.
Suppose that 𝒔 is a vector in N𝑛

0 and 𝛼 is an index sequence
with a length of 𝑘 +1 (|𝛼 | = 𝑘 +1). Then, 𝛼 can be written in
the concatenation of certain 𝑎 and 𝛼′ as 𝛼 = 𝑎𝛼′, where 𝑎 ∈
{1, 2, . . . , 𝑛} and |𝛼′ | = 𝑘 . Let 𝒔′ be𝜱(𝒔, 𝑎). If𝜱(𝒔, 𝑎𝛼′) =
0, then we have𝜱(𝒔, 𝑎𝛼′) =𝜱(𝜱(𝒔, 𝑎), 𝛼′) =𝜱(𝒔′, 𝛼′) = 0
by the definition of 𝜱. By using the induction hypothesis,
𝑘 ≥ 𝜎̃(𝒔′) holds, and therefore |𝛼 | = 𝑘 + 1 ≥ 𝜎̃(𝒔′) + 1. By
Lemma 1 and Proposition 4, 𝜎̃(𝒔′) ≥ 𝜎̃(𝜱̃(𝒔)) = 𝜎̃(𝒔) − 1.
Then, we have |𝛼 | ≥ 𝜎̃(𝒔′) +1 ≥ 𝜎̃(𝒔) −1+1 = 𝜎̃(𝒔). Thus,
the inductive step was proved. □

Theorem 2: For a vector 𝒔 ∈ N𝑛
0 ,

𝜎-𝑙𝑏(𝒔) ≥ 𝜎̃(𝒔)

holds. □

Proof. By the definition of 𝜎-𝑙𝑏, there exists a sequence 𝛼
such that 𝜱(𝒔, 𝛼) = 0 and |𝛼 | = 𝜎-𝑙𝑏(𝒔). Then, |𝛼 | ≥ 𝜎̃(𝒔)
holds by Lemma 2. Thus, we have 𝜎-𝑙𝑏(𝒔) = |𝛼 | ≥ 𝜎̃(𝒔).

□

Theorem 2 shows that 𝜎̃ is a lower bound on 𝜎-𝑙𝑏. By
Theorems 1 and 2, we can see that 𝜎̃ is also a lower bound
on the GC of a circuit of a reversible function. This fact is
expressed as Theorem 3 below.

Theorem 3: For any reversible function 𝐹,

𝛾(𝐹) ≥ 𝜎̃(𝜦(𝐹))

holds. □

Example 4: As we have seen in Example 1, the character-
istic vector of the reversible function 𝐹 in Fig. 1 is 𝜦(𝐹) =
[1, 4, 8, 9]. In Example 3, we obtained 𝜎̃([1, 4, 8, 9]) = 5.
Thus, 𝛾(𝐹) ≥ 5 follows from Theorem 3, implying that five
or more gates are required to realize 𝐹. Meanwhile, the cir-
cuit in Fig. 1 is realized by five gates. In this case, we can
conclude that Fig. 1 is the exact minimum circuit of 𝐹 and
that 𝛾(𝐹) = 5. □

4. Upper Bound on 𝝈-𝒍𝒃

In this section, we discuss the proximity of 𝜎̃ to 𝜎-𝑙𝑏, by
providing an upper bound on 𝜎-𝑙𝑏 in terms of 𝜎̃.

Definition 10: We call a vector 𝒔 ∈ N𝑛
0 a power-of-two vec-

tor if every element of 𝒔 is 0 or a power of two: 20, 21, 22, · · · .
A power-of-two vector except 0 (the zero vector) is called a
non-zero power-of-two vector. □

Example 5: Let 𝒔0 = [0, 0, 0, 0], 𝒔1 = [2, 1, 4, 0] =
[21, 20, 22, 0]. 𝒔0 and 𝒔1 are power-of-two vectors. 𝒔1 is
a non-zero power-of-two vector.

Lemma 3: If 𝒓 is a power-of-two vector and 𝑎 is an index,
then 𝜱(𝒓, 𝑎) is a power-of-two vector. □

Proof. Let 𝒓′ = 𝜱(𝒓, 𝑎) = [𝑟 ′1, 𝑟 ′2, . . . , 𝑟 ′𝑛]. ⌈𝑟𝑖/2⌉ =
⌊𝑟𝑖/2⌋ = 𝑟𝑖/2 if 𝑟𝑖 is even. Since 𝒓 is a power-of-two vector,
a possible odd number in 𝒓 is 1 only. Therefore, we have the
following equation by the definition of 𝜱.

𝑟 ′𝑖 =


0 (𝑟𝑖 = 1 and 𝑖 = 𝑎)
1 (𝑟𝑖 = 1 and 𝑖 ≠ 𝑎)
𝑟𝑖/2 (otherwise)

From this equation, we see that (i) if 𝑟𝑖 = 0, then 𝑟 ′𝑖 =
𝑟𝑖/2 = 0, (ii) if 𝑟𝑖 = 1, then 𝑟 ′𝑖 is 0 or 1 (= 20), and (iii) if
𝑟𝑖 ∈ {21, 22, . . .}, then 𝑟 ′𝑖 = 𝑟𝑖/2 is a power of two. Since
every 𝑟 ′𝑖 is 0 or a power of two, 𝒓′ is a power-of-two vector.

