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LETTER
Smart Contract Timestamp Vulnerability Detection Based on Code
Homogeneity

Weizhi WANG†, Lei XIA††, Zhuo ZHANG†††a), Nonmembers, and Xiankai MENG††††, Member

SUMMARY Smart contracts, as a form of digital protocol, are computer
programs designed for the automatic execution, control, and recording of
contractual terms. They permit transactions to be conducted without the
need for an intermediary. However, the economic property of smart con-
tracts makes their vulnerabilities susceptible to hacking attacks, leading to
significant losses. In this paper, we introduce a smart contract timestamp vul-
nerability detection technique HomoDec based on code homogeneity. The
core idea of this technique involves comparing the homogeneity between the
code of the test smart contract and the existing smart contract vulnerability
codes in the database to determine whether the tested code has a timestamp
vulnerability. Specifically, HomoDec first explores how to vectorize smart
contracts reasonably and efficiently, representing smart contract code as a
high-dimensional vector containing features of code vulnerabilities. Subse-
quently, it investigates methods to determine the homogeneity between the
test codes and the ones in vulnerability code base, enabling the detection of
potential timestamp vulnerabilities in smart contract code.
key words: Smart Contract, vulnerability detection, code homogeneity

1. Introduction

Over the last decade, as blockchain technology and digital
cryptocurrencies have become widely adopted, the emerging
platforms, notably Bitcoin [1] and Ethereum [2], have gained
increasing recognition and development. Smart contracts [3]
stand out as a pivotal technological innovation, utilizing a
consensus mechanism that leverages user confirmations on
the blockchain to ensure reliability. This ambitious initiative
has garnered market recognition, leading to the release of
numerous smart contracts on the Ethereum platform. Smart
contracts are commonly crafted using a higher-level language
known as Solidity [3], which bears similarities to JavaScript
and C++. Following the coding process, they are subse-
quently compiled into EVM (Ethereum Virtual Machine)
bytecode. A fundamental principle within the Ethereum
ecosystem dictates that all transactions, purchases, and sales
are irreversible and immutable. Despite this principle, for the
sake of ease in deployment and development, many contracts
undergo modifications based on the original code. Unfor-
tunately, this practice opens up opportunities for hackers to
exploit vulnerabilities. Therefore, it is of great significance to
effectively detect smart contract code vulnerabilities before
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their deployment.
Various effective detection techniques have been devel-

oped by researchers. These include static analysis-based ap-
proaches, formal verification-based methods, fuzzing-based
strategies, and symbolic execution-based methods [4]. Tradi-
tional detection methods heavily rely on expert knowledge,
necessitating the manual summarization of rules and pat-
terns for identifying vulnerabilities beforehand, which are
susceptible to vulnerabilities and may be vulnerable to so-
phisticated tactics employed by clever attackers, surpassing
known rules. Consequently, the applicability of these meth-
ods is constrained. Detecting code homogeneity is a crucial
aspect of both software maintenance and development. This
process involves identifying similarities between different
pieces of code, and its applications are wide-ranging and
essential in various domains. Some notable applications in-
clude detecting candidate libraries, program comprehension,
malware detection, plagiarism and copyright infringement
detection, context-based inconsistency detection and refac-
toring opportunities [5]. Various tools and methods have
been developed by researchers to address code homogene-
ity detection challenges, which demonstrate the diversity
of approaches in tackling the code homogeneity detection
problem, ranging from textual comparison to higher-level
structural analysis. The continual development of such tools
and techniques is crucial for maintaining and improving the
quality and security of software systems.

In view of this, we investigate more on how to rep-
resent smart contracts efficiently in order to conduct code
homogeneity detection and propose a vulnerability detection
method HomoDec for timestamp vulnerabilities. Specifi-
cally, we utilize a pre-trained model to represent the smart
comtract code as a high-dimensional vector incorporating fea-
tures of timestamp vulnerabilities. Then, HomoDec performs
similarity detection by these constructed high-dimensional
vectors to detect timestamp vulnerabilities in test smart con-
tract codes. In order to verify the effectiveness of HomoDec
to existing smart contract vulnerability detection techniques,
we design and perform a large-scale experimental study. We
choose the source codes from the widely used SmartBugs
Wild Dataset [6] and 9 state-of-the-art smart contract vulner-
ability detection techniques to conduct a comparison. The
experimental results verify the effectiveness of our proposed
method HomoDec.
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2. Background

