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LETTER
CNN-based feature integration network for speech enhancement in
microphone arrays

Ji XI†, Pengxu JIANG††, Nonmembers, Yue XIE†††, Member, Wei JIANG†, and Hao DING†, Nonmembers

SUMMARY The relevant model based on convolutional neural net-
works (CNNs) has been proven to be an effective solution in speech en-
hancement algorithms. However, there needs to be more research on CNNs
based on microphone arrays, especially in exploring the correlation be-
tween networks associated with different microphones. In this paper, we
proposed a CNN-based feature integration network for speech enhance-
ment in microphone arrays. The input of CNN is composed of short-time
Fourier transform (STFT) from different microphones. CNN includes the
encoding layer, decoding layer, and skip structure. In addition, the designed
feature integration layer enables information exchange between different
microphones, and the designed feature fusion layer integrates additional
information. The experiment proved the superiority of the designed struc-
ture.
key words: Speech enhancement, convolutional neural network, micro-
phone arrays, deep learning.

1. Introduction

Multi-microphone noise reduction technology refers to re-
ducing the impact of environmental noise on speech signals
through the collection and signal processing of multiple mi-
crophones, thereby improving the quality of speech com-
munication [1]. Traditional single microphones are often
subject to various environmental noise interferences when
collecting speech, such as human voices, car sounds, wind
sounds, etc. These noises can cause speech signal distor-
tion and reduce speech recognition accuracy [2]. Multi-
microphone noise reduction technology can eliminate or re-
duce the impact of these noises by fusing and processing
signals from multiple microphones.

Deep learning based multi-microphone noise reduction
is a technique that uses neural network algorithms to process
audio signals recorded by multiple microphones to reduce
noise interference [3]. It efficiently and accurately removes
environmental noise by extracting valuable speech informa-
tion from complex noise using deep learning models. Cur-
rently, deep learning based multi-microphone noise reduc-
tion technology has been widely applied [4-6].

The conventional speech denoising model [7-8] in deep
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learning typically comprises an encoder and a decoder. En-
coding involves transforming the noisy signal, whereas the
decoding process aims to recover a clean speech signal by
utilizing the received information. Furthermore, it is typ-
ical for the encoder and decoder to be interconnected via
a skip structure. When dealing with the task of reducing
noise using numerous microphones, it is common practice to
combine data from many microphones as input for a single
model. However, this could lead to the system’s inability to
retrieve independent information for various microphones.
One approach involves establishing separate networks for
individual microphones. However, this configuration may
result in the loss of correlation information among the dif-
ferent microphones.

In this paper, we designed a convolutional neural net-
work (CNN) based feature integration network for speech
enhancement in microphone arrays. The main structure of
the model is shown in Fig. 1. Short-time Fourier trans-
form (STFT) is the model input, and CNN is used to obtain
time-frequency related information of STFT. In addition, the
CNN network consists of encoder and decoder layers [9] and
includes a skip structure designed for symmetric encoders.
In order to enhance the acquisition of feature-related infor-
mation across various microphones, the designed model is
mainly divided into two paths, One of the paths is used
to learn different microphone features separately, including
X1 ∈ RT×F×1, X2 ∈ RT×F×1,..., Xn ∈ RT×F×1, where n is
the number of microphones, T corresponds to the time di-
mension, F corresponds to the frequency dimension. An-
other path is used to learn the combination XA of all mi-
crophone features, where XA ∈ RT×F×n. Due to the need
to learn the STFT of multiple microphones for noise reduc-
tion tasks, CNN may lose associated time-frequency infor-
mation when learning different features separately. Given
this, we have designed a feature integration layer to replace
the original skip mechanism. The feature integration layer
can gather weighted information from all microphones and
provide feedback to their channels. In addition, a feature fu-
sion layer was devised in order to integrate features utilizing
weight calculation of output information across several mi-
crophones. Finally, the outputs of the two paths are fused to
fit the corresponding STFT of pure speech.
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Fig. 1 Illustration of the proposed model.
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Fig. 3 Illustration of the feature fusion layer.

2. System description

2.1 Convolutional neural network

The designed baseline CNN consists of an encoder and a
decoder [10]. The encoder consists of a complex number
of lower sampling layers, batch normalization layer, and ac-
tivation function layer, and the decoder consists of an up-
per sampling layer, batch normalization layer, and activation
function layer. In addition, two jump structures are included
for each convolutional network to fit the symmetric convo-
lutional encoder. The encoding and decoding layers in two
CNN paths have the same parameter shape.