□
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Lemma 4: Let 𝒓 be a power-of-two vector. There exists an
index 𝑎 such that 𝜱(𝒓, 𝑎) = 𝜱̃(𝒓). □

Proof. Suppose that 𝒓 = [𝑟1, 𝑟2, . . . , 𝑟𝑛], 𝒓′ = 𝜱(𝒓, 𝑎) =
[𝑟 ′1, 𝑟 ′2, . . . , 𝑟 ′𝑛], and 𝒓̃ = 𝜱̃(𝒓) = [𝑟1, 𝑟2, . . . , 𝑟𝑛]. From the
proof of Lemma 3, the following equation holds.

𝑟 ′𝑖 =


0 (𝑟𝑖 = 1 and 𝑖 = 𝑎)
1 (𝑟𝑖 = 1 and 𝑖 ≠ 𝑎)
𝑟𝑖/2 (otherwise)

Similarly, the following equation holds by the definition of
𝜱̃.

𝑟𝑖 =


0 (𝑟𝑖 = 1 and 𝑖 = 𝜄(𝒓))
1 (𝑟𝑖 = 1 and 𝑖 ≠ 𝜄(𝒓))
𝑟𝑖/2 (otherwise)

(Case of 𝜄(𝒓) = 0): In this case, there are no elements 𝑟𝑖 such
that 𝑟𝑖 = 1. Then, 𝑟 ′𝑖 = 𝑟𝑖/2 = 𝑟𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑛}.
Thus, 𝒓′ = 𝒓̃. The lemma holds for an arbitrary 𝑎.
(Case of 𝜄(𝒓) ≠ 0): By choosing 𝜄(𝒓) as 𝑎, we have 𝑟 ′𝑖 = 𝑟𝑖
for all 𝑖 ∈ {1, 2, . . . , 𝑛}. Thus, 𝒓′ = 𝒓̃. □

Lemma 5: Let 𝒓 be a non-zero power-of-two vector. There
exists an index 𝑎 such that 𝜎̃(𝜱(𝒓, 𝑎)) = 𝜎̃(𝒓) − 1. □

Proof. By Lemma 4 and Proposition 4, there exists an index
𝑎 such that 𝜎̃(𝜱(𝒓, 𝑎)) = 𝜎̃(𝜱̃(𝒓)) = 𝜎̃(𝒓) − 1. □

Lemma 6: For a power-of-two vector 𝒓, 𝜎-𝑙𝑏(𝒓) = 𝜎̃(𝒓).
□

Proof. Since 𝜎-𝑙𝑏(𝒓) ≥ 𝜎̃(𝒓) holds by Theorem 2, we will
prove that

𝜎-𝑙𝑏(𝒓) ≤ 𝜎̃(𝒓) (2)

by the mathematical induction on 𝜎̃(𝒓).
If 𝜎̃(𝒓) = 0, then 𝒓 = 0, and therefore 𝜎-𝑙𝑏(𝒓) = 0.

Thus, Equation (2) holds for 𝜎̃(𝒓) = 0.
Assume that Equation (2) holds for any power-of-two

vector 𝒓′ such that 𝜎̃(𝒓′) = 𝑘 , i.e., 𝜎-𝑙𝑏(𝒓′) ≤ 𝜎̃(𝒓′) =
𝑘 . Then, by the definition of 𝜎-𝑙𝑏, there exists an index
sequence 𝛼′ such that |𝛼′ | = 𝑘 and 𝜱(𝒓′, 𝛼′) = 0. Using
this assumption, we prove Equation (2) for 𝜎̃(𝒓) = 𝑘 + 1.
Suppose that 𝒓 = [𝑟1, 𝑟2, . . . , 𝑟𝑛] is a non-zero power-of-two
vector such that 𝜎̃(𝒓) = 𝑘 + 1. By Lemma 3, 𝜱(𝒓, 𝑎) is
a power-of-two vector. Then, let 𝒓′ = 𝜱(𝒓, 𝑎), where 𝑎 is
the index in Lemma 5. By Lemma 5, 𝜎̃(𝒓′) = 𝜎̃(𝒓) − 1 =
(𝑘+1)−1 = 𝑘 . By using the induction hypothesis, there exists
an index sequence 𝛼′ such that |𝛼′ | = 𝑘 and 𝜱(𝒓′, 𝛼′) = 0.
Then, 0 = 𝜱(𝒓′, 𝛼′) = 𝜱(𝜱(𝒓, 𝑎), 𝛼′) = 𝜱(𝒓, 𝑎𝛼′) by the
definition of 𝜱. Since |𝛼′ | = 𝑘 , we have |𝑎𝛼′ | = 𝑘 + 1. By
the definition of 𝜎-𝑙𝑏, 𝜎-𝑙𝑏(𝒓) ≤ |𝑎𝛼′ | = 𝑘 + 1 = 𝜎̃(𝒓).
Thus, the inductive step was proved. □