Smart contracts, as a type of decentralized application writ-
ten in high-level languages, compiled into bytecode, and
executed on the blockchain, inevitably face various security
threats closely associated with the runtime environment [7].
Ethereum relies on blockchain as its fundamental support-
ing technology. It supports the execution and invocation
of smart contracts through the Ethereum Virtual Machine
(EVM) [8]. Much work has been done to systematically study
the types of vulnerabilities in smart contracts, with notable
examples such as the work by Zhang et al. [9]. They clas-
sified smart contract vulnerabilities into 9 categories based
on the IEEE software anomaly standard, including data type
vulnerabilities, description type vulnerabilities, environment
type vulnerabilities, interaction type vulnerabilities, logic
type vulnerabilities, performance type vulnerabilities, secu-
rity type vulnerabilities, and standard type vulnerabilities,
which were collected from multiple sources. Additionally, Ni
et al. [10] categorized smart contract vulnerabilities based on
their operational mechanisms, dividing them into three major
categories: at the high-level language level, at the virtual
machine level, and at the blockchain level.

Different studies have different classifications for smart
contract vulnerabilities, with occurrences of these vulnerabili-
ties involving issues such as non-compliant control, character-
istics of the programming language itself, and unreasonable
use of variables or keywords in programming. Besides affect-
ing normal functionality, these vulnerabilities can also pose
significant risks on the financial front. The timestamp vulner-
ability in smart contract is a relatively serious vulnerability
introduced at the blockchain level, mainly related to the char-
acteristics of the blockchain itself [11]. Once the timestamp
vulnerability is maliciously exploited by miners, it can lead
to very serious consequences on the financial front. Specif-
ically, timestamp vulnerability refers to using strict block
timestamps in smart contract code to make decisions about
behavior control. When a timestamp dependency exists in the
code, miners can construct malicious timestamps within the
specified timestamp range to intentionally bypass designed
restrictions, thus carrying out malicious actions and causing
severe consequences. Fig. 1 shows an example of a smart
contract with a timestamp vulnerability. In line 8, the times-
tamp block.timestamp is assigned to the variable number;
in line 28, the variable winNum depends on the timestamp
(blockhash and number); in line 29, winNum is used as a
condition, allowing miners to calculate timestamps advanta-
geous to themselves in advance and set timestamps during
mining to delay or expedite user self-destruct operations. If
miners accelerate user self-destruction, all cryptocurrencies
held by the user will be frozen, resulting in monetary losses.

3. Approach

The workflow of HomoDec includes three steps, which are
code preprocessing, code feature construction, and code ho-

1 contract Lottery

2 {

3 mapping (address => uint) usersBet;

4 mapping (uint => address) users;

5 uint nbUsers = 0;

6 uint totalBets = 0;

7 address owner;

8 number=block.timestamp;

9 function Lottery()
10 {

11 owner = msg.sender;

12 }

13 function Bet() public payable
14 {

15 if(msg.value > 0){
16 if(usersBet[msg.sender] == 0){
17 users[nbUsers] =

msg.sender;↪→

18 nbUsers += 1;}

19 usersBet[msg.sender] +=

msg.value;↪→

20 totalBets = totalBets + msg.value;

21 }

22 }

23 function EndLottery() public
24 {

25 if(msg.sender == owner)
26 {

27 uint sum = 0;

28 uint winNum

=uint(block.blockhash(number-1)%totalBets+1);↪→

29 for(uint i = 0; i < nbUsers; i++)
30 {

31 sum

+=usersBet[users[i]];↪→

32 if(sum >= winNum){
33

selfdestruct(users[i]);↪→

34 return;}
35 }

36 }

37 }

38}

Fig. 1 An Example of a Contract with Timestamp Vulnerability.

mogeneity detection based on similarity of code representa-
tion vectors.

Code preprocessing. We adhere to the contract struc-
ture hierarchy specification of Solidity to ensure that code
preprocessing can represent the complete semantic informa-
tion of contract vulnerabilities and preserve the complete
structure hierarchy. By using code preprocessing techniques,
we can effectively eliminate unused code and functions in
the contract, thereby reducing the interference of data unre-
lated to vulnerabilities on the model. At the same time, this
technique can represent as much semantic information as pos-
sible with minimal data length and minimize the impact of
information loss caused by trimming on model performance.
To achieve this, we have constructed a code transformation
tree. The purpose is to follow the unified standards defined
by the specification tree when trimming smart contract code.
This tree is used to transform the input source code for better
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feature extraction. The code transformation tree is illustrated
in Figure 2, and its functionality is to categorize all smart con-
tract keywords and label them as (”Punctuation”, ”Keyword”,
”Aa-Az,0-9”, ”Operators”, ”User-defined”) using a classifica-
tion method. For instance, punctuation symbol ”;” is labeled
as ”Punctuation”, operator ”=” is labeled as ”Operators”,
keyword ”public” is labeled as ”Keyword”, alphanumeric ”a”
is labeled as ”Aa-Zz,0-9” and user-defined type ”balanceOf”
is labeled as ”User-defined”.

