
DOI:10.1587/transinf.2024EDL8005

Publicized:2024/06/26

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

LETTER
CLEAR & RETURN: Stopping Run-time Countermeasures in
Cryptographic Primitives

Myung-Hyun KIM†, Nonmember and Seungkwang LEE†a), Member

SUMMARY White-box cryptographic implementations often use mask-
ing and shuffling as countermeasures against key extraction attacks. To
counter these defenses, higher-order Differential Computation Analysis
(HO-DCA) and its variants have been developed. These methods aim to
breach these countermeasures without needing reverse engineering. How-
ever, these non-invasive attacks are expensive and can be thwarted by updat-
ing the masking and shuffling techniques. This paper introduces a simple
binary injection attack, aptly named clear & return, designed to bypass
advanced masking and shuffling defenses employed in white-box cryptog-
raphy. The attack involves injecting a small amount of assembly code,
which effectively disables run-time random sources. This loss of random-
ness exposes the unprotected lookup value within white-box implementa-
tions, making them vulnerable to simple statistical analysis. In experiments
targeting open-source white-box cryptographic implementations, the attack
strategy of hĳacking entries in the Global Offset Table (GOT) or function
calls shows effectiveness in circumventing run-time countermeasures.
key words: White-box cryptography, Masking, Shuffling, Binary injection
attack.

1. Introduction

The primary goal of white-box cryptography is to protect
secret keys from invasive attacks, particularly in environ-
ments where adversaries can fully control the software im-
plementation. In 2002, Chow et al. introduced white-box
implementations of AES and DES [1,2]. Their security was
accomplished by converting the full-round operations into
key-specific lookup tables, incorporating secret linear and
nonlinear transformations. Because of the encoded lookup
tables, it has become challenging for an adversary to ex-
tract the secret key solely by observing intermediate values
in memory. Despite these advancements, these white-box
implementations were later found to be susceptible to crypt-
analysis attacks, as demonstrated by Billet et al [3]. An
alternative attack method, Differential Computation Analy-
sis (DCA) [4], has been developed to exploit vulnerabilities
in white-box cryptography. It employs statistical analysis
of computational traces to deduce the secret key, eliminat-
ing the need for reverse engineering. Contrasting with the
noise-impacted power traces in Correlation Power Analy-
sis (CPA) [5], computational traces are extracted directly
from memory. They offer noise-free data on the read and
write operations during encryption, significantly enhancing

†Myung-Hyun Kim and Seungkwang Lee (correponding au-
thor) are with Department of Cyber Security, Dankook University,
South Korea.

a) E-mail: sk.cryptographic@dankook.ac.kr

the precision of both analysis and key recovery.
To counteract DCA, various countermeasures have been

implemented, notably run-time masking and shuffling tech-
niques derived from the gray-box model. Masking, as a
strategy, splits sensitive variables into several shares. This
division and subsequent secure processing aim to mitigate
the risk of information leakage [6]. Shuffling is another tech-
nique used to counteract DCA. It randomizes the sequence
of independent operations, thereby disrupting the alignment
of computational traces. In addition, dummy shuffling in-
troduces non-essential operations. These dummy operations
are integrated to obscure the real, sensitive computations
within a redundant activities, as discussed in [7].

However, these obfuscation methods have been found
vulnerable to advanced forms of DCA, such as higher-order
DCA (HO-DCA) and even more sophisticated variants like
higher-degree HO-DCA (HDHO-DCA) [8,9]. Despite these
vulnerabilities, it is important to note that the effectiveness
of higher-order attacks, like HO-DCA and HDHO-DCA, di-
minishes with increasing complexity. As the dimensionality
of the computational traces grows, the time complexity for
these higher-order attacks escalates significantly. Conse-
quently, new implementations of masked and shuffled cryp-
tographic systems are likely to be more resistant to these
types of non-invasive attacks.