Definition 11: Suppose that 𝒔 is a vector [𝑠1, 𝑠2, . . . , 𝑠𝑛] ∈
N𝑛

0 . The function 𝑹(𝒔) = [𝑟1, 𝑟2, . . . , 𝑟𝑛] is defined as fol-
lows, where 𝐿 (𝑠𝑖) denotes the bit length of the binary repre-
sentation of 𝑠𝑖 , i.e., 𝐿 (𝑠𝑖) = ⌈log2 (𝑠𝑖 + 1)⌉.

𝑟𝑖 =


0 (𝑠𝑖 = 0)
𝑠𝑖 (𝑠𝑖 is a power of 2: 20, 21, 22, . . . )
2𝐿 (𝑠𝑖 ) (otherwise)

□

Example 6: Let 𝒔 = [1, 0, 2, 5]. 𝑹(𝒔) = [1, 0, 2, 8].
𝑹(𝒔) rounds up all 𝑠𝑖 ≠ 0 to the power of two. There-

fore, we have the following proposition.

Proposition 5: For a vector 𝒔 ∈ N𝑛
0 , 𝑹(𝒔) is a power-of-two

vector. □

Theorem 4: For a vector 𝒔 ∈ N𝑛
0 ,

𝜎-𝑙𝑏(𝒔) ≤ 𝜎̃(𝑹(𝒔))

holds. □

Proof. Let 𝒓 = 𝑹(𝒔). Since 𝒔 ≤ 𝒓 by the definition of 𝑹,
𝜎-𝑙𝑏(𝒔) ≤ 𝜎-𝑙𝑏(𝒓) by Proposition 2. By Proposition 5, 𝒓 is
a power-of-two vector. Then, 𝜎-𝑙𝑏(𝒓) = 𝜎̃(𝒓) by Lemma 6.
Thus, we have 𝜎-𝑙𝑏(𝒔) ≤ 𝜎-𝑙𝑏(𝒓) = 𝜎̃(𝒓). □

Theorem 4 gives an upper bound on 𝜎-𝑙𝑏 in terms of 𝜎̃.
Using the bounds in Theorems 2 and 4, we evaluate

the proximity of 𝜎̃ to 𝜎-𝑙𝑏. The result will be given as
Theorem 5.

Lemma 7: For a vector 𝒔 ∈ N𝑛
0 , 𝜱̃(𝑹(𝒔)) ≤ 𝒔. □

Proof. Suppose that [𝑠1, 𝑠2, . . . , 𝑠𝑛] = 𝒔, 𝒓 = 𝑹(𝒔) =
[𝑟1, 𝑟2, . . . , 𝑟𝑛], and 𝒓̃ = 𝜱̃(𝒓) = [𝑟1, 𝑟2, . . . , 𝑟𝑛]. By the
definition of 𝑹, the following equation holds.

𝑟𝑖 =


0 (𝑠𝑖 = 0)
1 (𝑠𝑖 = 1)
𝑠𝑖 (𝑠𝑖 ≥ 2 and 𝑠𝑖 is a power of 2)
2𝐿 (𝑠𝑖 ) (otherwise)

Since 𝒓 is a power-of-two vector by Proposition 5, we have
the following equation from the above equation and the def-
inition of 𝜱̃.

𝑟𝑖 =


0 (𝑠𝑖 = 0)
0 (𝑠𝑖 = 1 and 𝑖 = 𝜄(𝒔))
1 (𝑠𝑖 = 1 and 𝑖 ≠ 𝜄(𝒔))
𝑠𝑖/2 (𝑠𝑖 ≥ 2 and 𝑠𝑖 is a power of 2)
2𝐿 (𝑠𝑖 )−1 (otherwise)

It can be observed that 𝑟𝑖 ≤ 𝑠𝑖 holds for all the cases above.
Thus, 𝒓̃ ≤ 𝒔. □

Lemma 8: For a vector 𝒔 ∈ N𝑛
0 , 𝜎̃(𝑹(𝒔)) ≤ 𝜎̃(𝒔) + 1. □

Proof. The lemma clearly holds for 𝒔 = 0. In the following,
we prove the lemma under the assumption of 𝒔 ≠ 0. Let
𝒓 = 𝑹(𝒔). By Proposition 4, 𝜎̃(𝒓) − 1 = 𝜎̃(𝜱̃(𝒓)). By
Lemma 7 and Proposition 2, 𝜎̃(𝜱̃(𝒓)) ≤ 𝜎̃(𝒔). Thus, we
have 𝜎̃(𝒓) − 1 = 𝜎̃(𝜱̃(𝒓)) ≤ 𝜎̃(𝒔). □

