
DOI:10.1587/transinf.2023LOP0009

Publicized:2024/04/17

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on

Extending Binary Neural Networks to Bayesian Neural Networks
with Probabilistic Interpretation of Binary Weights

Taisei SAITO†, Student Member, Kota ANDO††, and Tetsuya ASAI††, Members

SUMMARY Neural networks (NNs) fail to perform well or make ex-
cessive predictions when predicting out-of-distribution or unseen datasets.
In contrast, Bayesian neural networks (BNNs) can quantify the uncertainty
of their inference to solve this problem. Nevertheless, BNNs have not been
widely adopted owing to their increased memory and computational cost.
In this study, we propose a novel approach to extend binary neural networks
by introducing a probabilistic interpretation of binary weights, effectively
converting them into BNNs. The proposed approach can reduce the number
of weights by half compared to the conventional method. A comprehensive
comparative analysis with established methods like Monte Carlo dropout
and Bayes by backprop was performed to assess the performance and ca-
pabilities of our proposed technique in terms of accuracy and capturing
uncertainty. Through this analysis, we aim to provide insights into the
advantages of this Bayesian extension.
key words: Bayseian neural network, Binary Connect, quantization, mem-
ory reduction, uncertainty estimation

1. Introduction

In recent years, neural networks (NNs) have been widely
adopted in a various applications, such as image classifi-
cation[1], natural language processing[2], and object detec-
tion[3]. However, NN models are prone to overfitting to their
training data and exhibit low robustness to outliers[4]. For
example, NNs can make highly confident erroneous predic-
tions when presented with out-of-distribution samples (un-
known classes). Bayesian neural networks (BNNs)[5], [6],
which apply Bayesian inference to deep learning architec-
ture, can estimate prediction uncertainty and ensure pre-
diction confidence. Moreover, BNNs solve problems such
as out-of-distribution detection and model interpretability,
which are critical for deploying of AI systems in real-world
applications.

BNNs assume a probability distribution for a set of
weights and can estimate the uncertainty inherent in data by
executing multiple feedforward propagations by sampling
the scalar values from the weight distributions[5]. There-
fore, they require more computational cost and memory
footprint, posing substantial challenges when deployed in
resource-constrained environments. The burgeoning de-
mand for implementing BNNs on edge devices has necessi-
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tated a paradigm shift towards a more efficient Bayesian deep
learning method[7], [8]. This research domain encompasses
model compression and efficient approximation strategies
to reduce the computational and hardware resource require-
ments of BNNs without compromising uncertainty quantifi-
cation, model calibration, and robustness. The implications
of efficient Bayesian deep learning are far-reaching, spanning
domains like autonomous robotics, edge AI, and real-time
decision-making systems. Such models can provide action-
able uncertainty estimates even in resource-constrained envi-
ronments, improving safety, reliability, and interpretability.

This study proposes a new method to compress
Bayesian deep learning models by introducing an existing
hardware-oriented weight binarization algorithm into varia-
tional inference with Bernoulli distribution. The contribu-
tions of this paper are as follows:

1. We proposed a learning method for BNNs with binary
weights, more suitable for hardware implementation, by
combining the learning approach of binary NNs with
variational inference methods of BNNs.

2. We compared the performance of our proposed method
against existing BNN methods in terms of accuracy and
uncertainty capture.

2. Preliminaries

2.1 Bayesian Neural Networks

Compared to the vanilla NN models designed to learn the
values of weights, BNNs learn the probability distribution
of weights by using Bayes’ theorem,

p(w |D) = p(D|w)p(w)
p(D) (1)

and find the maximum a posteriori (MAP) weights, where D
is the training dataset, w is the weight of the model, p(w) is
the prior distribution of the weight, p(D|w) is the likelihood,
and p(w |D) is the posterior distribution. Owing to the high
dimensionality of p(D) =