Fig. 2 Code transformation tree.

Code feature construction. After code pre-processing,
we construct representation vectors for smart contract code
in order to enable the model to capture syntax and semantic
information more comprehensively. This allows the model
to feature representations for timestamp vulnerabilities. Our
insight is that the potential capabilities of pre-trained models
may offer a new perspective probably benefiting represen-
tation construction for smart contracts. Consequently, we
tailor a pre-trained model named CodeBert [12] specifically
for code of smart contract. As is illustrated in Fig. 3, We
follow CodeBert [12], which is based on Transformer neu-
ral architecture [13] for programming language, and use a
Linear layer to output the result. Specifically, We first con-
catenate the token sequence and position sequence of tokens
into a sequence I = {[CLS ],T, [S EP], PT }, where [CLS ]
is a special token in front of the two sets and [S EP] is a
special notation to split the token sequence T and the po-
sition sequence of tokens PT . Our second insight is that
the timestamp vulnerabilities are caused by propagation of
variables. Thus, the second step is to extract variable se-
quence set and position sequence set of variables for the
timestamp vulnerabilities. We parse the source code into
an Abstract Syntax Tree (AST), then extract data flow re-
lationships from the AST, and finally transform them into
crucial data flow graph according to critical information, i.e.,
timestamp (block.timestamp, block.number, now) assignment
statement. The AST encompasses syntax details of the code,
with terminals (leaves) serving the purpose of identifying
the variable sequence. We then concatenate the variable
sequence and position sequence of variables into another

sequence I′ = {[CLS ],V, [S EP], PV}. Finally, the two se-
quences I and I′ are concatenated together to be the input into
the model. The input vector goes through masked multi-head
attention layers, layer normalization layers, several trans-
former layers and linear layers to generate the output, which
is the representation of the vulnerable code.

Code homogeneity detection. In this stage, we com-
pare the similarity of the code representation vectors gener-
ated by the last step to determine the homogeneity between
the test codes and the ones in vulnerability code base and
detect timestamp vulnerabilities. We utilize cosine similarity
calculation formula to calculate the similarity between two
code representations. In equation 1, n is the dimension of
the representation vectors, a means vector of the test code
and b denotes vector of the code in vulnerability code base.
We conduct similarity measurements on the contracts in the
extracted dataset and observe that the similarity values of
most smart contract codes are concentrated between 0.4 and
0.7. Zhou et al. [14] detected code cloning phenomena based
on fuzzy hashing, and their results align with those of this
study. Therefore, this paper considers code to be tested, with
a similarity greater than 0.7 to the code in vulnerability code
base, as containing timestamp vulnerabilities.

S imilarity =

n∑
i=0

(ai × bi)√
n∑

i=0
(ai)2 ×

√
n∑

i=0
(bi)2

(1)

4. An experimental study

4.1 Experimental Setup

We utilize the SmartBugs Wild Dataset [6] as our benchmark,
a recently published extensive dataset focusing on vulnera-
bilities in smart contracts written in the Solidity language. It
encompasses 47,398 distinct and authentic .sol files, compris-
ing approximately 200,000 contracts in total. It’s noteworthy
that each .sol file may contain one or more contracts. These
contracts cover the fields of finance, supply chain, Internet
of things, healthcare, digital identity authentication, etc. In
our experimental study, we randomly choose 30% of the
vulnerable contract as vulnerability code base and 70% as
the test codes. we compare HomoDec with 9 state-of-the-art
smart contract vulnerability detection methods, which in-
clude Manticore [15], Osiris [16], Mythril [17], Oyente [18],
SmartCheck [19], GCN [20], Vanilla-RNN [20], LSTM [20]
and GRU [20]. The experimental setup comprises a system
equipped with an Intel I7-9700 CPU and 64GB of RAM,
featuring a NVIDIA TITAN X Pascal GPU with a 12GB
capacity. The operating system utilized is Ubuntu 18.04, and
data analysis is carried out using MATLAB R2016b.