This study underscores that run-time masking and shuf-
fling techniques in white-box cryptography are heavily re-
liant on random sources, such as random number generators
and deterministic cryptographic algorithms. This reliance
potentially exposes them to invasive attacks. For white-
box cryptography to be truly effective, it needs to prove
its robustness against white-box attacks. Aligned with this
perspective, this paper introduces straightforward binary in-
jection attacks, aptly named clear & return†, aimed at these
existing countermeasures that depend on run-time random
sources. The demonstrations reveal the vulnerabilities of
these countermeasures when faced with white-box attackers.
To the best of our knowledge, it provides the first successful
demonstration of a white-box attack targeting open-source
white-box cryptographic implementations that employ mask-
ing and shuffling techniques.

†An earlier version of this study was presented as a poster at
ACNS 2023, Kyoto.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

x1 ∈ GF(28) x2 ∈ GF(28)

E1 E2k1 k2

L

N1

L

N2

XOR

lookup table

input

subkey

x1, x2

k1, k2

cryptographic functionE1, E2

linear transformation

nibble encoding

L

N1-N3

N1-1 N2-1

N3

Fig. 1: Fundamental design of typical white-box crypto-
graphic implementations.

2. Preliminaries

2.1 Fundamentals of White-box Cryptography

Typically, a white-box cryptographic approach involves a
network of obfuscated lookup tables. These tables collec-
tively perform the operations of a cryptographic algorithm in
a concealed manner. Consider an illustrative example: for a
cryptographic operation y = Ek(x), with y, x, k belonging
to GF(28) and k representing a subkey, one can conceptu-
alize Tk, an 8×8 table, executing the mapping from x to y.
This table, T , is then obscured with secret and invertible
transformations to shield the key from extraction by white-
box adversaries, based on the observed inputs and outputs.
These transformations, denoted asG andF , lead to the equa-
tion: Tk = G ◦ Ek ◦ F−1. Note that these transformations
include both linear and nonlinear components.

Fig. 1 demonstrates a key architectural element in
fundamental white-box cryptographic schemes, specifically
applied to a basic cryptographic operation denoted as
E1(x1, k1) ⊕ E2(x2, k2). This design incorporates an en-
coding stage that consists of a linear transformation, followed
by a sequence of two concatenated nibble encodings. It em-
ploys a consistent pair of matrices for linear transformations
in adjacent lookup tables. By using this method, the process
of creating a lookup table for the XOR operation is simplified,
as it eliminates the need to decode the linear transformation.
This is fundamentally reliant on the distributive property of
multiplication over addition.

2.2 Techniques of Masking and Shuffling

To counteract the correlation issues in side-channel attacks,
software-based strategies like masking and operation shuf-
fling are widely employed. Masking involves dividing a sen-
sitive variable s into d+ 1 segments, labeled s0, s1, . . . , sd.
These segments are combined using a group operation ◦
(commonly XOR ⊕ or modular addition) to reconstruct the
original variable s. Crucially, any subset of these segments,
fewer than d+ 1, or their leakage signals, should be statisti-
cally unrelated to s. This is ensured by randomly selecting
the masks s1, . . . , sd, and calculating the primary masked
segment s0 as s0 = s ◦ s1 ◦ . . . ◦ sd. The term ’masking
order’ refers to the value of d.

In addition to masking, operation shuffling is another
technique employed to enhance security in cryptographic
systems. Shuffling involves rearranging the order of opera-
tions or the execution sequence of a cryptographic algorithm.
By randomly permuting these operations, shuffling makes it
more challenging for an attacker to predict or analyze the
data flow and intermediate states of the algorithm, thus fur-
ther obfuscating side-channel signals. This randomized rear-
rangement is particularly effective in mitigating time-based
side-channel attacks, as it disrupts the consistent timing pat-
terns that such attacks often rely on.

3. Proposed Method

3.1 Key Idea Behind and Assumption

To defeat aforementioned countermeasures, run-time ran-
dom sources must be disabled so that key-dependant inter-
mediate values are exploitable. Generally speaking, a ran-
dom number generator can be implemented by using either
shared libraries or user-defined functions. In this section,
we introduce simple binary injection attacks, enforcing the
random number generator to always output a fixed value.