∫
p(D|w)p(w)dw, which is the

integral of all possible latent variables, computing the poste-
rior distribution directly using Bayes’ theorem is intractable.
Instead, in variational inference[9], the posterior distribu-
tion is approximated by a restricted distribution q(w |θ) with
the learnable parameter θ. θ is optimized by minimizing
the Kullback-Leibker (KL)-divergence between the approx-
imated distribution q(w |θ) and the true distribution p(w |D).
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To introduce the objective function in variational inference,
we transform the log marginal likelihood ln p(D) as follows:

ln p(D) = ln
∫

p(D, w)dw

= ln
∫

q(w |θ) p(D, w)
q(w |θ) dw

≥
∫

q(w |θ) ln p(D, w)
q(w |θ) dw

= L[q(w |θ)], (2)

where, L[q(w |θ)] represents the lower bound of the log
marginal likelihood, known as the Evidence Lower Bound
(ELBO), and Jensen’s inequality is used in the third line of
equation. Furthermore, the ELBO is transformed as follows:

L[q(w |θ)] =
∫

q(w |θ) ln p(w |D)p(D)
q(w |θ) dw

=

∫
q(w |θ) ln p(w |D)

q(w |θ) dw +
∫

q(w |θ) ln p(D)dw

= −DKL(q(w |θ)| |p(w |D)) + ln p(D). (3)

Here, the second term in (3) does not depend on θ, mini-
mizing the first term in (3) is equivalent to maximizing the
ELBO. The first term of (3) is transformed as follows:

DKL(q(w |θ)| |p(w |D)) = −
∫

q(w |θ) ln p(w |D)
q(w |θ) dw

= −
∫

q(w |θ) ln p(D |w)dw + DKL(q(w |θ)| |p(w)) + C

= −Eq(w |θ)[ln p(D|w)] + DKL(q(w |θ)| |p(w)), (4)

where, C =
∫

q(w |θ) ln p(D)dw and since this term does not
depend on θ, it was removed in the third line of equation
(4). Thus, the objective function is calculated as (4), and
minimized using the gradient descent method. Here, the
first term in (4) is the expected negative log-liklihood com-
puted by sampling weights from q(w |θ) multiple times, and
multiple feedforward operations. The second term in (4) is
the regularization term. In the testing time, predictions for
unseen data x, y are calculated using the variational posterior
distribution q(w |θ) as follows:

p(y |x,D) =
∫

p(y |w, x)q(w |θ)dw. (5)

However, because the integral of all possible latent variables
is also intractable, the prediction, equation (5) is approxi-
mated by Monte Carlo (MC) sampling as follows:

p(y |x,D) = 1
T

T∑
t=1

p(y |wt, x). (6)

Here, T is the number of weights sampled from the varia-
tional posterior distribution q(w |θ).

2.2 Bayes By Backprop

Blundell et al. proposed the Bayes by backprop (BBB) [5]

algorithm, which uses backpropagation to optimize a BNN
model with Gaussian approximation. In BBB, the poste-
rior distribution of the weights q(w |θ) is approximated with
Gaussian distribution parametrized by mean µ and variance
σ2. The weight value is sampled from Gaussian distribution
as q(w |θ) ∼ N(µ, σ2), where N represents Gaussian distri-
bution, and θ represents µ and σ. However, the sampling
obtained from Gaussian distributions is not differentiable as
it lacks an explicit formula, making it impossible to propa-
gate gradients and optimize the BNN objective (4). There-
fore, reparameterization trick [10] is employed to generate
weights as follows:

w = µ + ϵ ⊙ ln(1 + exp(ρ)), (7)
ϵ ∼ N(0, 1),

where ⊙ is the point-wise multiplication operator, and ρ
is a learnable parameter to represent standard deviation σ
as positive value, that is σ = ln(1 + exp(ρ)). Then, the
posterior distribution of the weight is optimized by applying
the gradient descent method with respect to the mean and
standard deviation of the Gaussian distribution.

2.3 Monte-Carlo Dropout

Gal and Ghahramani proposed the Monte Carlo dropout
(MCD) [6] algorithm, which extends dropout, primarily
used for model regularization It is the same as variational
inference and leverages the Bernoulli distribution of dropout
layers within deep neural networks. The Bernoulli approxi-
mating variational distribution of the weights q(wi) for each
layer i of K × K dimension is defined as follows:

q(wi) = Mi ⊙ diag([z ji ]
Ki

j=1) (8)

z ji ∼ Bernoulli(pi) for i = 1, ..., L, j = 1, ...,Ki−1,

where z ji is the Bernoulli distributed variable with probabil-
ity pi , and Mi are the variational parameters to be trained.
The training is almost the same as in vanilla NN training,
but involves minimizing KL-divergence (4) in variational
inference. This innovative approach involves performing
multiple forward passes through a NN with dropout enabled
at test time, resulting in an ensemble of stochastic predic-
tions. By averaging these predictions, MCD can compute
the uncertainty estimates of model outputs such as predictive
variances, quantifing of prediction confidence and reliability.

