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LETTER
Channel Pruning via Improved Grey Wolf Optimizer Pruner

Xueying WANG†, Yuan HUANG†, Xin LONG†a), Nonmembers, and Ziji MA††, Member

SUMMARY In recent years, the increasing complexity of deep network
structures has hindered their application in small resource constrained hard-
ware. Therefore, we urgently need to compress and accelerate deep network
models. Channel pruning is an effective method to compress deep neural
networks. However, most existing channel pruning methods are prone to
falling into local optima. In this paper, we propose a channel pruning
method via Improved Grey Wolf Optimizer Pruner which called IGWO-
Pruner to prune redundant channels of convolutional neural networks. It
identifies pruning ratio of each layer by using Improved Grey Wolf algo-
rithm, and then fine-tuning the new pruned network model. In experimental
section, we evaluate the proposed method in CIFAR datasets and ILSVRC-
2012 with several classical networks, including VGGNet, GoogLeNet and
ResNet-18/34/56/152, and experimental results demonstrate the proposed
method is able to prune a large number of redundant channels and parame-
ters with rare performance loss.
key words: channel pruning, convolutional neural networks, Grey Wolf
algorithm, fitness

1. Introduction

In recent years, deep learning, especially deep neural net-
works, has played an important role in various aspects
of society [1], [2]. However, the increasing demands in
computing power and memory footprint of deep network
has hindered their application in small resource constrained
hardware. Considerable efforts have been proposed to ad-
dress this problem, including compact architecture design-
ment [3]–[5], parameter decomposition [6], knowledge dis-
tillation [7]–[9], quantization [10]–[12], pruning [13]–[16].
Among them, channel pruning has been considered as one
of the most effective methods for model compression and is
easy to implement for convolutional neural networks while
other approaches not.

The goal of channel pruning is to compress the number
of channels in each layer of the original structure, ultimately
minimizing the accuracy degradation or even achieving bet-
ter accuracy of the overall network structure. In this paper,
we propose a novel channel pruning method via Improved
Grey Wolf algorithm [17] which called IGWO-Pruner to
prune redundant channels of convolutional neural networks.
It identifies pruning ratio of each layer by using Improved
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Fig. 1 Pipeline of IGWO-Pruner.

Grey Wolf algorithm, and then fine-tuning the new pruned
network to obtain final compact model. The flow chart of
the proposed algorithm is shown in Fig. 1.

In Fig. 1, Adaptive Batch Normalization (Adaptive BN)
is sourced from Ref. [18], [18] proposed a method that can
quickly measure the performance of pruned models through
Adaptive BN. In Fig. 1, the circle represents different ele-
ments of channels. Different colors mean that the pruning
ratio of the channels’ elements are different, which will affect
whether they are pruned and thus affect the pruning strategy.

2. The Proposed IGWO-Pruner

In this section, we propose our method to achieve channel
pruning, which called Improved Grey Wolf Optimizer Pruner
(IGWO-Pruner). The pipeline is shown in Fig. 1. Assuming
a general deep convolutional network S containing n layers,
its original structure is represented as S = [c1, c2, · · · , cn],
where ci (i = 1, . . . ,n) represents the number of channels in
the n-th layer of the network.

2.1 Description of Deep Network Pruning Problem

The network structure obtained after pruning the original
network is S′ = [c′1, c′2, · · · , c′n], where c′n < cn. The pruning
rate for each layer of the network is set to R = [r1,r2, · · · ,rn],
where ri = c′i/ci , the optimization problem is to find the opti-
mal pruning rate r while obtaining the optimal network infer-
ence accuracy under a given test and training set. Therefore,
this problem can be summarized as follows:

R∗ = argr max acc(S′(r)) (1)

where acc(S′(r)) represents the inference accuracy obtained
after pruning and adaptive batch standardization processing
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using pruning rate r for each layer of the model. However,
in order to obtain the optimal solution of the above equation,
it involves high-dimensional optimization and the process is
very complex. In order to simplify the computational cost
of search, the method proposed in this article constrains the
pruning rate ri (where ri is in %, represents the ith channel’s
pruning rate) within {0,10%, 20%, . . . , 100%}, making the
above solving problem a search optimal combination prob-
lem. This constraint condition can greatly reduce the combi-
nation of pruning structures, and the final number of search
set elements becomes 11n, making the solution of Eq. (1)
more efficient. In order to further solve the above optimiza-
tion problem, we use an Improved Grey Wolf algorithm to
search for the optimal pruning rate.

2.2 Pruning Algorithm Process

To avoid previous channel pruning algorithms based on chan-
nel importance falling into local optima, we propose an auto-
matic search pruning algorithm that considers network struc-
ture pruning from the perspective of the entire network. We
use the Improved Grey Wolf algorithm to search for the op-
timal pruning rate for each convolutional layer. The search
process of this algorithm is shown in the Fig. 2.

Search initialization: Due to the fact that the Improved
Grey Wolf algorithm is less affected by initial values, we
use the random number method to generate the initial search
population:

Xi, j ∼ U(lb,ub) (2)

where Xi, j represents the gray wolf population involved in

Fig. 2 Diagram of the Improved Grey Wolf algorithm search process.

the search, i is the number of gray wolf population and ∈
{1,2, . . . ,N}, j is the population dimension (which represents
the number of network layers), U is a random function, lb
and ub are the upper and lower bounds of the search interval
(the search space is {0%, 10%, 20%, . . . , 100%}).