Theorem 5: For a vector 𝒔 ∈ N𝑛
0 ,
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𝜎̃(𝒔) ≤ 𝜎-𝑙𝑏(𝒔) ≤ 𝜎̃(𝒔) + 1

holds. □

Proof. 𝜎̃(𝒔) ≤ 𝜎-𝑙𝑏(𝒔) by Theorem 2. Meanwhile,
𝜎-𝑙𝑏(𝒔) ≤ 𝜎̃(𝑹(𝒔)) ≤ 𝜎̃(𝒔)+1 by Theorem 4 and Lemma 8.
Thus, we have the theorem. □

Theorem 5 guarantees that the maximum difference be-
tween 𝜎̃(𝒔) and 𝜎-𝑙𝑏(𝒔) is only one. This indicates that
𝜎̃(𝒔) closely approximates 𝜎-𝑙𝑏(𝒔).

5. Quick Calculation of 𝝈̃

In this section, a quick calculation of 𝜎̃(𝜦(𝐹)) is discussed.
For an 𝑛-variable reversible function 𝐹, the dimension of
𝜦(𝐹) is 𝑛 by Definition 2, and the elements in 𝜦(𝐹) are
bounded by 2𝑛 − 1 by Proposition 1. Since 𝜱̃ halves the ele-
ments of a vector, 𝜎̃(𝜦(𝐹)) can be determined by applying
𝜱̃ at most 𝑐𝑛 times, where 𝑐 is a certain constant. Moreover,
the complexity of 𝜱̃(𝒔) is O(𝑛) by Definition 6. Hence,
the time complexity of the straightforward computation of
𝜎̃(𝜦(𝐹)) results in O(𝑛2). To improve this, we propose a
quick calculation of 𝜎̃ based on some arithmetic functions
for the bit length. This optimized version achieves a time
complexity of O(𝑛).

According to Definition 7, 𝜎̃(𝒔) denotes the number
of necessary applications of 𝜱̃ in the nested application of
𝜱̃(𝜱̃(· · · 𝜱̃(𝒔) · · · )) for the conversion from 𝒔 to 0. Inter-
preting non-negative integers in binary representation, we
can regarded the division ⌊𝑠𝑖/2⌋ in 𝜱̃(𝒔) as a right-shift op-
eration. Therefore, the value of 𝜎̃(𝒔) depends on the bit
length of the elements in 𝒔. Utilizing this insight, we pro-
pose a method to quickly compute the value of 𝜎̃(𝒔) based
on arithmetic functions related to the bit length.

Definition 12: For a vector 𝒔 = [𝑠1, 𝑠2, . . . , 𝑠𝑛] ∈ N𝑛
0 , we

define 𝐿𝑚𝑎𝑥 (𝒔) = max{𝐿 (𝑠𝑖) | 1 ≤ 𝑖 ≤ 𝑛}, which is the
maximum bit length of 𝑠𝑖 in 𝒔. #𝑑 (𝒔) is defined by the
number of elements 𝑠𝑖 whose bit length is 𝑑 or more:

#𝑑 (𝒔) = |{𝑖 | 1 ≤ 𝑖 ≤ 𝑛, 𝐿 (𝑠𝑖) ≥ 𝑑}|.

□

Note that #0 (𝒔) = 𝑛 and #𝑑 (𝒔) = 0 for 𝑑 > 𝐿𝑚𝑎𝑥 (𝒔).
Definition 13: For a vector 𝒔 ∈ N𝑛

0 , 𝜅(𝒔) is defined as fol-
lows.

𝜅𝑑 (𝒔) = (𝑑 − 1) + #𝑑 (𝒔)

𝜅(𝒔) =


0 (𝒔 = 0)
max{𝜅𝑑 (𝒔) | 1 ≤ 𝑑 ≤ 𝐿𝑚𝑎𝑥 (𝒔)}

(otherwise)

□

Example 7: Let 𝒔 = [1, 4, 8, 9]. 𝜅1 (𝒔) = (1 − 1) + #1 (𝒔) =
0 + 4 = 4, 𝜅2 (𝒔) = (2 − 1) + #2 (𝒔) = 1 + 3 = 4, 𝜅3 (𝒔) =
(3−1)+#3 (𝒔) = 2+3 = 5, 𝜅4 (𝒔) = (4−1)+#4 (𝒔) = 3+2 = 5.
Then, 𝜅(𝒔) = 5. □

𝜅 defined above is a faster version of 𝜎̃. Their computational
processes look quite different. Nevertheless, both 𝜅(𝒔) and
𝜎̃(𝒔) produce the same value for an arbitrary vector 𝒔 ∈ N𝑛

0 .
In the rest of this section, 𝜅(𝒔) = 𝜎̃(𝒔) will be proved and
then an algorithm for 𝜅(𝒔) with a complexity of O(𝑛) will
be presented.

The definition of 𝜅 is more complex than a plain evalu-
ation of the bit length of the elements in 𝒔. This is because
𝜱̃ used in 𝜎̃ has cases other than the right-shift operation.
In order to conclude that 𝜅(𝒔) = 𝜎̃(𝒔), we need to analyze
all the cases of 𝜱̃ carefully. The analysis will be made in the
proof of Lemma 11, by utilizing Lemmas 9 and 10.