2.4 BinaryConnect

Courbariax et al (2015). proposed BinaryConnect[11] as
a training method for neural networks with binary weights
and full-precision activations. In standard deep learning
models, the weight parameters are continuous values, de-
manding substantial memory and computational resources
during both training and inference. In contrast, BinaryCon-
nect maintains the weights in floating-point precision during
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Fig. 1: Graphical overview of the difference in weights of
BBB (left) and proposed method (right). The BBB’s weight
is a Gaussian distribution, whereas that of the proposed
method is a Bernoulli distribution. Binary weight values
are represented as a Bernoulli distribution.

training to approximate gradient for binary weight repre-
sentation using a straight-through estimator(STE)[12] and
quantizes them into binary values, typically -1 and 1, with
a sign function during the test time. This binarization pro-
cess significantly reduces memory consumption and com-
putational overhead. BinaryConnect has demonstrated its
efficacy in various machine learning tasks, making it a com-
pelling technique for optimizing neural network deployment
in real-world scenarios. Its ability to balance model effi-
ciency and performance has positioned it as a noteworthy
advancement in deep learning, particularly when computa-
tional resources are limited.

3. Probabilistic Interpretation of Binary Weights

In the conventional BBB method, the weight parameters are
represented as a Gaussian distribution. Such models require
twice the memory of vanilla and MCD models because they
utilize mean and standard deviation of parameters.

To solve this problem, we replace the weight parame-
ter from the Gaussian to Bernoulli distribution with binary
weight. Unlike the Gaussian distribution, the Bernoulli dis-
tribution has only a single parameter θ, which can express
mean and variance as θ and θ(1 − θ), respectively. Because
the weight is represented as a binary value (-1, or 1) following
Bernoulli distribution, we partially adopt a BinaryConnect
scheme [11] to train the BNN model, approximated as a
Bernoulli distribution.

During inference, the binary weight wb is sampled from
the Bernoulli distribution with parameter θ as follows:

wb = 2 × Bernoulli(θ) − 1. (9)

Here, Bernoulli(θ) means sampling 1 and 0 from the
Bernoulli distribution with probability θ and 1 − θ, respec-
tively. Multiple feedforward operations were executed to
compute the expected value of the negative log-likelihood. A
backpropagation algorithm must be used to train the model.
However, because the Bernoulli distribution is not consecu-
tive, it is not differentiable, and its gradient cannot be calcu-
lated. In the BinaryConnect training scheme, STE estimates
discrete and non-differentiable binarized weight gradients by
passing the gradient backward without modification. How-
ever, in our proposed method, we define the gradient of the
Bernoulli distribution as follows:

∂wb
∂θ
= 2 × ∂

∂θ
Bernoulli(θ)

≜ 2 × (1 − θ) × θ. (10)

We created a gradient with the local maximum value at 0.5,
preventing the weights from concentrating on 0.5. This is
because the probability of 0.5 is a completely random output,
and we consider this as the source of the noise-causing error.

We calculated the KL-divergence between Q and P, two
Bernoulli distributions with parameters µ1, µ2 as follows.

DKL(Q | |P) = µ1 ln
µ1

µ2
+ (1 − µ1) ln

1 − µ1

1 − µ2
. (11)

In our method, parameter µ2, prior distribution for Bernoulli
distribution is constant (µ2 = 0.5), whereas µ1 is a learnable
parameter (µ1 = θ). Furthermore, for numerical stability,
we add 1 inside the ln() function when performing calcula-
tions on a computer. The derivative of the KL-divergence is
calculated as follows.

DKL(Q | |P) = θ ln
θ

0.5
+ (1 − θ) ln 1 − θ

1 − 0.5
,

∂

∂θ
DKL(Q | |P) = ln

θ

1 − θ . (12)

Parameter θ gradually approaches 0.5 when optimized and
serves as a regularization term. This regularization term
strongly penalizes the Bernoulli distribution with determin-
istic probabilities, preventing overfitting and keeping the
stochastic behavior of our BNN method. This regularization
term is controlled by parameter β, determined as follows [5].

