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Functional Decomposition of Symmetric Multiple-Valued Functions
and Their Compact Representation in Decision Diagrams∗

Shinobu NAGAYAMA†a), Tsutomu SASAO††b), Members, and Jon T. BUTLER†††c), Nonmember

SUMMARY This paper proposes a decomposition method for symmet-
ric multiple-valued functions. It decomposes a given symmetric multiple-
valued function into three parts. By using suitable decision diagrams for
the three parts, we can represent symmetric multiple-valued functions com-
pactly. By deriving theorems on sizes of the decision diagrams, this paper
shows that space complexity of the proposed representation is low. This
paper also presents algorithms to construct the decision diagrams for sym-
metric multiple-valued functions with low time complexity. Experimental
results show that the proposed method represents randomly generated sym-
metric multiple-valued functions more compactly than the conventional
representation method using standard multiple-valued decision diagrams.
Symmetric multiple-valued functions are a basic class of functions, and
thus, their compact representation benefits many applications where they
appear.
key words: symmetric functions, multiple-valued functions, functional de-
composition, decision diagrams.

1. Introduction

Symmetric functions are functions whose values are un-
changed by any permutation of input variable labels. Of-
ten studies in digital system design involve symmetric func-
tions. For example, studies of arithmetic operations, cryp-
tography, and voting systems in ensemble machine learn-
ing [7, 12, 13, 20, 25] often use symmetric functions. Whole
sections of textbooks deal with symmetric functions [10,22].
More than 50 years ago, it also was shown that symmetric
functions can represent any switching functions using repe-
tition of input variables [2, 8, 11, 29]. Also, multiple-valued
symmetric functions have been widely studied [5, 19, 26].
A compact representation, such as the one presented here,
can result in a breakthrough in multiple-valued symmetric
functions.

To represent symmetric functions compactly, this pa-
per focuses on their functional decomposition. Decision di-
agrams [1,3,9] for symmetric functions are not so large even
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in a monolithic (undecomposed) decision diagram because
of their regular structure. However, we aim for a more com-
pact representation of symmetric functions by decomposing
the functions and using decision diagrams for the decom-
posed parts. The problem to achieve such a compact rep-
resentation is how to decompose symmetric functions and
what decision diagrams are used.

This paper proposes a method to decompose symmet-
ric multiple-valued functions based on equivalence classes
of input vectors. By using an index generation func-
tion [23, 24], a symmetric multiple-valued function is de-
composed into three parts. For each of the three parts, we
propose suitable decision diagrams to obtain a compact rep-
resentation of symmetric multiple-valued functions. This
paper derives the exact number of nodes in the decision dia-
grams for symmetric multiple-valued functions to show the
compactness of the proposed representation method theoret-
ically. This paper also proposes algorithms to construct the
decision diagrams for symmetric multiple-valued functions
with low time complexity. Experimental results using ran-
domly generated symmetric multiple-valued functions show
that the size of the proposed decision diagrams is smaller
than the size of monolithic multiple-valued decision dia-
grams (MDDs) that are conventionally used for represen-
tation of symmetric multiple-valued functions.

The rest of this paper is organized as follows: Section 2
shows some definitions for symmetric multiple-valued func-
tions and conventional decision diagrams. Section 3
presents a decomposition method of symmetric multiple-
valued functions. Based on the decomposition method, Sec-
tion 4 presents a compact representation method using deci-
sion diagrams. Section 4 also shows some theorems on the
size of the decision diagrams and algorithms to construct
them. Section 5 compares the size of the proposed deci-
sion diagrams with the size of monolithic MDDs for ran-
domly generated symmetric multiple-valued functions, and
Section 6 concludes the paper.

2. On Symmetric Functions and Decision Diagrams

In this section, we briefly define symmetric multiple-valued
functions [5] and basic decision diagrams.

2.1 Symmetric Multiple-Valued Functions

Definition 1: For an n-variable r-valued function f (X1,X2,
. . . ,Xn) : {0,1, . . . ,r−1}n →{0,1, . . . ,r−1}, an assignment
of values to the n variables is an input vector X⃗ . When the
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Table 1 Example of a Three-valued Symmetric Function.