One of the easy ways to produce a sequence of random
numbers is to call a function, such as rand(), provided
in shared libraries. Lazy binding in Linux ELF binaries
resolves unknown references to functions located in shared
libraries, using the Procedure Linkage Table (.plt) and the
Global Offset Table (.got) sections. In other words, the
address of rand() can be found in its GOT entry once it is
called. The steps ❶ - ❻ shown in Fig. 2 present the overall
procedure of lazy binding to call rand() for the first time.

In Unix-like systems, overwriting the GOT entries is a
traditional control flow hĳacking technique. Leveraging the
dynamic symbol binding mechanism, this attack modifies a
GOT entry to redirect the program’s execution flow to a cho-
sen target address. Previously, it was commonly employed to
tamper with the GOT entry of a shared library function, often
substituting it with system(), thereby enabling the execu-
tion of /bin/sh and spawning a shell [10]. In our attack
scenario, by substituting the GOT entry with the address
of injected code, the attacker can manipulate the behavior
of the rand() function within the context of side-channel
analysis. Essentially, if the injected code consistently returns
zero, the protection of sensitive variables is compromised.

Utilizing user-defined functions or static libraries for
random number generation is independent of the GOT entry,
rendering GOT entry hĳacking ineffective. In such scenar-
ios, an attacker would need to identify and modify the spe-
cific function calls, replacing them with manipulated calls
to their injected code. It is noteworthy that numerous estab-
lished countermeasures leverage cryptographic functions to
produce a sequence of uniformly distributed random num-
bers. Standard block ciphers are frequently employed in
these countermeasures to ensure a high entropy in the gen-
erated sequence.

In the following, we present clear & return, a binary in-

LETTER
3

❶

③

❹

Code

.plt

.text

<default stub>:

push QWORD PTR [rip+0x200c12]

jmp QWORD PTR [rip+0x200c14]

<cus_rand@plt>:

jmp QWORD PTR [rip+0x200c12]

push 0x0

jmp <default stub>

<main>:
...
call cus_rand@plt
...

call randnum
...

randnum:
...

<injected_rand>:

xor eax, eax

ret

Data

.got.plt

.got.plt[n]:
<addr>

❷

❸

❺ ❻

❼

⑦

Fig. 2: Overview of the proposed attack. Solid line: benign
function calls, Dashed line: hĳacked function calls.

jection attack on open-source implementations of white-box
cryptography that have applied masking and shuffling tech-
niques to enhance security. It is assumed that the compiled
binaries operate on Intel x86 CPUs and adhere to the System
V-style calling convention, where function return values are
stored in the EAX (or RAX) register. Also, it is assumed that
the symbols in the binaries are not stripped. Based on these
assumptions, we downloaded the source codes and built their
binaries based on shared libraries. The process of neutral-
izing the random number generator and extracting the secret
key from unprotected intermediates will be detailed in the
following section.

3.2 Clear & Return: Disabling Random Sources

To introduce our attack clear & return, we utilized two open-
source white-box AES implementations. The first one is
based on masking †, while the second applies shuffling tech-
niques [7, 11]††. We will refer to these implementations as
Mask-WB-AES and Shuff-WB-AES, respectively.

Mask-WB-AES mainly relies on a library function
with the signature uint8_t cus_rand() while Shuf-
WB-AES depends on a user-defined function uint8_t
randnum() to generate random numbers. To provide a
comprehensive understanding, we have consolidated two in-
dividual attacks against these implementations into a unified
illustration, as depicted in Fig. 2.

