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Dendritic Learning-based Feature Fusion for Deep Networks

Yaotong SONG', Zhipeng LIU?, Zhiming ZHANG", Jun TANG'", Zhenyu LEI', Nonmembers,

SUMMARY  Deep networks are undergoing rapid development. How-
ever, as the depth of networks increases, the issue of how to fuse features
from different layers becomes increasingly prominent. To address this chal-
lenge, we creatively propose a cross-layer feature fusion module based
on neural dendrites, termed dendritic learning-based feature fusion (DFF).
Compared to other fusion methods, DFF demonstrates superior biological
interpretability due to the nonlinear capabilities of dendritic neurons. By in-
tegrating the classic ResNet architecture with DFF, we devise the ResNeFt.
Benefiting from the unique structure and nonlinear processing capabilities
of dendritic neurons, the fused features of ResNeFt exhibit enhanced repre-
sentational power. Its effectiveness and superiority have been validated on
multiple medical datasets.

key words: Convolutional network, Neural networks, Dendritic neuron,
Feature fusion

1. Introduction

Image classification serves as a crucial cornerstone in the
domain of computer vision and holds significant importance
in various applications including but not limited to object
recognition, object detection, image retrieval, image quality
assessment, and visual search engines [1]. It plays a funda-
mental role in comprehending image data, promoting inno-
vation and progress in multiple fields. With the advent of
large-scale datasets and the improvement in computational
power, convolutional neural networks (CNNs) utilize a mul-
tilayer structure of convolutional and pooling operations to
effectively capture both local and global features of images.
This process gradually extracts more abstract and high-level
features across different layers. The multilayer structure en-
ables CNNs to provide a layered representation of images,
thereby better capturing the information within images and
enhancing the accuracy of image classification tasks.

Deep CNN remains the problems of gradient disap-
pearance and network degradation. ResNet [2] effectively
addresses these problems by introducing the residual con-
nections. This innovation enables it can train deeper net-
work structures while achieving remarkable performance.
Despite recent emergence of numerous large-scale models
such as ViT [3]. ResNet still has the advantages of easy im-
plementation. This grants ResNet scalability and efficiency
in practical applications. Due to its outstanding performance
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and simple network architecture, ResNet continues to be
widely adopted.

Traditional ResNet models do not fully exploit the uti-
lization of features. To address this issue, researchers have
proposed various ResNet-based variants, such as ResNeXt
[4], Res2Net [5], and ResNetSt [6], which have achieved
state-of-the-art performance at that time. These improved
variants of ResNet adopt different approaches to fully ex-
tract features at each block. However, these methods primar-
ily focus on feature acquisition at individual network block
layers, often lacking sufficient utilization of multi-level fea-
tures.

Several methods have been proposed for fusion inter-
level features. For example, Residual Steps Network (RSN)
[7] maintains spatial information in a high-resolution sub-
network while gradually incorporating semantic informa-
tion from low-resolution sub-networksaggregates. In FFA-
Net [8], it built upon attention mechanism for integrating
features at different levels, the feature attention module, as-
signing higher weights to important features. This structure
facilitates the preservation of shallow-level information and
its propagation to deeper layers. These methods primarily
focus on the feature representation of the last layer of the
model, but these signs do not prove that the last layer serves
as the ultimate representation for any task. In fact, the fusion
of features across different layers has become a focal point
of researchers’ attention. In 2018, Fisher Yu et al. intro-
duced the DLA [9], which successfully integrates features
from different layers of the network, achieving deep aggre-
gation of semantic and spatial information, thereby compre-
hensively capturing feature information. This study com-
pellingly demonstrates that, like the width and depth of a
network, feature fusion is also an important dimension in
network architecture. Although the DLA achieves signifi-
cant performance improvements, we note that its fusion ap-
proach still lacks in terms of biological interpretability.

Biologically inspired neurons play a crucial role in
shaping neural networks. Recently, a biological neuron’s
approach to nonlinear feature processing, known as the den-
dritic neuron model (DNM) [10]. By using the character-
istics of DNM’s multiple dendrites, the network can more
comprehensively utilize interactions between features from
different layers, thereby enhancing the network’s perfor-
mance and representational capacity. Moreover, this ap-
proach better emulates the feature processing mechanism of
biological neurons.
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Fig.1  The structure of ResNeFt.