β =
2M−i

2M − 1
, (13)

where M denotes the current number of the subsets split from
the training dataset, and i denotes the number of iterations.
The first few iterations of the subsets are heavily influenced
by the KL-divergence, whereas the later subsets are gradually
weakened. Thus, the objective function F (θ) is computed
as follows.

F (θ) = −Eq(w |θ)[ln p(D |w)] + 1
β

DKL(Q | |P). (14)

The weight value is clamped from 0 to 1 when updated
because we aim to calculate the mean of the Bernoulli distri-
bution with a probability of sampling 0 or 1. The pseudocode
of our algorithm is shown in Algorithm 1.

4. Experiment

4.1 Multiclass classification task

We evaluated the proposed method in terms of accuracy and
uncertainty in the multiclass classification task compared to
other BNN methods, BBB and MCD. The PyTorch frame-
work was used to implement the models. We used the Adam
optimizer with default coefficients from PyTorch. The mini-
batch size was set to 64. The number of MC samples during
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Fig. 2: Graphical overview of the regularization term which
is a measure of the distance between the parameterized
Bernoulli distribution q(w |θ) and the Bernoulli distribution
with 50%, p(w). This regularization term strongly penalizes
the Bernoulli distribution with deterministic probabilities.

training was 5, and during evaluation, it was 10. The loss
function was the cross-entropy loss because of using the
softmax function in the last activation function. We used
the MNIST dataset [13] to evaluate the performance of our
method with a multi-layer perceptron (MLP) model. MNIST
is a handwritten digit dataset of 70,000 28*28 grayscale im-
ages representing Arabic numerals from 0 to 9, with 7,000
images per digit. The dataset contains 60,000 training and
10,000 testing images. We did not use data augmentation.
The MLP model was implemented with 32-bit floating point
for all operations and parameters as follows.

input(784) − f c(200) − f c(200)
− f c(10) − so f tmax(10),

where f c is the fully connected layer followed by batch
normalization and the ReLU function, excluding the last fully
connected layer. As for the training of MLP, the learning
rate was set to 0.01 and the number of epochs is 300. The
hyperparameters used in MNIST classification are listed in
Table 1.

Additionally, to confirm the performance of the larger
model, we used the CIFAR-10 [14] dataset and evaluated the
performance of our approach in comparison with that of a
ResNet-18 model, which is a basic convolutional neural net-
work (CNN) architecture. CIFAR-10 is a dataset of 60,000
32*32 color images in 10 classes, with 6,000 images per
class, divided into 50,000 training images and 10000 testing
images. To compensate for the low accuracy of the ResNet-
18 model, we used data augmentation by applying vertical
flips with a probability of 0.5. The following architecture
was used for the ResNet-18 model with 32-bit floating point
for all operations and parameters.

input(3 ∗ 32 ∗ 32) − 64C7K1S − 64C3K2S × 2
− 128C3K2S × 2 − 256C3K2S × 2 − 512C3K2S × 2
− GAP − f c(10) − so f tmax(10)

Algorithm 1 Pseudo code for training of Bernoulli weight
BNN
Require: a minibatch of inputs and targets (x0, t), previous parameters θ,

learning rate η, regularization parameter β

Ensure: updated parameters θ t

1. Multiple Forward Propagation

for t = 1 to T do

for l = 1 to L do

θb
l
← 2· Bernoulli(θl ) − 1

ul ←BatchNorm(xl−1 · θb
l

)

if l < L then

xl ←ReLU(ul )

end if

end for

accumt ←Softmax(uL )

end for

out ← 1
T

∑T
t=1(accumt )

2. Backward Propagation

Compute ∂F
∂uL

knowing out and t

for l = L to 1 do
∂θb

l
∂θl
← 2 · θl · (1 − θl )

∂F
∂ul−1

← ∂F
∂ul
· θb

l

∂F
∂θl
← ∂F

∂ul
· xl−1 ·

∂θb
l

∂θl

end for

3. Parameter update

for l=1 to L do

Compute ∂
∂θl

DKL (Q | |P) knowing θl

θ t
l
← Clamp(θl − η · ∂F

∂θl
− 1

β ·
∂

∂θl
DKL (Q | |P), 0, 1)

end for

where nCxKzS is the convolution layer with kernel size x and
stride z for n-channels followed by batch normalization and
the ReLU function, and GAP is global average pooling layer.
As for the training of ResNet-18, the initial learning rate was
set to 0.005, and the validation results were monitored for 5
epochs out of 50 epochs. If no improvement was observed
during this period, the learning rate was reduced by a factor
of 0.5. The hyperparameters used in CIFAR-10 classification
are listed in Table 1.