X1 X2 X3 f

0 0 0 0
1 1 1 2
2 2 2 1
0 0 1 2
0 1 0 2
1 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1
0 2 2 1
2 0 2 1
2 2 0 1
1 1 2 0
1 2 1 0
2 1 1 0
1 2 2 2
2 1 2 2
2 2 1 2
0 1 2 2
0 2 1 2
1 0 2 2
1 2 0 2
2 0 1 2
2 1 0 2

rn input vectors (0,0, . . . ,0) ∼ (r − 1,r − 1, . . . ,r − 1) are
applied to the input variables of the function f in ascending
order, the vector of obtained function values is the function
vector F⃗ . In this paper, we assume that all the rn values
of f are specified (i.e., f is a completely specified function)
unless otherwise stated.

Definition 2: An n-variable function f (n ≥ 2) is symmet-
ric† if its function vector F⃗ is unchanged by any permutation
of any variable labels. That is, in this paper, a symmetric
function means a totally symmetric function.

Example 1: Table 1 shows an example of a three-variable
three-valued symmetric function f . In this table, input vec-
tors are reordered and grouped into the same combinations
of input values. As shown in Table 1, function values of the
function are independent of permutations of input values,
but are dependent only on combinations of input values.

2.2 Basic Decision Diagrams

Definition 3: A multiple-valued decision diagram (M-
DD) [9] is a rooted directed acyclic graph (DAG) represent-
ing an r-valued function. The MDD is obtained by recur-
sively applying the extended Shannon expansion to the r-
valued function. It consists of r terminal nodes representing
function values, 0 to r−1, and nonterminal nodes represent-
ing input r-valued variables. Each nonterminal node has r
outgoing edges that correspond to r values of an input vari-
able. Terminal nodes have no outgoing edges. In this paper,

†This paper focuses only on variable-symmetry [5].
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Fig. 1 MDD for Symmetric Function f Specified in Table 1

an MDD is obtained by fixing the variable order in an MDD,
and by applying the following two reduction rules:

1. Coalesce equivalent sub-graphs.
2. Delete nonterminal nodes v all of whose outgoing

edges point to the same node, and redirect edges point-
ing to v to its child node u.

Example 2: Fig. 1 shows an MDD for the symmetric
multiple-valued function f in Table 1. In Fig. 1, for read-
ability, terminal nodes in the MDD are NOT shared com-
pletely. The number of nodes in this MDD is 13 (3 distinct
terminal nodes and 10 distinct non-terminal nodes).

Definition 4: An edge-valued MDD (EVMDD) [15,16] is
a variant of an MDD. It consists of one terminal node repre-
senting 0 and nonterminal nodes with edges having integer
weights; 0-edges always have zero weights. In an EVMDD,
the function value is represented as a sum of weights for
edges traversed from the root node to the terminal node.

Definition 5: A zero-suppressed binary decision dia-
gram (ZDD) [14] is a variant of a binary decision diagram
(BDD) [1, 3] that is a special case of an MDD for repre-
senting a binary function. It consists of two terminal nodes
representing function values 0 and 1 respectively, and non-
terminal nodes representing input binary variables. Each
nonterminal node has two unweighted outgoing edges, 0-
edge and 1-edge, that correspond to two values of an input
variable. Both terminal nodes have no outgoing edges. In
this paper, a ZDD is obtained by fixing the variable order in
a ZDD, and by applying the following two reduction rules:

1. Coalesce equivalent sub-graphs.
2. Delete nonterminal nodes v whose 1-edge points to the

terminal node representing 0, and redirect edges point-
ing to v to its child node u pointed by v’s 0-edge.

3. Functional Decomposition of Symmetric Functions

For symmetric functions, if combinations of input values are
the same, they are assigned to the same function value, as
shown in Example 1. Thus, it is unnecessary to distinguish
each of input vectors having the same combination of in-
put values to represent symmetric functions. We classify
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Table 2 Correspondences Between α⃗’s and Function Values of f .

α2 α1 α0 f

0 0 3 0
0 3 0 2
3 0 0 1
0 1 2 2
1 0 2 0
0 2 1 1
2 0 1 1
1 2 0 0
2 1 0 2
1 1 1 2

such input vectors into an equivalence class which has the
same combination of input values. In this paper, by using
the following notation introduced in [5, 6, 17], we represent
equivalence classes of input vectors efficiently.

Definition 6: For an n-variable r-valued symmetric func-
tion f (X1,X2, . . . ,Xn), we classify input vectors X⃗ =
(X1,X2, . . . ,Xn) into equivalence classes, each of which has
the same combination of input values. Then, we represent
each equivalence class as follows:

α⃗ = (αr−1,αr−2, . . . ,α1,α0),

where αi denotes the number of variables whose values are
i, and ∑

r−1
i=0 αi = n. In this paper, such equivalence classes

are called α-equivalence classes.