Motivated by the aforementioned discussions, this let-
ter presents ResNeFt, a novel approach that extends the
ResNet structure by incorporating the structural character-
istics of dendritic neurons for feature fusion. The main con-
tributions of this work are as follows: 1) Aggregating inter-
level features to enhance the reuse of cross-level features in
the network. 2) Introducing the structure of dendritic neu-
rons and leveraging their nonlinear processing capabilities
to improve the feature fusion. 3) Experimental evaluation
of the proposed ResNeFt on multiple datasets within the
MedMnist benchmark to validate its effectiveness and su-
periority.

2. Methodology

ResNeFt consists of two components: feature extraction and
dendritic learning-based feature fusion (DFF). In the pro-
cess of DFF, ResNeFt draws inspiration from the structure
of dendritic neurons, enabling the network to more precisely
balance the weights of different hierarchical features during
fusion. This design not only enhances network performance
but also brings the entire network architecture closer to real
biological neurons.

2.1 Feature extraction

In our work, we employ ResNet as the basic network for
feature extraction. ResNet is primarily composed of four
convolutional blocks. Each convolutional block consists of
multiple bottlenecks. The Bottleneck structure constitutes
the core component of the ResNet network and is responsi-
ble for the feature extraction process in images. The feature
extraction is depicted in the left half of the dashed line of
Fig. 1 (a). To ensure that each extracted feature map directly
reflects the feature extraction results at the current depth
of the network block. We choose to extract feature maps
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from each bottleneck without residual connections, as well
as from the feature maps at the current depth of the convo-
lutional block for feature fusion. Through meticulously de-
signed feature extraction, we hope that the extracted features
can reflect the information captured by the current depth
module. This process provides a solid foundation for sub-
sequent DFF processes, allowing for a comprehensive inte-
gration of the captured information.

2.2 Dendritic learning-based feature fusion

Dendritic neurons consist of dendritic structures and soma
body. The dendritic structure receives and processes feature
signals, while the soma body aggregates the computational
results from various dendrites and outputs the integrated re-
sult. This structure enables dendritic neurons to efficiently
process complex feature information and generate precise
outputs. Feature maps extracted at different depths of the
network exhibit diverse sizes and channel dimensions. Con-
sequently, normalization is necessary to standardize both the
feature size and channel dimensions. As show in Fig. 1 nor-
malization, we use a 1x1 convolutional kernel with a stride
of 1 to aggregate spatial information, while simultaneously
unifying inter-group features to the same channel number
K (K = 10). The features extracted from images by the net-
work have a two-dimensional structure. In our process, each
two-dimensional feature is mapped to a corresponding one-
dimensional feature of size F' (F = 512) and activate us-
ing the LeakyReLU. Unlike the ReLU activation function,
LeakyReLU doesn’t set the value to O when x < 0O; instead,
it replaces the value with a small numeric. LeakyReLU pro-
vides non-linear mapping and offers advantages over ReLU
by avoiding the issue of “neuron death”. The formula for
the normalization process as follows:

YIK,w,hl = > 37" Xle,w, il x WilK, ¢, 1, 1],
c W h M
T[K., F] = YK, wh] x Wa[wh, F],

where X, Y and T represents the input, result after convolu-
tion and normal, ¢ represents the number of channels, while
w and h respectively denote the width and height of the fea-
ture map. W, and W, represents the parameters of the con-
volutional kernel and the linear. The [c, w, ] denotes that
the shape of the input data matrix X, and the XxW represents
the multiplication between the input matrix and the weight
matrix. Ultimately, we have obtained 4K one-dimensional
features, each length of F.

