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SUMMARY The development of energy-efficient neural network hard-
ware using magnetic tunnel junction (MTJ) devices has been widely inves-
tigated. One of the issues in the use of MTJ devices is large write energy.
Since MTJ devices show stochastic behaviors, a large write current with
enough time length is required to guarantee the certainty of the information
held in MTJ devices. This paper demonstrates that quantized neural net-
works (QNNs) exhibit high tolerance to bit errors in weights and an output
feature map. Since probabilistic switching errors in MTJ devices do not
have always a serious effect on the performance of QNNs, large write en-
ergy is not required for reliable switching operations of MTJ devices. Based
on the evaluation results, we achieve about 80% write-energy reduction on
buffer memory compared to the conventional method. In addition, it is
demonstrated that binary representation exhibits higher bit-error tolerance
than the other data representations in the range of large error rates.
key words: MTJ device, error tolerance, quantized neural network, deep
learning

1. Introduction

Deep Neural Networks (DNNs) have revolutionized various
fields of artificial intelligence, from computer vision and nat-
ural language processing to autonomous driving and medical
diagnostics. As the demand for real-world applications of
DNNs increases, energy-efficient neural network hardware is
required, especially for resource-constrained devices. In re-
sponse to the above demand, the use of nonvolatile memory
utilizing magnetic tunnel junction (MTJ) [1], [2] devices has
attracted increased research attention. An MTJ device with
unlimited endurance, a short switching time, and CMOS
compatibility is a promising candidate for realizing low-
power, high-performance logic circuits [3]–[5].

However, the stochastic behavior [6] of MTJ devices
is a critical issue in terms of energy consumption. The
switching probability of MTJ devices depends on a write
current applied to the device. Conventionally, CMOS-based
integrated circuits are designed based on worst-case criteria
that guarantee expected operation with a sufficient margin.
Therefore, a large write current with enough time length is
required for reliable switching operations, resulting in large
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Fig. 1 Basic concept to achieve write-energy reduction. Since write
errors in MTJ devices have a small impact on the performance of neural
networks, write operations can be performed under low-energy conditions.

write energy. As one approach to address this issue, re-
searchers have proposed a method to reduce write energy by
utilizing the high error tolerance of neural networks [7]–[10].
Since write errors have a small impact on the performance
of neural networks, large write energy is not required for
reliable switching operations. Based on the above concept
as shown in Fig. 1, our previous work [10] achieved write-
energy reduction of MTJ-based weight storage memory.

In this paper, we extend our previous work to hardware
using MTJ devices for both storage and buffer memory, and
investigate write energy reduction based on the proposed
method. Since neural network hardware requires many
memory accesses, it is desirable to have the largest possi-
ble on-chip buffer memory to minimize accesses to off-chip
memory. MTJ-based nonvolatile memory is a promising
candidate for large buffer memory in neural network hard-
ware because of its high density compared to SRAM, which
is conventionally used as on-chip memory. Solving the write
energy problem of MTJ devices would enable the realization
of energy-efficient neural network hardware in which both
storage memory and buffer memory are implemented with
high-density embedded nonvolatile memory.

The main contributions of this paper are as follows: (1)
We evaluate the impact of write errors in storage and buffer
memory on network performance in neural networks with
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various quantization methods. (2) We show that the binary
representation has relatively high error tolerance and that the
impact of errors in buffer memory on the inference results
of the network is smaller than that of storage memory. (3)
Based on the simulation results, we evaluate the effect of
utilizing error tolerance on write energy reduction.

2. Basic Concepts

2.1 Quantization

Quantization is a technique to reduce computational costs
and memory requirements by representing the weights
and activations with lower precision values such as fixed-
point number representation [11], [12], binary representa-
tion [13]–[16], or other low-precision formats. This tech-
nique significantly reduces the memory footprint of DNN
models and accelerates multiply-and-accumulate (MAC) op-
erations that are the dominant workloads of DNNs. Quanti-
zation not only streamlines the processing of neural networks
but also minimizes the bandwidth needed for data transfer.
When implementing DNN hardware, one of the most sig-
nificant overheads comes from off-chip memory accesses.
Off-chip memory accesses require up to several orders of
magnitude higher energy than computation [17]. By using
low-precision data types to represent parameters, more data
can be stored in the same memory space, which leads to
fewer off-chip memory accesses.