Lemma 1: [6] For an n-variable r-valued symmetric func-
tion, the number of α-equivalence classes, Nα, is

Nα =

(
n+ r−1

r−1

)
.

Since Nα < rn, a table with α⃗ and its corresponding
function value is smaller than the truth table where the func-
tion value of every input vector is separately specified as
Table 1.

Example 3: Table 2 shows correspondences between α⃗’s
and function values of the symmetric function f in Table 1.
Since Nα = 10 and rn = 27, this table is much smaller than
the truth table of f .

In this way, by using α⃗, we can decompose a symmet-
ric multiple-valued function f (X⃗) into two functions g and
h: the first function g(X⃗) that transforms X⃗ into α⃗ and the
second function h(⃗α) that produces function values from α⃗.
That is, we have

f (X⃗) = h(g(X⃗)).

Although the function g remains symmetric and completely
specified, the function h is asymmetric and incompletely
specified. In general, it is difficult to predict structures of
decision diagrams for asymmetric and incompletely speci-
fied functions, and thus, whether they are compact or not.
Thus, decision diagrams for h can be large even though a
table for h is smaller than the truth table of f , as shown in
Example 3.

Table 3 Index Generation Function idx and h′ in Decomposition of h.

α2 α1 α0 idx idx h′

0 0 3 index0 index0 0
0 3 0 index1 index1 2
3 0 0 index2 index2 1
0 1 2 index3 index3 2
1 0 2 index4 index4 0
0 2 1 index5 index5 1
2 0 1 index6 index6 1
1 2 0 index7 index7 0
2 1 0 index8 index8 2
1 1 1 index9 index9 2

To represent the function h with decision diagrams
compactly, we decompose h into two functions: an index
generation function idx [23, 24] and h′. The index gener-
ation function idx produces a unique index for each α⃗, and
the function h′ produces a function value of f from an index.
By using the three functions g, idx, and h′, we decompose the
original symmetric function f as follows:

f (X⃗) = h′(idx(g(X⃗))).

The function h′ that is a map from the set of Nα indices to the
set of r values is a one-variable completely specified func-
tion. On the other hand, the index generation function idx
is usually asymmetric and incompletely specified. However,
we can freely choose any values for indices as long as they
are unique, since they do not affect the original function val-
ues. Thus, we choose values for indices of idx so that deci-
sion diagrams for idx and h are compact. In the next section,
we discuss the values for indices making decision diagrams
compact along with suitable decision diagrams for the three
functions: g, h, and idx.

Example 4: Table 3 shows an index generation function
idx and h′ in decomposition of h for the symmetric function
f . Since we can freely choose any values for 10 indices,
each index is denoted abstractly as “indexi” in the tables.

4. Representation of Decomposed Functions by Deci-
sion Diagrams

This section presents suitable decision diagrams for the
three subfunctions: g, idx, and h′, obtained by the proposed
decomposition method in Section 3.

4.1 For Conversion of Input Vectors X⃗ into α⃗

The first function g is a map from an input vector X⃗ to a
vector α⃗, and thus, it can be considered as a multiple-output
multiple-valued function. To represent such a multiple-
output function g, we introduce another decision diagram:

Definition 7: A vectorized EVMDD (VEVMDD) [28] is
a variant of an EVMDD, and its edges have vectors instead
of scalar values. The vectors consist of integers, and 0-edges
always have the zero vector. The terminal node also repre-
sents the zero vector. Output vectors of the function are rep-
resented as a sum of vectors of edges traversed from the root
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Fig. 2 VEVMDD for Map g from Three-Variable Three-Valued X⃗ to α⃗.

node to the terminal node.

Each element αi of the α⃗ = (αr−1,αr−2, . . . ,αi, . . . ,α1,
α0) represents the number of input values i included in an
input vector X⃗ . Thus, we convert X⃗ into α⃗ as follows:

1. Represent each input value i by one-hot encoding, in
which only the (i+1)-th bit is 1 and the others are 0.

2. Vectorize the encoded value by considering each bit as
each element of an r-element vector.

3. Compute a sum of one-hot encoded vectors according
to values of input variables.

By assigning vectors obtained by the steps 1 and 2 to edges
of a node for each input variable in a VEVMDD, we can
represent g by a VEVMDD, and perform the computation
of step 3 on the VEVMDD.