4.2 Evaluation Metrics

Regarding the assessment criteria, we employ the commonly
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Fig. 3 Workflow of code feature construction.

Table 1 Performance comparison of the involved approaches in terms of
Recall, Precision and F1 score.

Method Timestamp
Recall(%) Precision(%) F1(%)

Manticore 50 57 50
Osiris 51 53 52

Mythril 51 56 51
Oyente 52 55 53

SmartCheck 50 74 51
GCN 76 68 72

Vanilla-RNN 45 52 46
LSTM 59 50 54
GRU 59 49 54

HomoDec 84 78 79

utilized metrics of ”Precision,” ”Recall,” and ”F1-score” [19]
as shown in equation 2, equation 3 and equation 4. We opt
for the ”macro” approach in our evaluation, which entails
calculating metric values separately for contracts with and
without vulnerabilities. Subsequently, the average values
across these two categories are computed to derive the final
result. This methodology enables us to gauge the overall
performance of our approach.

Precision =
TruePositive

TruePositive + FalsePositive
(2)

Recall =
TruePositive

TruePositive + FalseNegative
(3)

F1 − score = 2 × Precision ×
Recall

Precision + Recall
(4)

4.3 Experimental Results

From the quantitative results of Table 1, we have the follow-

ing observations. First, we found that the existing tools have
not yet achieved satisfactory results in timestamp vulnera-
bility detection, e.g. among baseline approaches, the highest
Recall is 76% on GCN while the lowest Recall is 45% on
Vanilla-RNN, the average Recall is only 54.78%. the highest
precision is 74% on SmartCheck while the lowest precision
is 49% on GRU, the average precision is only 57.11%. The
highest F1-score is 72% on GCN while the lowest F1-score is
46% on Vanilla-RNN, the average precision is only 53.67%.
Secondly, HomoDec outperforms existing approaches to a
large extent. More specifically, HomoDec achieves a pre-
cision of 78%, improving the state-of-the-art up to 59.18%.
With respect to the recall, it improves the state-of-the-art up
to 86.67%. In addition, the F1 score of HomoDec is 79%
higher than the maximum of the existing techniques, show-
ing that HomoDec achieves a significant improvement with
respect to the overall performance.

5. Threats to Validity

The experimental study employs the widely recognized
SmartBugs Wild Dataset as the representative dataset for
smart contract vulnerability detection, as established in prior
work [6]. However, it is essential to acknowledge the pres-
ence of numerous unknown and intricate factors in real-world
development scenarios. The method proposed in this paper
may not comprehensively cover or be universally applicable
to all situations. Consequently, future efforts will involve val-
idating the effectiveness of HomoDec using a more diverse
set of real smart contract programs, thereby reinforcing the
robustness of the experimental results.

To address potential implementation bugs in various
comparison methods and HomoDec, we meticulously imple-
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mented them based on publicly available source code and
previous research. Subsequently, we verified the correctness
of these methods using handcrafted test cases to mitigate
the risk of errors. In evaluating the effectiveness of various
timestamp vulnerability detection methods, the experimental
study relies on metrics such as Recall, Precision, and F1-
score. Given the widespread acceptance and use of these
evaluation measurements, the associated validity threats can
be considered negligible.

This paper represents a preliminary exploration of smart
contract vulnerability detection based on code homogeneity.
Due to the substantial workload involved, we only delved
into detecting timestamp vulnerabilities in the experimental
study. Subsequent efforts will focus on exploring other types
of vulnerabilities.

6. Conclusion

This paper introduces an automated approach named Ho-
moDec, designed for the detection of timestamp vulnerabil-
ities in smart contracts. HomoDec leverages pre-training
techniques and examines the code homogeneity of smart
contracts. In contrast to existing methods, our approach not
only takes into account value dependencies among program
variables but also prioritizes critical information relevant to
vulnerabilities. Furthermore, we investigate the viability of
employing pre-trained models for vulnerability detection.
Through extensive experiments, we demonstrate that our ap-
proach surpasses state-of-the-art methods in performance.
This work represents a significant advancement in showcas-
ing the potential effectiveness of code homogeneity detection
approaches for smart contract vulnerability detection tasks.
Future research can explore the following aspects: lever-
aging larger-scale and more diverse datasets for validation;
employing advanced and robust model architectures and op-
timization methods to enhance annotation performance; and
further refining and tuning model parameters to optimize the
generation effectiveness of representation vectors.
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