2.2 Feature integration layer

The feature integration layer is used to connect the encoder
layer and decoder layer of CNN, to replace skip structure.
The structure of the feature integration layer is shown in

Fig. 2. S kip(X1), S kip(X2),..., S kip(Xn) are used as in-
puts. Firstly, perform channel connection and frame con-
nection on all input features. Then, frame and channel con-
volution are used to obtain corresponding information for
different inputs, respectively. Specifically, the convolution
kernel size for frame convolution is [1, k], and for channel
convolution is [1,1], where k corresponds to the frame di-
mension. Finally, the feature fusion of different paths serves
as the output of the module. In addition, each CNN con-
tains two feature integration layers, corresponding to con-
volutional layers of different depths.

2.3 Feature fusion layer

The feature fusion layer integrates all features using the
weight distribution between input tensors. The structure of
the feature fusion layer is shown in Fig. 3. The input of
the feature fusion layer is the training results of the micro-
phone array in CNN. All input tensors first pass through a
convolutional layer with a shape and number of kernels of 1
to reduce the original input parameters. Then, concatenate
all input features to form a feature set Xβ ∈ Rn×F , where n
is the number of microphone arrays, and F corresponds to
the frequency dimension. Subsequently, two dense layers
map the input features to the specified space and obtain the
weight coefficients between different microphones using the
S o f tMax function:

y = σ(XβWθ)Wϕ, (1)

η = S o f tMax(y) ∈ Rn×1, (2)

here Wθ ∈ RF×F , Wϕ ∈ RF×1, σ is the activation function
sigmoid. Finally, concatenate the time dimensions of all in-
put features, which can be represented as Xα, multiply and
accumulate them with the corresponding η, as the output X
of the feature fusion layer.

3. Experiments

3.1 Preprocessing

Dataset : We utilize CHiME3[11] dataset to show the per-
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formance of our proposed model. CHiME3 was developed
as part of The 3rd CHiME Speech Separation and Recogni-
tion Challenge. We selected isolated 7138 English speech
samples for the pure speech of our model, Using four types
of noise (Cafe, Street, bus, Pedestrian) as our noise samples
to generate noisy speech randomly. All data is provided as
16-bit WAV files sampled at 16kHz. The training set ac-
counts for approximately 80%.

In the simulation experiment, the far-field model lin-
ear microphone array is used and placed in a room acous-
tic environment of 6×5×3m. The coordinates of the cen-
ter of the microphone array are (2, 3, 1.5), and the distance
between adjacent microphones is 0.02m. The coordinates
of the three microphones are (2.02, 3, 1.5), (2, 3, 1.5) and
(1.98, 3, 1.5). The room reverberation environment is real-
ized through the IMAGE [12] algorithm based on the Allen
and Berkley image algorithm, and the reverberation time is
300ms. The sampling rate of the speech signal is set to 16
kHz. The target sound source is located 1m away from the
center of the microphone array, and the incident direction
is 90°. The interference source is 16kHz white noise from
the NOISEX-92 noise database. The interference source
is about 1.5m away from the array’s center, located in a
180° direction, and the signal-to-interference ratio is set to
40dB. In such an acoustic simulation environment, a multi-
mic speech dataset is generated by inputting different single-
channel target speech signals. Therefore, we obtained three
additional microphone inputs, totaling four.

Feature Generation :To obtain STFT, we defined a
periodic Hamming window with a length of 256 and a hop
count of 64, removing the symmetric half to obtain the
top 129 points. In addition, our input consists of the cur-
rent STFT noise vector plus the previous seven noise STFT
vectors, which means that the input size of one vector is
(129,8,1).

Model parameter :The baseline CNN we use is
mainly based on [9]. The model parameters are trained
through the Adam optimizer, with a batch size of 512 for
each training session and a learning rate of 0.0001. The de-
tailed parameters of the baseline CNN are shown in Table 1.
”Conv” is the convolutional layer.

Evaluation Metric : Short-time Objective Intelligibil-
ity (STOI)[13] and Perceptual Evaluation of Speech Distor-
tion (PESQ) [14] are used to evaluate the designed model.