Binarized neural networks (BNNs) [13]–[16], the ex-
treme case of quantization, are promising candidates for im-
plementing compact and energy-efficient DNN hardware. In
BNNs, both weights and activations are constrained to bi-
nary values (−1 or 1). The binarized convolution layer in
BNNs is simplified as follows:

O = sign(popcount(XNOR(Wi,Xi) − T)), (1)

where O, sign, popcount, Wi , Xi , and T represent output
features, the sign function, the bitcounting operation, and a
learned threshold, respectively. As shown in Eq. (1), multi-
plication is replaced by the XNOR operation, and addition
is replaced by the bitcounting operation, leading to compact
hardware implementations.

2.2 MTJ Device

An MTJ device, one of the spintronics devices, is a promising
storage device for energy-efficient hardware implementation
of DNNs as zero standby current can be achieved thanks to
non-volatility. Figure 2 shows a device structure and R-I
characteristics of a perpendicular MTJ device. The MTJ
device consists of two ferromagnetic layers separated by a
thin barrier layer. By controlling the direction of the mag-
netization of the free layer with respect to the fixed layer
with a bi-directional write current, the MTJ device exhibits
two distinct resistance states: (1) The state when the two
magnetic layers have anti-parallel spin directions is low re-
sistance (RAP). (2) The state when they have parallel spin

Fig. 2 MTJ device: (a) Device structure. Depending on the magnetiza-
tion of the free layer, MTJ devices have two different resistance states. (b)
R-I characteristic. RM is changed by applying a bidirectional write current.

directions is low resistance (RP). Since the resistance state
remains when a power supply is detached from the MTJ de-
vice, the MTJ device can be considered as a 1-bit nonvolatile
memory. The MTJ device provides several advantages, in-
cluding high read/write speed, high endurance, and high
density compared to other nonvolatile devices, such as re-
sistive random access memory (ReRAM) and phase change
memory (PCRAM). The effectiveness of the MTJ device in
realizing energy-efficient neural network hardware has been
demonstrated through several examples [18]–[21].

Although the MTJ device has the potential for realiz-
ing energy-efficient logic circuits, its stochastic characteristic
induces write errors, causing bit errors in logic circuits. A
state transition of the MTJ device depends on the magnitude,
direction, and duration of the applied write current. Assum-
ing that the magnitude of the write current is constant, the
relationship between the switching probability PSW and the
duration of an applied write current to the MTJ device can
be approximated as follows:

PSW (t) = 1 − exp(− t
τP

), (2)

where t is the duration of the applied write current, and τP
is the parameter determined by the composision of the MTJ
device. Since PSW depends on an applied write current,
write errors occur when a sufficient amount of write current
is not applied to the MTJ device for enough time length.
In applications where write errors could compromise the
overall system functionality, we need to resolve this by using
a large write current or by adding a kind of error-correcting
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mechanism such as error-correcting code (ECC) [22], [23],
resulting in large energy consumption.

2.3 Write-Energy Reduction by Tolerating Write Errors

One approach for the challenge of large write energy is to
perform write operations under low-energy conditions by
leveraging high error tolerance of neural networks [7]–[10],
[24], [25]. Since neural networks have the property that
errors in the data inside the network have a small impact on
its performance, the write energy can be reduced by allowing
a certain amount of switching errors to the extent that the
performance of the neural network is not degraded. This
method is a new approach that achieves power savings by
combining the stochastic characteristics of the device and
the error tolerance of neural networks, leading to advantages
such as simpler control circuits and a smaller area compared
to conventional methods such as the self-write termination
(SWT) method [26], [27].

In this paper, we consider using MTJ devices for buffer
memory and weight storage memory. To confirm that the
concept of reducing write energy is useful, we evaluate the
impact of write errors in each memory on the performance
of QNNs. In addition, we evaluate the relationship between
data representation and bit-error tolerance of QNNs. In
Sect. 3, we describe the evaluation method in more detail.

3. Evaluation Setup

Figure 3 shows the layer structure of QNNs evaluated in this
paper. We use typical convolution neural networks based on
VGG neural network [28] architecture for image classifica-
tion tasks. QNNs consist of six convolution layers with filter
counts of 128, 128, 256, 256, 512, and 512, and three fully-
connected layers with 1024, 1024, and 10 neurons. QNNs
use no bias and their all convolution layers have a kernel size
of 3 × 3.

To evaluate the impact of data representations on bit-
error tolerance, we consider four types of quantization meth-
ods for weights and activations: (1) binary representation
(Binary), (2) 8-bit fixed-point number representation (Fxp8),
(3) 16-bit fixed-point number representation (Fxp16) and (4)
32-bit fixed-point number representation (Fxp32) as shown
in Fig. 4. Since numerical value changes caused by bit errors
depend on the value range, we unify the value range for each
data representation. In addition, to evaluate the impact of
errors on recognition accuracy, it is desirable that the recog-
nition accuracy of each data representation be as close as
possible.