Example 5: Fig. 2 shows a VEVMDD for the function g
converting three-variable three-valued X⃗ into α⃗. In this fig-
ure, each edge has a three-element vector denoted by a rect-
angle. Note that for ease of understanding, non-zero vectors
are assigned to 0-edges. After normalizing the VEVMDD
such that all 0-edges have only the zero vector, its edge to
the root node has a vector (0,0,3), 1-edges have (0,1,−1),
and 2-edges have (1,0,−1).

Consider an input vector X⃗ = (2,0,2). The one-hot
encoded vectors for values in X⃗ are (1,0,0), (0,0,1), and
(1,0,0), respectively. The sum of these three vectors is
(2,0,1), and it is equal to the α⃗ = (α2,α1,α0) of X⃗ . We can
perform the same computation on the VEVMDD by travers-
ing edges from the root node to the terminal node according
to values of input variables, and summing up vectors of tra-
versed edges. Note that X⃗ = (2,2,0) and (0,2,2) also yield
the same α⃗ = (2,0,1).

Since the function g is symmetric, and vectors for input vari-
ables can be chosen independently from each other, we have
the following:

Theorem 1: A VEVMDD for an n-variable r-valued func-
tion that converts X⃗ into α⃗ has exactly n+ 1 nodes, regard-
less of the order of variables.

(Proof) From the explanation just before the theorem, it is

χ’
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index2

index3

index4

index5

index6
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index8
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0120

Fig. 3 MTZDD for One-Hot Encoded Function χ′ of h′

clear that the conversion from X⃗ into α⃗ can be represented
by a VEVMDD whose edges have the one-hot encoded vec-
tors. Since each vector is chosen by an input variable in-
dependently, branching does not occur at each nonterminal
node. Therefore, the number of nodes is always n+1 includ-
ing the terminal node. Since the function is symmetric, the
number of nodes is unchanged by any permutation of vari-
ables. The normalization of VEVMDDs affects only vectors
of edges, the number of nodes is still unchanged.

4.2 Function for Producing Original Function Values

Next, consider the function h′ producing a function value
from an index. As shown in Table 3, this function can be
considered as a set of pairs of an index and a function value.
Although it is well known that a ZDD is suitable for rep-
resentation of such a set [14], we take a different approach
shown in the following:

1. Represent indices by one-hot encoding.
2. Let the function from one-hot encoded indices to func-

tion values of f be h′1. Then, h′1 is an incompletely
specified Nα-bit input r-valued output function.

3. Produce a completely specified function χ′ from h′1 by
assigning a special value /0 meaning invalid to don’t
cares of h′1, where χ′ : {0,1}Nα →{ /0,0,1, . . . ,r−1}.

To represent χ′ by a compact decision diagram, we present
the following variant of ZDD:

Definition 8: A multiple-terminal ZDD (MTZDD) is a
variant of a ZDD for representing a binary input (r + 1)-
valued output function χ′, and it has r + 1 terminal nodes.
One of the r + 1 terminal nodes represents the invalid
value /0, and the others represent valid function values:
0,1, . . . ,r − 1. In MTZDDs, the second reduction rule for
ZDDs is modified as follows:

2. Delete nonterminal nodes v whose 1-edge points to the
terminal node representing /0, and redirect edges point-
ing to v to its child node u pointed by v’s 0-edge.
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Example 6: Fig. 3 shows an MTZDD for the one-hot en-
coded function χ′ of the function h′ in Table 3. In Fig. 3,
dashed lines and solid lines denote 0-edges and 1-edges, re-
spectively. Note that each nonterminal node represents a
binary variable obtained by the one-hot encoding of each
index. For viewability, original indices are used as labels
of the nonterminal nodes. The MTZDD has four terminal
nodes for the invalid value /0 as well as the three valid func-
tion values. The number of nodes in this ZDD is 14.

Theorem 2: For an r-valued function h′ from Nα distinct
indices to {0,1, . . . ,r − 1}, an MTZDD for its one-hot en-
coded function χ′ has exactly Nα nonterminal nodes, regard-
less of the order of variables for indices.