Then we utilize the structural framework of dendritic
neural for the process of feature fusion. Its inherent non-
linear characteristics allow for the processing of more com-
plex information, surpassing the linear integration capabili-
ties of traditional neuron models. Furthermore, the parallel
processing of multiple dendritic branches enhances compu-
tational performance. The structure of dendritic learning-
based feature fusion is illustrated in Fig. 1. These features
are individually assigned to 4K dendrites for further pro-
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Table1  Accuracy and Fl-score for four MedMNIST datasets.
PathMNIST BloodMNIST DermaMNIST RetinaMNIST
Methods
Acc(%) F1(%) T(s) Acc(%) F1(%) T(s) Acc(%) F1(%) T(s) Acc(%) F1(%) T(s)
DD 64.64+1.54  59.28+2.02 1978 80.87+0.25  78.54+0.33 223 69.26+0.72  28.69+6.82 127 52.88+1.63  33.53+0.91 39
BLS 60.6+0.15 49.4+3.14 2490 85.97+0.03  84.06+0.12 305 72.45+0.03  35.46+0.02 166 54.37+0.13  32.38+0.69 26
Vit 73.53+0.3 66.9+0.2 2099 88.38+0.01 86.88+0.11 239 71.52+0.05 40.08+0.7 141 54.37+0.37  34.85+1.34 24
MobileNetV3  79.45+0.15 74.0+0.42 3387 90.0+0.3 88.68+0.15 439 70.3+0.23 37.11+1.8 272 50.75+0.0 27.62+2.77 39
ShuffleNetV2 87.0+0.27 81.84+0.62 4218 93.19+0.15  92.13+0.22 546 72.02+0.05 41.43+4.84 289 50.37+0.37  28.26+3.11 55
ResNet 91.6+0.18 87.59+0.24 11573  95.56+0.06 95.14+0.1 1654  74.78+0.08  50.84+0.34 973 53.62+1.12  33.78+1.16 111
ResNeFt 91.8+0.37 88.24+0.7 18087  96.88+0.09 96.61+0.09 2496 76.48+0.34 54.48+0.89 1321 54.88+0.52 37.0+2.18 220
cessing. The implementation of dendritic learning is formu- Table 2 The composition for four MedMNIST datasets.
lated as Dataset Data Modality Samples  Classes  Training / Validation / Test ~ Test Proportion(%)
F PathMNIST Colon Pathology 107,180 9 89,996 /10,004 / 7,180 6.66
BloodMNIST  Blood Cell Microscope 17,092 8 11,959/ 1,712 /3,421 28.60
= . . Y. . DermaMNIST Dermatoscope 10,015 7 7.007 / 1,003 / 2,005 28.61
Oj - /lj Z(Wl Xl + bl)’ (2) RetinaMNIST Fundus[(.‘amepra 1,600 5 1,080/ 120 / 400 25.00
i=1

where O; is the individual output of a dendrite, 4; is the
adaptive weight, X; represents the i-th input feature, W; cor-
responds to its weight, and b; represents its bias. The com-
puted output from dendrite are input into the soma body for
the final classification.

In the soma body, the computational outputs from 4K
dendrites are summed along the dimensions of dendrites.
This aggregation process mimics the information integra-
tion function of dendrites in biological neurons, it can effec-
tively fuse the feature information carried by different den-
drites. Subsequently, we map the aggregated results to the
final classification head, thus achieving the transformation
from feature space to classification space. Due to the in-
trinsic characteristics of dendritic structure, the information
processed on dendrites typically exhibits lower numerical
levels. Therefore, directly applying a sigmoid function as
the activation function is not beneficial for the ResNeFt’s
training. To enhance the ultimate classification results, we
employ a modified sigmoid function as the activation func-
tion in the soma body, referred to as “T'o”” [11]. The sigmoid
function and its derivative are as follows:

1
14+ex

o(x) = 3)
When the input data is small and near zero, it is evident that
the derivative of the sigmoid function does not equal to x.
T o functixon and its derivative are as follows:

To(x) =40(x) — 2. 4)

The reciprocal of the T'o function at the point O is equal to
x. This property allows for better preservation of the feature
information.

3. Experimental Results

To demonstrate the effectiveness of our proposed method,
We conduct an extensive comparison of network architec-
tures, encompassing classic CNNs such as ResNet [2], Mo-
bileNet [12], and ShuffleNet [13]. Additionally, to explore
performance differences among different network architec-
tures, we employ the Vision Transformer (ViT) [3] based
on the transformer architecture, the Dendrite Net (DD) [14]

utilizing dendrite neuron structures and the Broad Learning
System (BLS) [15], which without deep architecture.