Our injected code effectively undermines traditional
countermeasures such as masking and shuffling employed
in white-box cryptography by compromising the sources of
randomness. As illustrated in Fig. 2, step ③ demonstrates
the hĳacking of the GOT entry for the cus_rand() func-
tion. Normally, cus_rand() generates an integer in the
range of 0 to 255. However, our manipulation ensures that
it invariably returns zero. We refer to this tactic as clear
& return, and it is evidenced by the code segment marked
as <injected_rand>. Similarly, step ⑦ illustrates our

†github.com/Nexus-TYF/BU-White-box-AES/tree/main
††github.com/scnucrypto/HO-DCA/tree/main

/a_specific_BU_shuffling

method of intercepting the randnum() function calls, fur-
ther emphasizing the comprehensive nature of our attack on
stopping randomness capabilities. The return values from
these functions, which are conventionally stored in the EAX
register, are thus overridden to neutralize the intended cryp-
tographic protection.

It is important to note that if a user-defined function
transmits the address of the random number via an argument,
a different register must be filled with a reference to zeros.
The specific register to be manipulated is determined based
on the argument’s position, in accordance with the System
V-style calling convention.

3.3 Experimental Results

To evaluate our attacks’ effectiveness, we encrypted 1,000
random plaintexts for both Mask-WB-AES and Shuf-WB-
AES. To collect computational traces, we employed a dy-
namic binary instrumentation (DBI) tool using Valgrind,
capturing data from memory write operations during the
encryption process. Subsequent CPA attacks were executed,
with the outcomes depicted in Fig. 3. The figure illustrates
the success of our binary injection in halting random number
generators. This interruption effectively neutralizes mask-
ing and shuffling defenses, enabling the extraction of correct
subkeys from a mere 1,000 computational traces.

An additional observation is that the target open-source
code may not properly apply internal encoding to protect
the intermediate values of the white-box cryptographic im-
plementation. This possibility is suggested by the fact that
the hypothetical intermediate value computed for the cor-
rect subkey results in a Pearson correlation coefficient of 1.
Generally, in CPA attacks against white-box cryptographic
implementations with correctly implemented internal encod-
ing, the correlation coefficient does not typically reach the
maximum value of 1.

3.4 Discussion

Several protection techniques exist to prevent memory cor-
ruption [12]. For instance, Data Execution Prevention (DEP)
and Address Space Layout Randomization (ASLR) primar-
ily aim to secure the stack or heap. Additionally, the ad-
dress layout of code and data sections can be randomized
through Position Independent Executable (PIE). To defend
against the GOT overwriting attacks, RELocation Read Only
(Relro) serves as a barrier against runtime tampering by es-
tablishing the data section, utilized by the dynamic linker, as
read-only during program loading. In particular, Full Relro
extends protection to the GOT section as well. In a program
protected by Full Relro, the GOT becomes read-only after
all library function calls are bound during loading, prevent-
ing runtime GOT modification. Notably, the proposed attack
persists unimpeded by these countermeasures due to two key
factors. Firstly, the injected section’s placement falls beyond
the original address space, rendering it impervious to the
randomization introduced by these defenses. Secondly, our

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

(a) CPA result on Mask-WB-AES

(b) CPA result on Shuf-WB-AES

Fig. 3: CPA results after stopping random number generator.
Correct subkey in black, wrong subkey candidates in gray,
rank of correct subkey highlighted in red.

code injection and GOT overwriting take place before the
binary is loaded, rendering run-time protection ineffective.

Indeed, our binary injection could be thwarted through
various anti-tampering techniques, including obfuscation,
integrity checks, and binary encryption. Among these
methods, integrity checks on the binary stand out as the
most straightforward and widely applicable approach. How-
ever, implementing such verification processes often involves
resource-intensive cryptographic operations like hashing and
signature algorithms. Consequently, cryptographic func-
tions in low-cost devices such as IoT devices may still remain
vulnerable to our attack, as these devices are typically not
protected by integrity checks.