The results are provided in terms of accuracy in Table 2.
The proposed method can classify the samples in the MNIST
dataset with accuracy similar to that of the conventional
methods. However, for the CIFAR-10 classification, the
proposed method exhibited an accuracy 3.32% lower than
that of MCD because the error in the binarization of the
weights accumulates as the model becomes larger. However,
because the accuracy of our proposed method is relatively
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Table 1: Hyperparameters of each method used in the mul-
ticlass classification of CIFAR-10 and MNIST datasets.

Mini-batch size 64
Optimizer Adam

Weight decay 0.0
Beta1,Beta2 0.9, 0.999

# of MC samples train:5, evaluation:10
Loss Function Cross entropy loss

Dataset MNIST CIFAR-10
Number of epoch 300 50

Learning rate 0.01 0.005
Scheduler None ReduceLROnPlateau

Table 2: Result of prediction accuracy of each method. We
measured the performance using MLP on the MNIST dataset
and ResNet-18 on the CIFAR-10 dataset; each dataset com-
prises 10,000 test images. Each result was computed by
repeating the average prediction of 10 MC samples 10 times.

Method MNIST (MLP) CIFAR-10 (ResNet-18)
vanilla 98.46 ± 0.00% 91.39 ± 0.00%
BBB 98.46 ± 0.02% 89.69 ± 0.08%
MCD 98.45 ± 0.03% 92.04 ± 0.06%

Our method 98.43 ± 0.03% 88.72 ± 0.21%

Table 3: Result of average prediction entropy (aPE). It is
measured using MLP with each three BNN methods and
a vanilla method against the learned MNIST dataset and
Fashion-MNIST dataset, which is not learned; each dataset
comprises 10,000 test images

Method MNIST FMNIST (outliers)
vanilla 0.0156 nats 0.200 nats
BBB 0.0461 nats 0.569 nats
MCD 0.0375 nats 0.540 nats

Our method 0.1137 nats 1.093 nats

Table 4: Result of average prediction entropy (aPE). It is
measured using ResNet-18 with each three BNN methods
and a vanilla method against the learned CIFAR-10 dataset
and SVHN dataset, which is not learned; each dataset com-
prises 10,000 test images

Method CIFAR-10 SVHN (outliers)
vanilla 0.151 nats 0.558 nats
BBB 0.419 nats 1.495 nats
MCD 0.248 nats 1.406 nats

Our method 0.881 nats 1.997 nats

high, it is applicable to CNN models.
We calculated the average prediction entropy (aPE) for

in-distribution and out-of-distribution datasets to measure
the uncertainty of the model’s predictions. The aPE is ob-
tained by averaging the entropy of likelihoods for each class
under the softmax function across all data points, calculated
using Eq. (15) over a dataset of size D and class K .

aPE =
1
D

D∑
i=1

[
−

K∑
k=1

p(yki |xi) log p(yki |xi)
]
. (15)

We evaluated the uncertainty for out-of-distribution data
sampled from the Fashion-MNIST[15] and SVHN[16]
dataset by calculating aPE of MLP and CNN with each
method trained on MNIST and CIFAR-10 dataset, respec-
tively, which is in-distribution data. Table 3 and Table 4 show
aPE of Bayesian and vanilla NN methods trained on MNIST
and CIFAR-10 datasets, respectively. Each BNN method
can describe the uncertainty by predicting with high en-
tropy for out-of-distribution dataset compared to the vanilla
method. Figure 3 shows a histogram of the prediction en-
tropy with each method using MLP. A histogram of the
out-of-distribution dataset is spread widely by binarizing the
weights, whereas the in-distribution dataset is concentrated
on 0. Therefore, our method achieved higher entropy for
outliers and described uncertainty more accurately. We at-
tribute this result to weight binarization, which avoids over-
fitting the training dataset. Figure 4 shows a a histogram of
the prediction entropy with each method using ResNet-18.
Compared to previous methods, our approach exhibits high
entropy in out-of-distribution data predictions but struggles
with low-entropy predictions for in-distribution data. This
is owing to the reduction in model expressiveness caused
by binarization, which results in ResNet-18 not fitting the
dataset adequately.