Lemma 9: Suppose that 𝒔 and 𝒔′ are vectors in N𝑛
0 , 𝑑 and

𝑑′ are positive integers, 𝑐 is a constant, and ‘≍’ is one of the
following relations: ‘=’, ‘≤’, ‘<’, ‘≥’, and ‘>’. If #𝑑 (𝒔) ≍
#𝑑′ (𝒔′) + 𝑐, then 𝜅𝑑 (𝒔) ≍ 𝜅𝑑′ (𝒔′) + 𝑑 − 𝑑′ + 𝑐. □

Proof. By the definition of 𝜅𝑑 , 𝜅𝑑 (𝒔) = (𝑑 − 1) + #𝑑 (𝒔) ≍
(𝑑 − 1) + #𝑑′ (𝒔′) + 𝑐 = (𝑑′ − 1) + #𝑑′ (𝒔′) + 𝑑 − 𝑑′ + 𝑐 =
𝜅𝑑′ (𝒔′) + 𝑑 − 𝑑′ + 𝑐. □

Lemma 10: For a vector 𝒔 ∈ N𝑛
0 \ {0} and an integer 𝑑 with

𝑑 ≥ 2, 𝜅𝑑 (𝜱̃(𝒔)) = 𝜅𝑑+1 (𝒔) − 1. □

Proof. Suppose that [𝑠1, 𝑠2, . . . , 𝑠𝑛] = 𝒔 and 𝒔′ = 𝜱̃(𝒔) =
[𝑠′1, 𝑠′2, . . . , 𝑠′𝑛]. By the definition of 𝜱̃, we have the follow-
ing equation for 𝐿 (𝑠′𝑖) and 𝐿 (𝑠𝑖).

𝐿 (𝑠′𝑖) =


0 (𝑠𝑖 = 0)
0 (𝑠𝑖 = 1 and 𝑖 = 𝜄(𝒔))
1 (𝑠𝑖 = 1 and 𝑖 ≠ 𝜄(𝒔))
𝐿 (𝑠𝑖) − 1 (𝑠𝑖 ≥ 2)

(3)

From Equation (3) and the assumption of the lemma 𝑑 ≥ 2,
if 𝐿 (𝑠𝑖) ≥ 𝑑 + 1, then 𝐿 (𝑠′𝑖) = 𝐿 (𝑠𝑖) − 1 and 𝐿 (𝑠′𝑖) ≥
𝑑. Conversely, if 𝐿 (𝑠′𝑖) ≥ 𝑑, then 𝐿 (𝑠′𝑖) = 𝐿 (𝑠𝑖) − 1 and
𝐿 (𝑠𝑖) ≥ 𝑑 + 1. It follows that 𝐿 (𝑠′𝑖) ≥ 𝑑 holds if and only
if 𝐿 (𝑠𝑖) ≥ 𝑑 + 1. Hence, #𝑑 (𝒔′) = #𝑑+1 (𝒔), and therefore
𝜅𝑑 (𝒔′) = 𝜅𝑑+1 (𝒔) − 1 by Lemma 9. □

Lemma 11: For a vector 𝒔 ∈ N𝑛
0 \ {0}, 𝜅(𝜱̃(𝒔)) = 𝜅(𝒔) −1.

□

Proof. Suppose that [𝑠1, 𝑠2, . . . , 𝑠𝑛] = 𝒔 and 𝒔′ = 𝜱̃(𝒔) =
[𝑠′1, 𝑠′2, . . . , 𝑠′𝑛]. Then, we have Equation (3) for 𝐿 (𝑠′𝑖) and
𝐿 (𝑠𝑖) as we have seen in the proof of Lemma 10. Since
𝒔 ≠ 0, 𝐿𝑚𝑎𝑥 (𝒔′) = 𝐿𝑚𝑎𝑥 (𝒔) − 1 holds from Equation (3).
(Case of 𝜄(𝒔) = 0): Here, no elements 𝑠𝑖 equal 1. Hence,
#1 (𝒔) = #2 (𝒔), and therefore 𝜅1 (𝒔) = 𝜅2 (𝒔) − 1 by Lemma 9.
Since 𝜅1 (𝒔) = 𝜅2 (𝒔) − 1 < 𝜅2 (𝒔), we can exclude 𝜅1 (𝒔) from
the candidates for 𝜅(𝒔):

𝜅(𝒔) = max{𝜅𝑑 (𝒔) | 2 ≤ 𝑑 ≤ 𝐿𝑚𝑎𝑥 (𝒔)}. (4)

Next, consider 𝜅2 (𝒔). The absence of elements 𝑠𝑖 = 1 sim-
plifies Equation (3) as follows.