(Proof) Let a valid-path in an MTZDD for χ′ be a sequence
of edges and nodes leading from the root node to a terminal
node representing a valid function value. Since a valid-path
represents a pair of an index and a function value, the num-
ber of distinct valid-paths is exactly Nα. That is, Nα distinct
indices are represented by Nα distinct valid-paths, respec-
tively. Thus, exactly Nα nonterminal nodes are needed to
represent indices.

By considering the valid function values and the in-
valid value as logic values 1 and 0, respectively, the func-
tion χ′ can be considered as a binary symmetric function
S1

Nα
that its function value is 1 only when one of Nα input

variables has 1 [22]. In ZDDs for binary symmetric func-
tions, the number of nodes is unchanged by any permuta-
tion of variables. Since the only difference between ZDDs
and MTZDDs is the values of terminal nodes, the number
of nodes in MTZDDs for χ′ is unchanged as well. Thus, we
have the theorem.

4.3 Index Generation Function idx

As shown in Section 4.2, the compactness of MTZDDs for
χ′ is due, in large part, to the use of an index generation
function idx. However, if a decision diagram for idx is large,
the advantage of the compactness can be canceled out. For-
tunately, values of indices are still independent of the com-
plexity of MTZDDs, and thus, we can freely decide index
values so that a decision diagram for idx will be compact.
The only constraint on index values is that they be unique.

The simplest way to produce unique indices from α⃗ is
considering an α⃗ = (αr−1,αr−2, . . . ,α0) as an r-digit base
(n+ 1) number (αr−1αr−2 . . .α0)n+1, and converting it into
a decimal number d as follows:

d =
r−1

∑
i=0

αi(n+1)i. (1)

This computation can be considered as a completely speci-
fied function from α⃗ to d that is compatible with the index
generation function idx. It is well-known that EVMDDs can
represent the function converting into decimal numbers with
r+1 nodes [21, 27]. Thus, we produce indices using (1).

Then, the produced indices are encoded with the one-
hot encoding for input of χ′. The one-hot encoded indices
d1 are obtained by a bit shift operation (left shift) “<<” of

α0
0

1

3

d

1 3

α10 3

12

α20 3

48

e

2

2

1

4 8

2

1

16 32

2

1

Fig. 4 SEVMDD for Map from α⃗ to One-Hot Encoded Indices.

a unit vector e⃗, as follows:

d1 = e⃗ << d,

where e⃗ is an (n+1)r-bit unit vector (0,0, . . . ,0,1). This bit
shift operation can be computed using each term αi(n+1)i

of (1) sequentially, instead of d, as follows:

d1 = (((⃗e << (α0(n+1)0))<< (α1(n+1)1))

<< .. . << (αr−1(n+1)r−1)). (2)

To represent (2) compactly, we present a decision diagram
that is a variant of a VEVMDD [28] and a factored EVBDD
(FEVBDD) [21].

Definition 9: An MDD with edge values for shifting is
a variant of a VEVMDD and an FEVBDD, and its m-
branch nonterminal nodes are based on the following ex-
tended Shannon expansion:

f = Y 0
i f0 +Y 1

i ( f1 << s1(i))+ . . .

+Y m−1
i ( fm−1 << sm−1(i)),

where Yi is a multiple-valued variable represented by a non-
terminal node, Y j

i is its literal that is

Y j
i =

{
1 (Yi = j)
0 (Otherwise),

s j(i) is an edge value, and f j is a cofactor with f (Yi = j).
The terminal node represents a unit vector e⃗ = (0,0, . . . ,1).
The unit vector e⃗ is shifted sequentially by values s j(i) of
edges traversed from the root node to the terminal node. For
convenience, we call this SEVMDD.

Let a variable Yi be αi, an edge value s j(i) be j(n+1)i,
and e⃗ at the terminal node be the Nα-bit unit vector. Then,
we can represent (2) by an SEVMDD.

Example 7: Fig. 4 shows an SEVMDD representing (2)
for idx in Table 3. Each edge has a shift amount of the 43-bit
unit vector e⃗ = (0,0, . . . ,0,1).

Consider an α⃗ = (1,0,2). By traversing edges of the
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Fig. 5 Functional Decomposition and Their Decision Diagrams

SEVMDD from the root node to the terminal node accord-
ing to values of α⃗, and shifting e⃗ with 16, 0, and 2 sequen-
tially, we obtain an one-hot encoded index whose only 19th
bit from the right is 1.

Theorem 3: An SEVMDD for an r-variable function
transforming α⃗ into a one-hot encoded index has exactly
r+1 nodes, regardless of the order of variables.