The experiments are conducted on multiple datasets
from MedMnist. MedMNIST is a publicly available dataset
serving as a benchmark for machine learning and deep
learning algorithms in the field of medical imaging. The
purpose of MedMNIST is to provide a standardized and ac-
cessible dataset for researchers and practitioners in the med-
ical image analysis domain. In our experiments, we select
four color image datasets: PathMNIST, BloodMNIST, Der-
maMNIST, and RetinaMNIST. These datasets encompass
four types of biomedical images and the image size is set to
28 x 28. The detailed composition of the datasets is shown
in Table 2.

All experiments are conducted on an NVIDIA RTX
3090 GPU. All models train for 100 epochs and the batch
size is set to 128. Adam optimizer is utilized with a learning
rate (Ir) of 1e-3. In ResNeFt, the Ir for the Base Network is
set to le-3, while the Ir for the DFF module is set to le-5.
To augment the data, we solely employed fundamental nor-
malization. We adopted the cross-entropy loss function as
the employed loss function.

We employ accuracy (Acc) and fl-score (F1) as eval-
uation metrics to assess each model’s performance. Acc
provides a direct measure of model performance, while F1-
score considers both false positives and false negatives, of-
fering a more comprehensive evaluation of classification
performance. All models are trained using the training data
set, and their performance is assessed using the validation
set. Subsequently, the final model performance is examined
on the test data set.

To mitigate the impact of randomness on the exper-
iments and validate the stability of the proposed method,
we perform five independent replicate experiments for all
models. The results of all models on the test set are pre-
sented in Table 1. We show the mean, standard devia-
tion and the average time (T) for training the models. It
is apparent that the proposed ResNeft need more training
time, potentially attributed to the DFF module in feature fu-
sion. However, ResNeFt exhibits exceptional performance
across all datasets, unequivocally demonstrating its superi-
ority. Importantly, this outcome validates the effectiveness
of the DFF method. This approach adeptly feature fusion
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Table 3  Discussion on the parameters K and F in DermaMNIST.
F 64 128 512 1024
K Acc Fl Acc Fl Acc Fl1 Acc Fl1
5 0.7696  0.5408 0.7631  0.5436  0.7701  0.5495 0.7706  0.5530

10 0.7521 05217 0.7626  0.5734 0.7706 0.5584 0.7591  0.5288
15 0.7631  0.5331  0.7581 0.5240 0.7546  0.5108 0.7656  0.5614
20 0.7551 04991  0.7471 04516  0.7606  0.5546  0.7646  0.5378

Epoch: 37
Acc: 0.9655

Epoch: 66
Acc: 0.956

—ResNet
—ResNeFt
® The Best

epoch

Fig.2 The average convergence curves of ResNet and ResNeFt on
BloodMNIST.

from different network layers, significantly enhancing the
representational capacity of features.

To better explore the performance of ResNeFt, we dis-
cuss the effect of hyperparameters K and F for our model,
and the results of Acc and F1 are shown in Table 3. The table
represents the parameter range of F = {64, 128,512, 1024}
along the horizontal axis, and the parameter range of K =
{5, 10, 15, 20} along the vertical axis, it can be observed that
the model achieves the best performance when K = 10 and
F = 512. Based on our preliminary analysis, we speculate
that the sizes of the hyperparameters K and F are related to
the number and dimensions of the selected feature maps.

The dendritic structure can effectively adjust the fea-
tures at different layers of the deep network, optimizing
the parameters of various model components more effi-
ciently. In Fig. 2, we show the average convergence curves
of ResNeFt and ResNeFt on BloodMNIST. Evidently, the
proposed with DFF enhances the convergence speed and
performance of the ResNet, thereby reducing the training
time required to achieve optimal performance.

4. Conclusions

This letter addresses the issue of feature fusion at differ-
ent layers and introduces a novel model called ResNeFt.
The DFF module leverages the dendritic structure to fuse
features across various depths of the network. This en-
ables thorough feature utilization, accelerates the conver-
gence speed of neural networks, and enhances biological in-
terpretability by closely resembling the real dendritic neural
structure of the human brain. Experimental results on mul-
tiple medical datasets demonstrate that ResNeFt, compared
to other advanced networks, exhibits more effective perfor-
mance. In future research, we hope to apply the DFF to a
broader range of models, thereby universally enhancing the
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performance of other neural networks.
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