Fig. 3 Layer structure of QNNs.

Therefore, we also consider Binary_x3, a model that
achieves the same level of recognition accuracy as fixed-
point representations despite using a binary representation
by tripling filter counts for each layer. Binary_x3 consists
of six convolution layers with filter counts of 384, 384, 768,
768, 1536, and 1536, and three fully-connected layers with
1024, 1024 and 10 neurons. Binary_x3 uses no bias and
their all convolution layers have a kernel size of 3 × 3.

Fig. 4 List of quantization methods for weights and activations.

Fig. 5 The method to evaluate bit-error tolerance of neural networks. To
evaluate the impact of write errors in buffer and weight storage memory on
the processing of QNNs, we artificially add bit errors to an output feature
map and weights, respectively.
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Table 1 shows the recognition accuracy of QNNs trained
on the CIFAR-10 dataset. The CIFAR-10 dataset is widely
used as a benchmark dataset for the image classification task.
The CIFAR-10 contains a total of 60,000 labeled images,
which are divided into 10 classes. There are 50,000 training
images and 10,000 test images. The resolution of all images
is 32 by 32 pixels. Based on the learning algorithm of the
BNN [16], our QNNs use quantized weights and activations
during both the training phase and the test phase. Under
these conditions, regardless of data representation, QNNs
achieve recognition accuracy in the upper 80%.

Figure 5 shows the method to evaluate the bit-error tol-

Table 1 Test accuracy of QNNs trained on CIFAR-10 dataset.

Fig. 6 The method to emulate switching errors of MTJ devices. Bit errors
are generated in each bit with uniform probability.

Fig. 7 (a) Bit-error rate in weights vs. test accuracy. (b) Bit-error rate in output feature map vs. test
accuracy. The impact of errors in buffer memory on the inference results of the network is smaller than
that of storage memory.

erance of QNNs. To evaluate the impact of write errors
in weight storage memory or buffer memory on the perfor-
mance of QNNs, we add probabilistic bit errors to the weights
or an output feature map after training. In neural network
hardware, once training is completed, the write frequency of
weights is basically once. On the other hand, buffer memory
stores the output of each layer during the computation pro-
cess. Therefore, we set the evaluation conditions as follows:
(1) The process of adding bit errors to the weights is applied
only once after training the model. (2) We modify the acti-
vation function to add bit errors each time an output feature
map is generated. After adding bit errors to the weights or
modifying the activation function, we evaluate the relation-
ship between the bit-error rate and recognition accuracy of
QNNs. Figure 6 shows the method to emulate the switching
errors of MTJ devices. When weights or an output feature
map are represented by binary values, the signs of −1 and
+1 are flipped with a uniform probability for each element.
When weights or an output feature map are represented by
fixed-point number representation, we first convert them to
a bit string. Then, we generate bit errors with a uniform
probability for each bit and convert them back to fixed-point
number representation.

Based on the above methods, we evaluate the impact of
switching errors in MTJ devices on the recognition accuracy
of QNNs. Based on the evaluation result, we also discuss
the effect of write-energy reduction by tolerating switching
errors.

4. Evaluation Results

4.1 Bit-Error Tolerance

Figure 7 shows the relationship between the bit-error rate and
the test accuracy of QNNs. The simulation of test accuracy
was repeated 10 times and the mean values are presented.
QNNs show recognition accuracy close to the original accu-
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Fig. 8 (a) Bit-error rate in weights vs. degradation rate of accuracy. (b) Bit-error rate in output feature
map vs. degradation rate of accuracy. Binary representation has relatively high error tolerance in the
range of large error rates.

racy even when bit errors are added. In addition, comparing
the case of adding errors to weights and the case of adding
errors to an output feature map, QNNs show higher tolerance
to bit errors in an output feature map. This result means that
write errors in buffer memory are more tolerable than write
errors in weight storage memory. Since the write frequency
of buffer memory is generally more frequent than that of
weight storage memory, we can realize large write-energy
reduction by utilizing this property. To verify the impact
of data representation on bit-error tolerance, we evaluated
the degradation rate of accuracy from the result in Fig. 7,
as shown in Fig. 8. In the range of relatively small error
rates, each data representation exhibits almost the same bit-
error tolerance. On the other hand, in the range of large
error rates, Binary shows a higher bit-error tolerance than
the other data representations in both cases where bit errors
occur in weights and in an output feature map.