𝐿 (𝑠′𝑖) =
{

0 (𝑠𝑖 = 0)
𝐿 (𝑠𝑖) − 1 (𝑠𝑖 ≥ 2)
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This equation shows that 𝐿 (𝑠′𝑖) ≥ 1 holds if and only if
𝐿 (𝑠𝑖) ≥ 2. Hence, #1 (𝒔′) = #2 (𝒔), and therefore 𝜅1 (𝒔′) =
𝜅2 (𝒔) −1 by Lemma 9. For 𝜅3 (𝒔), 𝜅4 (𝒔), and so on, 𝜅𝑑 (𝒔′) =
𝜅𝑑+1 (𝒔) −1 holds by Lemma 10. Combining these equations
with the definition of 𝜅, we have 𝜅(𝒔′) = max{𝜅𝑑 (𝒔′) | 1 ≤
𝑑 ≤ 𝐿𝑚𝑎𝑥 (𝒔′)} = max{𝜅𝑑+1 (𝒔) − 1 | 1 ≤ 𝑑 ≤ 𝐿𝑚𝑎𝑥 (𝒔′)} =
max{𝜅𝑑 (𝒔) − 1 | 2 ≤ 𝑑 ≤ 𝐿𝑚𝑎𝑥 (𝒔′) + 1(= 𝐿𝑚𝑎𝑥 (𝒔))} =
max{𝜅𝑑 (𝒔) | 2 ≤ 𝑑 ≤ 𝐿𝑚𝑎𝑥 (𝒔)} − 1. From this equation
and Equation (4), we conclude 𝜅(𝒔′) = 𝜅(𝒔) − 1.
(Case of 𝜄(𝒔) ≠ 0): In this case, 𝐿 (𝑠′

𝜄 (𝒔) ) = 0 and 𝐿 (𝑠 𝜄 (𝒔) ) =
1 from Equation (3). For other indices 𝑖 ≠ 𝜄(𝒔), 𝐿 (𝑠′𝑖) ≥ 1
holds if and only if 𝐿 (𝑠𝑖) ≥ 1. Hence, #1 (𝒔′) = #1 (𝒔) − 1
holds, and then, Lemma 9 yields

𝜅1 (𝒔′) = 𝜅1 (𝒔) − 1. (5)

Next, consider 𝜅2 (𝒔). Equation (3) shows that if 𝐿 (𝑠𝑖) ≥ 2,
then 𝐿 (𝑠′𝑖) ≥ 1, but its converse does not hold. Hence,
#2 (𝒔) ≤ #1 (𝒔′), and therefore 𝜅2 (𝒔) ≤ 𝜅1 (𝒔′)+1 by Lemma 9.
Since 𝜅1 (𝒔′) +1 = 𝜅1 (𝒔) from Equation (5), we have 𝜅2 (𝒔) ≤
𝜅1 (𝒔′) + 1 = 𝜅1 (𝒔). Since 𝜅2 (𝒔) ≤ 𝜅1 (𝒔), we can exclude
𝜅2 (𝒔) from the candidates for 𝜅(𝒔):

𝜅(𝒔) = max{𝜅𝑑 (𝒔) | 1 ≤ 𝑑 ≤ 𝐿𝑚𝑎𝑥 (𝒔), 𝑑 ≠ 2}. (6)

For 𝜅3 (𝒔), 𝜅4 (𝒔), and so on, 𝜅𝑑 (𝒔′) = 𝜅𝑑+1 (𝒔) − 1 holds by
Lemma 10. Combining this equation, Equation (5), and the
definition of 𝜅, we have 𝜅(𝒔′) = max{𝜅𝑑 (𝒔′) | 1 ≤ 𝑑 ≤
𝐿𝑚𝑎𝑥 (𝒔′)} = max{𝜅𝑑 (𝒔) − 1 | 1 ≤ 𝑑 ≤ 𝐿𝑚𝑎𝑥 (𝒔′) + 1(=
𝐿𝑚𝑎𝑥 (𝒔)), 𝑑 ≠ 2} = max{𝜅𝑑 (𝒔) | 1 ≤ 𝑑 ≤ 𝐿𝑚𝑎𝑥 (𝒔), 𝑑 ≠
2} − 1. From this equation and Equation (6), we conclude
𝜅(𝒔′) = 𝜅(𝒔) − 1. □

Theorem 6: For a vector 𝒔 ∈ N𝑛
0 ,

𝜅(𝒔) = 𝜎̃(𝒔)

holds. □

Proof. The proof is by the mathematical induction on 𝜅(𝒔).
If 𝜅(𝒔) = 0, then 𝒔 = 0, and therefore 𝜎̃(𝒔) = 0. Thus, the
theorem holds for 𝜅(𝒔) = 0.