Additionally, we measure expected calibration error
(ECE) [17], a metric indicating how confidence accuracy
in the model’s predictions. Thus, it measures whether a
network is over-confident or under-confident in its predic-
tions. To compute ECE, we discretize the model’s predicted
probability values into several bins and assign the model’s
predictions to a specific bin. Then, a weighted average of
the difference in the accuracy and confidence across bins is
computed as follows:

ECE =
B∑

b=1

nB

N
|accuracy(b) − confidence(b)|, (16)

where B is number of discretized bins and nb is the number
of predictions in bin b; accuracy(b) and confidence(b) are the
averages of accuracy and confidence of bin b, respectively.
Here, B = 10.

Table 5 shows the result of ECE for MLP and ResNet-
18 models. In classifying of MNIST using an MLP, our
method exhibits lower ECE than the vanilla method, indi-
cating good calibration. However, in classifying CIFAR-
10 using ResNet-18, ECE is significantly higher than other
methods due to the proposed model’s lack of expressiveness
caused by weight binarization.

4.2 Binary Classification Task

To visualize the uncertainty of the BNN models in a classi-
fication task, we conduct an experiment using the 2-Moon
dataset, a well-known synthetic dataset often used to illus-
trate binary classification concepts. The 2-Moon dataset
comprises of two crescent-shaped clusters of data points,
each representing a different class. We generated 100 data



6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

(a) vanilla (b) MCD

(c) BBB (d) Proposed model

Fig. 3: Histgrams of prediction entropy for each BNN method with MLP. The blue and orange bins correspond to the MNIST
and Fashion-MNIST datasets, respectively; each dataset comprise 10,000 images. Each method concentrates on the low and
high entropy regions for the MNIST and Fashion-MNIST datasets, respectively.

(a) vanilla (b) MCD

(c) BBB (d) Proposed method

Fig. 4: Histgrams of prediction entropy for each BNN method with ResNet-18. The blue and orange bins correspond to
the CIFAR-10 and SVHN datasets, respectively; each dataset comprises 10,000 images. Our proposed method exhibits high
prediction entropy on the out-of-distribution SVHN dataset compared to the other methods. Simultaneously, it demonstrates
relatively high prediction entropy on the in-distribution CIFAR-10 dataset.

Table 5: Expected calibration error of each method. We
measured the performance using MLP on the MNIST dataset
and ResNet-18 on the CIFAR-10 dataset, each comprising
of 10,000 test images.

Method MNIST (MLP) CIFAR-10 (ResNet-18)
vanilla 1.105 % 5.460 %
BBB 0.590 % 0.977 %
MCD 0.717 % 1.507 %

Our method 0.902 % 8.877 %

points and added Gaussian noise with a standard deviation of
0.1 for each class. The MLP model used in this experiment
was implemented with 32-bit floating point for all operations

Table 6: Hyperparameters used in regression of sine curve
dataset and binary classification of 2-Moon dataset.

Optimizer Adam
Loss Function Mean squared error loss
Beta1,Beta2 0.9, 0.999
Scheduler None

# of MC samples train:5, evaluation:10
Dataset 2-Moon Sine curve

Mini-batch size 32 200
Number of epoch 2000 1000

Learning rate 0.01 0.001
weight decay 0.0 0.001
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(a) Proposed method (b) BBB (c) MCD

Fig. 5: Classification results on the two moons dataset with the three BNN methods. Left: proposed method; middle: BBB
using the Gaussian distribution; right: MCD. Each result is the average of 10 prediction samples. The red and blue points
represent class 0 and 1 data points, respectively. The model becomes more confident in classifying data as class 0 and 1 as the
region becomes red and blue, respectively.