(Proof) It is similar to the proof of Theorem 1. Since the re-
sultant one-hot vector is obtained independently of the order
of applying the shift operations, we have the theorem.

4.4 Combining Two Functions g and idx

Section 4.3 showed how to produce one-hot encoded indices
d1 from α⃗ using (2). However, we can produce d1 from input
vectors X⃗ as well, instead of α⃗. Each αi in α⃗ represents the
number of X j’s whose values are i. Thus, instead of shifting
by αi at once, we can shift e⃗ partially and sequentially by
each X j = i to produce the same indices. The amount of
shifting is (n+1)i bits for each X j = i.

That is, by setting X j to a variable Yj for an SEVMDD
and setting (n+1)i to its edge value si( j), we can obtain an
SEVMDD for a composite function idx(g(X⃗)) that produces
one-hot encoded indices d1 from X⃗ . Note that in the ob-
tained SEVMDD for idx(g(X⃗)), 0-edges have non-zero edge
values s0( j) = (n+1)0 = 1. However, it is easy to normalize
the SEVMDD so that all 0-edges have the zero value. Since
the normalization process is the same as one for ordinary
EVMDDs, we omit its detail.

For the size of the SEVMDD for idx(g(X⃗)), the follow-
ing corollary can be easily derived from Theorem 3.

Corollary 1: Let idx(g(X⃗)) be an n-variable (n + 1)r-bit
output composite function that transforms X⃗ into a one-hot
encoded index. Then, an SEVMDD for idx(g(X⃗)) has ex-
actly n+1 nodes, regardless of the order of variables.

Fig. 5 shows the relation between the proposed decom-
position of symmetric multiple-valued functions and its de-
cision diagram based representation. In this way, we can
represent any n-variable symmetric r-valued function us-
ing two decision diagrams: an SEVMDD and an MTZDD.
From Theorem 2 and Corollary 1, the total number of non-
terminal nodes needed to represent a symmetric function is

Nα +n.

In the proposed representation method, α⃗ is unnecessary as
a result. However, α⃗ plays an important role to derive this

Algorithm 1: Construction of SEVMDD for idx(g(X⃗))

Input: the number of variables n and the number of values r
Output: the SEVMDD for idx(g(X⃗))

1. Compute Nα using Lemma 1.
2. Create the terminal node with e⃗ with Nα bits.
3. For each Xi (i = n,n−1, . . . ,2,1), do the following:

3-1. Create a nonterminal node labeled with Xi.
3-2. Connect all edges to the topmost node.
3-3. Set (n+1) j to the edge value of the j-edge.

4. Normalize the SEVMDD so that all 0-edges have the zero value.

Algorithm 2: Construction of MTZDD for χ′

Input: Nα pairs of a one-hot encoded index and a function value of f
and the number of values r

Output: an MTZDD for χ′

1. Create r terminal nodes labeled with each valid function value.
2. Create a terminal node labeled with the invalid value /0.
3. For each pair of indexi and f (i = Nα − 1,Nα − 2, . . . ,1,0), do the
following:

3-1. Create a nonterminal node labeled with indexi.
3-2. Connect the 0-edge to the topmost node or the terminal node /0

(if i = Nα −1).
3-3. Connect the 1-edge to a terminal node for f .

compact representation.
Since a standard MDD for an n-variable symmetric r-

valued function requires O(nr/r!) nodes [4], the proposed
method using an SEVMDD and an MTZDD requires much
smaller nodes for large n.

4.5 Algorithms to Construct SEVMDD and MTZDDs

This subsection shows algorithms to construct the SEVMDD
for the composite function idx(g(X⃗)) shown in Section 4.3
and MTZDDs for χ′ shown in Section 4.2. The structure of
the SEVMDD for idx(g(X⃗)) is unchanged for any n-variable
r-valued symmetric function. Thus, it is enough to construct
an SEVMDD for each n and r only once. On the other hand,
an MTZDD has to be constructed for each symmetric func-
tion f since χ′ depends on the function values of f .

Algorithm 1 shows how to construct the SEVMDD for
idx(g(X⃗)). Its time complexity is clearly O(n). Algorithm 2
shows how to construct an MTZDD for χ′. Its time com-
plexity is O(Nα). In this way, both algorithms construct
SEVMDD and MTZDD efficiently in linear time of their
input size.