Assume that the theorem holds for any vector 𝒔′ such
that 𝜅(𝒔′) = 𝑘 , i.e., 𝜅(𝒔′) = 𝜎̃(𝒔′) = 𝑘 . Using this assump-
tion, we prove the theorem for 𝜅(𝒔) = 𝑘 + 1. Suppose that
𝒔 is a vector such that 𝜅(𝒔) = 𝑘 + 1. Then, since 𝜅(𝒔) =
𝜅(𝜱̃(𝒔)) + 1 by Lemma 11, 𝜅(𝜱̃(𝒔)) = 𝑘 holds. By using
the induction hypothesis, 𝜅(𝜱̃(𝒔)) = 𝜎̃(𝜱̃(𝒔)). By Proposi-
tion 4, 𝜎̃(𝜱̃(𝒔)) = 𝜎̃(𝒔) − 1. From these equations, we have
𝜅(𝒔) = 𝜅(𝜱̃(𝒔)) + 1 = 𝜎̃(𝜱̃(𝒔)) + 1 = 𝜎̃(𝒔) − 1 + 1 = 𝜎̃(𝒔).
Thus, the inductive step was proved. □

Example 8: By Examples 3 and 7, 𝜅([1, 4, 8, 9]) =
𝜎̃([1, 4, 8, 9]) = 5. □

Theorem 6 shows that the value of 𝜎̃(𝒔) can also be obtained
by calculating 𝜅(𝒔). For computational efficiency, we use
𝜅(𝒔) mainly instead of 𝜎̃(𝒔) in the rest of the paper although
𝜎̃(𝒔) provided theoretical insights for the comparison with

1: function Kappa(𝒔)
2: ⊲ Input: 𝒔 is a vector in N𝑛0
3: ⊲ Output: the value of 𝜅(𝒔)
4: Var 𝒃, 𝒉← 0 : Vector
5: Var 𝑙, 𝑙∗, 𝑘, 𝑘∗ ← 0 : Integer
6: if 𝒔 = 0 then retrun 0
7: for 𝑖 ← 1 to 𝑛 do
8: 𝑙 ← 𝐿 (𝒔[𝑖])
9: if 𝑙 ≠ 0 then

10: 𝒃[𝑙] ← 𝒃[𝑙] + 1
11: if 𝑙∗ < 𝑙 then 𝑙∗ ← 𝑙
12: 𝒉[𝑛] ← 𝒃[𝑛]
13: for 𝑖 ← 𝑛 − 1 downto 1 do
14: 𝒉[𝑖] ← 𝒃[𝑖] + 𝒉[𝑖 + 1]
15: for 𝑖 ← 1 to 𝑙∗ do
16: 𝑘 ← 𝒉[𝑖] + (𝑖 − 1)
17: if 𝑘∗ < 𝑘 then 𝑘∗ ← 𝑘
18: return 𝑘∗

Fig. 3 Kappa: a fast algorithm for 𝜅

Table 1 Average computation time [µs] per vector
𝑛 Kappa SigmaLB3
3 0.052 4.5
4 0.058 10.0
5 0.065 27.1
6 0.070 54.8
7 0.078 94.4
8 0.083 149.9
9 0.091 240.1

10 0.097 374.7

𝜎-𝑙𝑏(𝒔) in Sects. 3 and 4.
We now present an algorithm for 𝜅(𝒔) as Kappa in

Fig. 3, in which vectors are expressed as 1-indexed arrays.
In Kappa, the calculation of #𝑑 (𝒔) is improved by a technique
similar to bucket sorting under the assumption that 𝐿 (𝑠𝑖) ≤ 𝑛
for any 𝑠𝑖 . Since Kappa is customized for the characteristic
vector 𝜦(𝐹) of a reversible function 𝐹, the bit length of 𝑠𝑖
is assumed to be at most 𝑛 by Proposition 1. The for loop
starting at Line 7 counts the frequency of the bit length of the
elements in 𝒔 except those with a bit length of 0, storing the
results in 𝒃. The for loop starting at Line 13 calculates the
suffix sums of 𝒃, resulting in 𝒉 = [#1 (𝒔), #2 (𝒔), . . . , #𝑛 (𝒔)].
The for loop at Line 15 identifies the maximum value of
𝜅𝑖 (𝒔) for 1 ≤ 𝑖 ≤ 𝑛, which is finally returned at Line 18.

The time complexity of Kappa is O(𝑛) if 𝐿 is assumed
to be a constant-time operation. The assumption is based
on the fact that 𝐿, i.e., the bit length of an integer, is math-
ematically a simple logarithm as in Definition 11, and is
practically a built-in operation in many programming lan-
guages such as Mathematica and Common Lisp. Note that
the evaluation of the complexity may vary according to the
presumed complexity of the 𝐿 operation because Kappa in-
vokes this operation 𝑛 times.