4. Conclusion & Future Work

This paper demonstrated the binary injection attack, capa-
ble of defeating the cryptographic countermeasures that are
dependent on run-time random sources. We redirected the
GOT entries and the calls to user-defined functions to our in-
jected code, consistently producing zeros instead of random
numbers. To protect the target binary from a binary injection
attack, various binary anti-tampering techniques can be em-
ployed. For instance, integrity checks including hash-based
checks, checksums, and digital signatures can be utilized to
detect modifications to the binary code. Our future work
includes several key initiatives. First, we aim to conduct
a performance comparison detailing the number of compu-
tational traces necessary to recover a subkey and the time
elapsed between HO-DCA, HDHO-DCA, and DCA using
our injected code. Additionally, we plan to demonstrate the
hĳacking of calls to various cryptographic functions, each
with distinct prototypes. Last but not least, we intend to

develop an automation tool capable of detecting all random
sources in binaries and customizing code injections based
on the characteristics of each random source.

Acknowledgement

The present research was supported by the research fund
of Dankook University in 2022. Special thanks to Prof.
Taek-Young Youn for his valuable support throughout the
development of this work.

References

[1] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot, “A white-
box des implementation for drm applications,” Digital Rights Man-
agement, ed. J. Feigenbaum, Berlin, Heidelberg, pp.1–15, Springer
Berlin Heidelberg, 2003.

[2] S. Chow, P.A. Eisen, H. Johnson, and P.C.v. Oorschot, “White-box
cryptography and an aes implementation,” Revised Papers from the
9th Annual International Workshop on Selected Areas in Cryptogra-
phy, SAC ’02, Berlin, Heidelberg, p.250–270, Springer-Verlag, 2002.

[3] O. Billet, H. Gilbert, and C. Ech-Chatbi, “Cryptanalysis of a
white box aes implementation,” Selected Areas in Cryptography,
ed. H. Handschuh and M.A. Hasan, Berlin, Heidelberg, pp.227–240,
Springer Berlin Heidelberg, 2005.

[4] J.W. Bos, C. Hubain, W. Michiels, and P. Teuwen, “Differential
computation analysis: Hiding your white-box designs is not enough,”
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th
International Conference, Santa Barbara, CA, USA, August 17-19,
2016, Proceedings, ed. B. Gierlichs and A.Y. Poschmann, Lecture
Notes in Computer Science, vol.9813, pp.215–236, Springer, 2016.

[5] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with
a Leakage Model,” Proceedings of the 6th International Workshop
on Cryptographic Hardware and Embedded Systems, CHES ’04,
pp.16–29, Springer, 2004.

[6] O. Seker, T. Eisenbarth, and M. Liskiewicz, “A white-box mask-
ing scheme resisting computational and algebraic attacks,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
vol.2021, no.2, p.61–105, Feb. 2021.

[7] A. Biryukov and A. Udovenko, “Dummy shuffling against alge-
braic attacks in white-box implementations,” Advances in Cryptol-
ogy – EUROCRYPT 2021: 40th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, October 17–21, 2021, Proceedings, Part II, Berlin,
Heidelberg, p.219–248, Springer-Verlag, 2021.

[8] A. Bogdanov, M. Rivain, P.S. Vejre, and J. Wang, “Higher-order DCA
against standard side-channel countermeasures,” Constructive Side-
Channel Analysis and Secure Design - 10th International Workshop,
COSADE 2019, Darmstadt, Germany, April 3-5, 2019, Proceedings,
ed. I. Polian and M. Stöttinger, Lecture Notes in Computer Science,
vol.11421, pp.118–141, Springer, 2019.

[9] Y. Tang, Z. Gong, J. Chen, and N. Xie, “Higher-order dca attacks
on white-box implementations with masking and shuffling coun-
termeasures,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol.2023, no.1, p.369–400, Nov. 2022.

[10] c0ntex, “How to hĳack the global offset table with pointers for root
shells.” Accessed: 2024-04-01.

[11] A. Biryukov and A. Udovenko, “Attacks and countermeasures for
white-box designs,” Advances in Cryptology – ASIACRYPT 2018,
ed. T. Peyrin and S. Galbraith, Cham, pp.373–402, Springer Interna-
tional Publishing, 2018.

[12] M.A. Butt, Z. Ajmal, Z.I. Khan, M. Idrees, and Y. Javed, “An in-
depth survey of bypassing buffer overflow mitigation techniques,”
Applied Sciences, vol.12, no.13, 2022.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