Search process: All gray wolves approach their prey in the
following ways, which leads to an optimal solution:

D = |C · Xp(t) − X(t)| (3)
X(t + 1) = Xp(t) − A · D (4)

Where D represents the distance between the gray wolf and
its prey, t is the current number of iterations, Xp(t) and X(t)
are the prey position and the wolf position, A and C are the
adjustment coefficients, can be calculated as follows:

A = 2a · r1 − a (5)
C = 2 · r2 (6)

where r1 and r2 is a random vector between 0 and 1, a =
2e−t/T , and T is the maximum number of iterations set by
the algorithm.

Parameter update: By obtaining the pruning rates of the
network layers corresponding to the position vectors of each
gray wolf, the L1 norm of each channel in each layer is calcu-
lated. Channels with lower L1 norm parameter values in each
layer of the network are pruned. Then, the pruning model is
updated with adaptive batch standardization methods to up-
date the batch standardization layer. The obtained inference
accuracy is used as the fitness of gray wolf individuals, with
the optimal individual marked as W , the optimal individual
marked as Y , and the suboptimal individual marked as Z , the
rest are V .

During the update, due to the individual’s optimality,
candidate gray wolves update their position by calculating
the movement distances DW , DY , and DZ with gray wolves
W , Y , and Z , respectively. The relevant calculation formula
is as follows:

DW = |C1 · XW − X(t)| (7)
DY = |C2 · XY − X(t)| (8)
DZ = |C3 · XZ − X(t)| (9)
X(t + 1) = (1/3)((XW − A1DW ) + (XY − A2DY )

+ (XZ − A3DZ ))(1 − t/T)
+ (XW − A1DW ) · (t/T) (10)

Where X(t) represents the current candidate gray wolf posi-
tion, X(t + 1) is the next candidate gray wolf position, and
XW , XY and XZ represents the current positions of W wolf,
Y wolf, and Z wolf respectively. A1, A2, A3 and C1, C2, C3,
like A and C in above search process, are random variables.

2.3 Channel Pruning and Fine-Tuning

We add L1 norm to the Loss function to constrain the weight.
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From the perspective of optimizing the objective function,
L1 norm can make most of the weights 0, which makes the
weights of network channels have a certain sparsity, so that
related channels can be pruned. The objective function is:

Loss = Loss + γ
∑

w∈K
∥w∥1 (11)

Where Loss is the standard loss function of deep network, K
is the network weight set, w is the element in the set K, and
∥•∥1 is the L1 norm, γ is the penalty factor. Besides, pruning
extra channel would lead to some accuracy loss when the
pruning percentile is pretty high. In experimental sections,
this can be largely compensated by fine-tuning process which
needs less training epochs and time.

3. Experiments

In this section, we mainly conduct the effectiveness of pro-
posed method on several representative network and datasets.
We implement our method based on Pytorch.

3.1 Implementation Details

In this paper, we empirically conduct experiments on CIFAR-
10 and ILSVRC-2012 [19]. The same standard data aug-
mentation strategy in [20] is adopted by this paper. For net-
work architectures, we evaluate proposed method on some
frequently-used network: VGGNet, GoogLeNet and ResNet-
18/34/56/152. During training process, we use the Stochas-
tic Gradient Descent algorithm (SGD) for fine-tuning with
momentum 0.9 and the batch size is set to 256. We also
bring several evaluation terms which will be used in the fol-
lowing parts, like Channel number, FLOPs (floating point
operations) and parameters, which are used to measure the
network pruning and compression.

3.2 Results and Discussions

CIFAR-10: We conduct our experiments on CIFAR-10 with
three deep networks including VGGNet, GoogLeNet and
ResNet-56. The results are shown in Table 1.

As shown in Table 1, it could be seen that the proposed
method can achieve significant pruning of channel numbers,

Table 1 Accuracy and pruning results on CIFAR-10.

parameters, and computational complexity with minimal ac-
curacy degradation.

ILSVRC-2012: We further conduct our experiments on
ILSVRC-2012 with some deep networks including ResNet-
18/34/152. The results are shown in Table 2.

As shown in Table 2, ILSVRC-2012 is a large-scale
dataset and contains 1,000 categories, which is much com-
plex than the CIFAR-10 with only 10 categories, so it could
be seen that the performance drops on ILSVRC-2012 are
more than these on CIFAR-10. On the other hand, it comes
that the proposed method obtains higher pruning rates and
less accuracy drops as the depth of network increases.

Comparison with Other Methods: Reference [21] pro-
vides a good review and summary of Pruning Deep Neu-
ral Networks, we have selected from [21] several methods
(in [22]–[24]) that are similar to our application field and
pruning approach for algorithm performance comparison.
Besides, we also selected some the state-of-art methods (in
[25]–[28]) for algorithm performance comparison. The re-
sults in Table 3 show that IGWO-Pruner could obtain better
FLOPs reduction or less accuracy loss, it seems that proposed
channel pruning method would provide a great tradeoff be-

Table 2 Accuracy and pruning results on ILSVRC-2012.

Table 3 Performance comparison with the state-of-art methods.
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tween model size and performance.

4. Conclusions

In this paper, we propose a novel channel pruning method
based on improved Grey Wolf algorithm which called
IGWO-Pruner to prune redundant channels of convolutional
neural networks. It identifies proper pruning ratio of each
layer by using intelligent search algorithm, and then fine-
tuning the new pruned network model so as to compensate
accuracy loss. Experimental results show that the proposed
method can achieve great pruning results than existing prun-
ing methods.
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