6. Experimental Results

To measure the computation time, we implemented Kappa in
Common Lisp (SBCL), and calculated the values of 𝜅(𝜦(𝐹))
for all 3-variable functions (40,320 in total) as well as
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Table 2 Average of lower bounds
𝑛 𝜅 (𝜦 (𝐹 ) ) 𝜎-𝑙𝑏 (𝜦 (𝐹 ) )
3 3.98 4.09
4 6.00 6.08
5 8.03 8.05
6 10.02 10.03
7 12.01 12.01
8 14.00 14.01
9 16.00 16.00

10 18.00 18.00

for 50,000 randomly-generated 𝑛-variable functions ranging
from 𝑛 = 4 to 10. The program was executed on a computer
with Ubuntu 22.04LTS / Core i9-12900K CPU (3.2GHz).
Table 1 shows the average computation time in microsec-
onds per characteristic vector. 𝜅 is much faster than 𝜎-𝑙𝑏
even though the fastest algorithm named SigmaLB3 [25] for
calculating 𝜎-𝑙𝑏 was used as the implementation of 𝜎-𝑙𝑏.
It should be mentioned that SigmaLB3 consumes a lot of
memory for caching to reduce its computation time. With-
out this caching strategy, it has been reported [25] that the
computation time for 𝜎-𝑙𝑏 grows exponentially with 𝑛. Re-
garding memory usage, Kappa apparently works with only
O(𝑛) memory.

Kappa is very fast, but the growth of the experimental
times in Table 1 does not look O(𝑛). A considerable factor
behind this is the overhead necessary for Kappa to work as
a procedure. We measured the time of this overhead, which
includes the function call for Kappa and the allocation of lo-
cal variables and arrays. The overhead was about 0.032[µs].
When we adjust the times of Kappa in Table 1 by subtract-
ing this overhead, the resultant times become approximately
proportional to 𝑛. The calculation of Kappa is so simple that
the necessary overhead seems to be a major part of the total
computation time. From this observation, we can conclude
that Kappa is sufficiently quick in practice.

By Theorem 3, 𝜅(𝜦(𝐹)) is a lower bound on the GC
of a circuit of a reversible function 𝐹. As an experimental
comparison between 𝜅(𝜦(𝐹)) and 𝜎-𝑙𝑏(𝜦(𝐹)), we com-
puted both lower bounds for all (40,320) 3-variable functions
and 50,000 randomly-generated 𝑛-variable functions ranging
from 𝑛 = 4 to 10 as well as the experiments in Table 1. The
average values of the lower bounds for these functions are
given in Table 2. The two lower bounds become closer to
each other with increase in the number of variables. On
average, the difference in quality between 𝜅 and 𝜎-𝑙𝑏 is very
slight. In this paper, we omit a comparison with the mini-
mum circuits or the upper bounds. A detailed comparison
between those data and 𝜎-𝑙𝑏(𝜦(𝐹)) has been made in the
work [25].

Table 3 shows the match-to-mismatch ratio of 𝜅(𝜦(𝐹))
and 𝜎-𝑙𝑏(𝜦(𝐹)) for functions. Theorem 5 states that
there can be two cases: either 𝜅(𝜦(𝐹)) = 𝜎-𝑙𝑏(𝜦(𝐹))
or 𝜅(𝜦(𝐹)) = 𝜎-𝑙𝑏(𝜦(𝐹)) − 1. In Table 3, more than
90% of the functions for 𝑛 ≥ 4 fall into the former case,
and the percentage of this case increases with 𝑛. Exper-
imentally, the two lower bounds are equal for most func-

tions. One instance of a mismatch in 𝑛 = 4 is the func-
tion 𝐹 = [6, 12, 14, 11, 3, 4, 13, 1, 10, 15, 7, 2, 8, 9, 5, 0] in
permutation notation. Its characteristic vector is 𝜦(𝐹) =
[9, 9, 11, 7], and its lower bounds are 𝜅(𝜦(𝐹)) = 6 and
𝜎-𝑙𝑏(𝜦(𝐹)) = 7. Another such instance is the func-
tion 𝐹 = [10, 15, 6, 13, 9, 2, 7, 5, 3, 8, 0, 14, 12, 4, 1, 11] with
𝜦(𝐹) = [6, 10, 11, 10], 𝜱̃(𝜦(𝐹)) = [3, 5, 5, 5], 𝜅(𝜦(𝐹)) =
6, and 𝜎-𝑙𝑏(𝜦(𝐹)) = 7. Like these examples, if 𝜦(𝐹) or
𝜱̃(𝜦(𝐹)) contains many odd numbers, the two lower bounds
may differ due to the discrepancy between the ways of halv-
ing in 𝜱 and 𝜱̃ operations.

7. Conclusion

We have introduced a halving operation 𝜱̃ for the charac-
teristic vectors of reversible functions. Through a careful
analysis of 𝜱̃, we proposed a new lower bound 𝜎̃ on the GC
of reversible circuits that realize a given reversible function.
To improve computational efficiency, a faster version of 𝜎̃,
called 𝜅, was presented. The theory and experiments have
confirmed that the value of 𝜅 is almost the same as that of
the previous lower bound 𝜎-𝑙𝑏. 𝜅 can be calculated much
faster than 𝜎-𝑙𝑏 by several orders of magnitude. The com-
plexity of our proposed algorithm for 𝜅 is O(𝑛) with respect
to both time and space. Our future work includes refining
our bounds to take into account practical cost metrics such
as the number of controls and applying our bounds to the
reversible logic synthesis.
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