3.2 Experiment

The main contribution of this article is to propose a CNN
structure for multi-microphone noise reduction, and based
on this structure, propose a feature integration layer and a
feature fusion layer. To verify the structure and related algo-
rithms proposed in this article, Table 2 shows the denoising
experiment for multiple microphones, The following is an
introduction to different experimental strategies.

• CNN-A: XA as the input of the baseline CNN. only in-
cludes the bottom path in Fig. 1.

Table 1 Proposed baseline CNN.

Modules Description

Encoder

Padding (4,4), (0,0)
Conv 1 Kernal:9 × 8, 18
Conv 2 Kernal:5 × 1, 30
Conv 3 Kernal:9 × 1, 8
Conv 4 Kernal:9 × 1, 18
Conv 5 Kernal:5 × 1, 30
Conv 6 Kernal:9 × 1, 8

Decoder

Conv 7 Kernal:9 × 1, 18
Conv 8 Kernal:5 × 1, 30
Conv 9 Kernal:9 × 1, 8

Conv 10 Kernal:9 × 1, 18
Conv 11 Kernal:5 × 1, 30
Conv 12 Kernal:9 × 1, 8
Dropout 0.2
Conv 13 Kernal:129 × 1, 1

Table 2 Results of multiple microphones system.

module PESQ STOI
CNN-A 1.420 0.780
CNN-B 1.680 0.830
CNN (w/ FF) 1.640 0.857
CNN (w/ FI) 1.534 0.850
CNN MM 1.836 0.858

• CNN-B: The CNN structure proposed in this article.
As shown in Fig. 1, excluding the feature integration
layer and feature fusion layer, the skip structure con-
nects the encoder layer and decoder layer.
• CNN (w/FF): Including the proposed CNN architecture

and feature fusion layer.
• CNN (w/FI): Including the proposed CNN architecture

and feature integration layer.
• CNN MM: As shown in Fig. 1, including all proposed

modules.

We can conclude from the observation data that the
PESQ and STOI are improved by the proposed CNN struc-
ture. Firstly, compared to CNN-A, CNN-B’s PESQ and
STOI have increased by 0.26% and 0.05%, indicating the
necessity to consider both individual microphone informa-
tion and comprehensive microphone information simultane-
ously. In addition, CNN (w/FF) and CNN (w/FI) can further
improve the values of PSEQ and STOI, indicating the effec-
tiveness of the proposed module. CNN MM achieved the
best performance, indicating the superiority of the noise re-
duction architecture proposed in the paper for multiple mi-
crophones.

In order to further explore the performance of our de-
signed model, we analyzed the denoising effects of CNN-
A and CNN MM in both the time and frequency domains.
Fig. 4 shows the denoising results of different models after
adding noise to the original speech. Fig. 5 compares the
noise reduction effects of different models in the frequency
domain under different noise environments. Among them,
’BUS’,’ CAF ’,’ PED ’, and’ STR ’refer to different noise
environments’ On the bus’,’ Cafe ’,’ Pedestrian area ’, and’
Street ’, respectively. From the waveform of the denoised
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Fig. 4 Waveform samples.

Table 3 Comparison of different methods.

module PESQ STOI
DDAEC[7] 1.546 0.852
CRN[8] 1.626 0.844
ours 1.836 0.858

audio, we can see that for silent segments, CNN MM can
more effectively eliminate environmental noise than CNN-
A, which proves the effectiveness of the proposed feature in-
tegration layer and feature fusion layer. In addition, it can be
more clearly seen from the noise reduction spectra of differ-
ent noises that CNN greatly improves its denoising perfor-
mance at low frequencies, especially in ”CAF” and ”STR”.
CNN MM can eliminate more irrelevant information in low
frequencies, which proves the effectiveness of the proposed
architecture.

Next, we compare the proposed method with models
with similar structures, including DDAEC [7] and CRN [8],
XA as input to the model. The comparison of the results
of all experiments is shown in Table 3. From the table,
even compared to speech enhancement models with similar
structures, our proposed model still has performance advan-
tages, which proves the superiority of our proposed multi-
microphone speech enhancement model.

4. Conclusion

This paper presented a CNN-based feature integration net-
work for speech enhancement in microphone arrays. STFT
is the model input. CNN with encoder, decoder, and skip
structure as a baseline model. In addition, we designed a
feature integration layer in a multi-microphone-based CNN
path to replace the original skip structure and a feature fu-
sion layer to fuse different microphone information. Multi-
ple experimental results have demonstrated the superiority
of our designed model.
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