To discuss the reason why Binary shows high bit-error
tolerance, we introduce the metric called root mean squared
error ratio (RRMSE). According to H. Huang et al. (2023),
soft error influence on neural network accuracy depends on
RRMSE [29] defined as follows:

RRMSE =

√√√ L∑
l

(
var(∆l)
var(xl)

)
, (3)

where L, ∆l and xl represent the total number of neural net-
work layers, the variation induced by soft errors in layer l
and the input activations in layer l. Figure 9 shows the re-
lationship between the bit-error rate and RRMSE of QNNs
evaluated in this paper. We calculate RRMSE using 1,000
images of the CIFAR-10 dataset, and the mean values are
presented. The QNN with binary representation shows a
smaller increase in RRMSE with an increasing bit error rate
compared to other data representations. This means that
binary representation is insensitive to bit errors. Although
further evaluation is needed to clarify the relationship be-

Fig. 9 Relationship between bit-error rate and rate of RRMSE increase.
(a) RRMSE when adding bit errors to weights. (b) RRMSE when adding
bit errors to an output feature map. Binary representation shows a smaller
increase in RRMSE with an increasing bit error rate compared to other data
representations.
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Fig. 10 The relationship between the write energy of one MTJ device and bit-error rate. When the
acceptable degradation rate of accuracy is 3%, the acceptable error rate for each data representation
remains almost the same. On the other hand, when the acceptable degradation rate of recognition
accuracy is as large as 30%, there is a difference in the acceptable error rate for each data representation.

Table 2 Write-energy reduction compared to write energy at 10−6%.

tween data representation and error tolerance, RRMSE can
be an effective metric.

4.2 Write-Energy Reduction

In this section, we discuss the effect of write-energy reduc-
tion in buffer memory based on the result of Fig. 8 for the
following two reasons: (1) QNNs evaluated in this paper
show higher tolerance to bit errors in an output feature map
than bit errors in weights. (2) The write frequency of buffer
memory is higher than that of weight storage memory, and
the impact of reducing write energy is more significant.

Figure 10 shows the relationship between the write
energy of one MTJ device and the bit-error rate based on
Eq. (2). The magnitude of the write current applied to the
MTJ device is fixed at 150 µA. The parameter τP , which
has a negative correlation with the magnitude of the write
current, is configured with a value of 1.48× 10−8. Since the
switching probability PSW and the duration of the write cur-
rent t are positively correlated, we can reduce t by tolerating

a certain amount of bit-error rate, resulting in write-energy
reduction. In this paper, we define 10−6% as the conven-
tional error rate required for reliable switching operations,
based on the range where no error occurs when writing all
parameters. Assuming that QNNs can tolerate 3% or less
degradation rate of accuracy, the proposed method can re-
duce the write energy of the MTJ device in buffer memory
by about 80%. Note that because the energy required to
switch MTJ devices dominates the write process, a similar
degree of energy reduction is anticipated regardless of the
memory configuration. We also evaluated the effect of write-
energy reduction when QNNs can tolerate a degradation rate
as large as 30%. In this case, there is a difference in the ac-
ceptable error rate for each data representation, with Binary
exhibiting the largest acceptable error rate. In terms of write
energy, this results in a 6.75% difference compared to the
data representation with the lowest tolerable error rate. The
results of the above evaluations are summarized in Table 2.

Our findings are useful for applications that do not re-
quire the high performance of individual models, such as
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ensemble learning, including bagging and boosting. In such
applications, collective behavior and decision-making are
more crucial than the performance of single nodes. This
means that the entire system can operate efficiently even if
the performance of individual nodes is sometimes limited
or imprecise. As a concrete example, Ref. [30] proposed
an ensemble learning method that enables object detection
with an overall average accuracy of over 80% by combining
multiple models with an overall average accuracy of about
60%. BNNs are promising candidates for energy-efficient
solutions in such applications.

5. Conclusion

In this paper, we evaluate the impact of bit errors in the
weights and output feature map on the performance of QNNs
and find that QNNs exhibit high bit-error tolerance. By uti-
lizing this property, we achieved about 80% write-energy
reduction on buffer memory compared to the conventional
method. In addition, it is demonstrated that the BNN eval-
uated in this work exhibits higher bit-error tolerance than
the other data representations. This finding is important for
energy-efficient implementation in applications where the
low performance of individual learners is not a problem.

The results of the comparison between Binary and Bi-
nary_x3 in Fig. 8 (b) suggest that the error tolerance of neu-
ral networks may depend not only on data representation but
also on model size and layer structure. Therefore, as a future
perspective, it is important to clarify the impact of model
size and layer structure on bit error tolerance and distinguish
it from the impact of data representation in order to clarify
how to derive an appropriate neural network architecture that
meets the required specifications.
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