(a) Proposed method (b) BBB (c) MCD

Fig. 6: Regression results with sine function for the three different BNN methods. Left: proposed algorithm; middle: BBB;
right: MCD. The red data points represent the training data for the sine function, yellow line represents the true sine function,
and blue line represents model predictions, which is the average of 10 sampled predictions. The light blue envelope represents
the 95% confidence interval.

and parameters as follows.

input(2) − f c(64) − f c(64) − Sigmoid(1),

where f c is the fully connected layer followed by batch nor-
malization and the ReLU function, excluding the last fully
connected layer, and Id is the identity function. The hy-
perparameters used in this experiment are listed in Table
6. Figure 5 shows the classification result with three BNN
methods. Each BNN model exhibits a low likelihood near
class decision boundaries, allowing for effective uncertainty
estimation. However, our model has wider regions of lower
likelihood near decision boundaries, while MCD shows ir-
regularly scattered regions of low likelihood even for data
points far from the decision boundaries. Additionally, BBB
has the narrowest low likelihood decision boundaries and the
highest overconfidence.

4.3 Regression Task

To visualize the uncertainty of BNN models in a regres-
sion problem, we conduct an experiment using a simple sine
function regression. We generated training data from the

sine function curve with 200 data points as follows:

y = sin(2π(x)) + ϵ (0 ≤ x ≤ 1), (17)

where ϵ is the Gaussian noise with standard deviation 0.1.
The MLP model used in this experiment was implemented
with 32-bit floating point for all operations and parameters
as follows.

input(1) − f c(32) − Id(1),

where f c is the fully connected layer followed by batch nor-
malization and the tanh function, excluding the last fully
connected layer, and Id is the identity function. The Hy-
perparameters used in this experiment are listed in Table
6. Figure 6 shows the regression result of the generated
data points using three BNN methods. All three models
display large confidence intervals outside the training range
(x < 0, x > 1). However, within the 95% confidence inter-
vals in regions where training data exists (0 ≤ x ≤ 1), BBB
fails to cover data with narrow confidence intervals, whereas
MCD exhibits wide and narrow confidence intervals. In con-
trast, our proposed method can cover most data points within
the 95% confidence intervals.
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Fig. 7: Relationship between activation bit length and accu-
racy with quantization aware training.

4.4 Activation Quantization

We experimentally explore the number of bits for activation
fixed-point quantization in our method with MNIST classifi-
cation using MLP through quantization aware training[18].
In this experiment, we reduce the number of bits of the
activations before and after the batch normalization layer,
originally represented as 32-bit floating-point numbers, to a
fixed-point representation with a specific number of bits for
the model used in MNIST classification. The hyperparam-
eters used in this experiment are the same as those listed in
Table 1. Figure 7 shows the relationship between accuracy
and activation quantization. The number of activation quan-
tization bits has a minimal impact on inference accuracy for
8 bits and above, with a significant drop in accuracy observed
from the 7 bits or fewer. Therefore, 8-bit fixed-point quan-
tization is beneficial for implementing the proposed method
on resource-constrained devices. The proposed method has
half the parameter size compared to BBB. However, when
compared to MCD and vanilla, the sizes are equivalent, and
no superiority can be demonstrated. Nevertheless, since
the weights are sampled to binary values (-1 or 1), making
it possible to replace multiply-accumulate operations with
fixed-point 8-bit additions when implemented in hardware.

5. Conclusion

In this study, we propose a method to extend binary NNs
to BNNs by interpreting binary weights as probabilities,
and investigate their performance across tasks, such as mul-
ticlass classification, binary classification, and regression.
The proposed method reduces memory consumption by half
compared to the BBB method by reducing the weight pa-
rameters. In addition, compared to the MCD method, our
method offers the advantage of reducing hardware resources
by replacing multipliers with adders and enabling faster com-
putations. Additionally, our proposed method could capture
uncertainty and achieve similar accuracy as other methods
when applied to smaller network sizes. Weight binarization
suited for hardware implementation is controllable at the

bit-level signal and does not yield full benefits when imple-
mented on GPUs or CPUs. Therefore, as a future work, we
plan to implement the proposed algorithm in a digital circuit
such as FPGA and confirm the acceleration of operations and
reduction of hardware resources. Furthermore, since our ap-
proach currently demonstrates lower accuracy and fails to
capture uncertainty effectively compared to other methods
when applied to larger network sizes, we plan to explore
improvement techniques from an algorithmic perspective.
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