5. Experimental Results

To evaluate the effectiveness of the proposed representa-
tion method quantitatively, we compare the total number of
nodes in the proposed method with the number of nodes
in standard MDDs for randomly generated n-variable r-
valued symmetric functions. For this size evaluation, we
randomly generated 10 symmetric functions† in various n

†They are obtained by generating random integers from 0 to
r−1 as function values in a table of α⃗, as shown in Table 2.
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Table 4 Average Number of Nodes in MDD and Proposed Method.

Proposed Method Ratio
n r MDD SEVMDD MTZDD Total (%)
3 3 11.6 4 13.8 17.8 153
4 3 19.6 5 18.8 23.8 121
5 3 32.6 6 24.9 30.9 95
6 3 51.1 7 32.0 39.0 76
7 3 74.9 8 40.0 48.0 64
8 3 104.9 9 49.0 58.0 55
9 3 142.3 10 59.0 69.0 48
10 3 187.8 11 70.0 81.0 43
11 3 242.5 12 82.0 94.0 39
12 3 302.8 13 95.0 108.0 36
13 3 386.6 14 109.0 123.0 32
3 4 18.8 4 25.0 29.0 154
4 4 38.6 5 40.0 45.0 117
5 4 71.9 6 61.0 67.0 93
6 4 124.2 7 89.0 96.0 77
7 4 200.5 8 125.0 133.0 66
8 4 309.2 9 170.0 179.0 58
9 4 452.8 10 225.0 235.0 52
10 4 642.4 11 291.0 302.0 47
11 4 886.9 12 369.0 381.0 43
3 5 26.0 4 41.0 45.0 173
4 5 60.8 5 76.0 81.0 133
5 5 130.4 6 132.0 138.0 106
6 5 254.9 7 216.0 223.0 87
7 5 459.9 8 336.0 344.0 75
8 5 778.5 9 501.0 510.0 66
9 5 1,252.1 10 721.0 731.0 58
Ratio = Total / MDD × 100

and r, and represented them by standard MDDs and the
proposed method. Table 4 shows their average number of
nodes rounded to one decimal place for 10 symmetric func-
tions. Since the proposed representation method consists
of two types of decision diagrams: an SEVMDD and an
MTZDD, Table 4 shows the size of “SEVMDD”, the size
of “MTZDD”, and their “Total” size. The column “Ratio”
shows the ratio of the total size to the size of standard MDD
in percentage.

As shown in Table 4, when n is small (n = 3 to 5 in this
experiment), MTZDDs are larger than standard MDDs be-
cause of the overhead caused by the one-hot encoding that
increases the number of input variables. On the other hand,
when n is large (n ≥ 6), MTZDDs are smaller than MDDs,
resulting in more compact representations even including
the size of SEVMDDs. As the number of variables n in-
creases, the ratio of of the total size in the proposed method
to the size of MDD gets small. Thus, we can say that the
size complexity of the proposed method is lower than that
of MDDs.

For 10 symmetric functions generated for each n and
r, their 10 MDDs have different sizes, depending on a com-
bination of generated function values. On the other hand,
10 SEVMDDs have the same size, as shown in Corollary 1.
Similarly, MTZDDs also have the same size except for the
cases of n = 3 to 5 and r = 3. When n = 3 to 5 and r = 3,
only a few functions have 1 or 2 of 3 kinds of function val-
ues. However, in even such a case, the number of nontermi-
nal nodes in an MTZDD is exactly the same as Nα, as shown
in Theorem 2. Thus, the proposed method can compactly

represent symmetric multiple-valued functions, regardless
of combinations of function values.

6. Conclusion and Future Works

This paper proposes a decomposition method of a symmet-
ric multiple-valued function into three parts. We also pro-
pose an SEVMDD and an MTZDD to represent the three
parts compactly. This paper derived some theorems on
sizes of the SEVMDD and the MTZDD. The theorems and
experimental results using randomly generated symmetric
multiple-valued functions showed that the size complexity
of the proposed decomposition-based representation method
is lower than the size complexity of ordinary MDDs.

The proposed decomposition method includes an in-
dex generation function. Thus, a decomposition method
for index generation functions [24] would be useful to re-
duce the size complexity furthermore. Since our decom-
position based method can require longer time to evaluate
functions, studying evaluation methods targeting some ap-
plications would be more practical. In addition, investi-
gating a decomposition method for maximally asymmetric
functions [17] would be interesting.
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