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LETTER
Greedy Selection of Sensors for Linear Bayesian Estimation under
Correlated Noise

Yoon Hak KIM†a), Nonmember

SUMMARY We consider the problem of finding the best subset of sen-
sors in wireless sensor networks where linear Bayesian parameter estimation
is conducted from the selected measurements corrupted by correlated noise.
We aim to directly minimize the estimation error which is manipulated by
using the QR and LU factorizations. We derive an analytic result which
expedites the sensor selection in a greedy manner. We also provide the
complexity of the proposed algorithm in comparison with previous selec-
tion methods. We evaluate the performance through numerical experiments
using random measurements under correlated noise and demonstrate a com-
petitive estimation accuracy of the proposed algorithm with a reasonable
increase in complexity as compared with the previous selection methods.
key words: greedy algorithm, sensor selection, QR factorization, LU
factorization, linear Bayesian estimation

1. Introduction

In wireless sensor networks, one of the crucial tasks is the
parameter estimation from noise-corrupted measurements
collected at sensor nodes. The measurements can be lin-
early formulated with the known observation matrix H and
the parameters to be estimated. Selection of sensors makes
a critical impact on the estimation accuracy since the in-
formation measured by sensors depends heavily upon their
locations. The research for the sensor selection has been
conducted in [1]–[4]: the selection methods based on con-
vex relaxation [1] and cross-entropy optimization [2] were
developed at a huge cost of complexity, especially for large
sensor networks. Since greedy approach may lead to a fea-
sible complexity, much effort to solve the selection problem
in a greedy manner has been made, despite of its subopti-
mality. To achieve an additional complexity reduction, the
log-determinant of the inverse estimation error covariance
matrix was greedily maximized to derive a simple analytic
rule by using its monotone submodularity [3]. A greedy
method was also presented to directly minimize the mean
squared estimation error (MSE) by applying the QR factor-
ization [4].

Notice that most of the previous research assumed un-
correlated measurement noise to solve the sensor selection
problem (equivalently, the noise covariance matrix is as-
sumed to have zero or ignorable off-diagonal elements). The
presence of correlated noise imposes more difficulties on the
selection problem: specifically, the inverse estimation error

Manuscript received March 18, 2024.
Manuscript publicized May 14, 2024.

†Department of Electronic Engineering, College of IT Conver-
gence Engineering, Chosun University, Korea.

a) E-mail: yhk@chosun.ac.kr
DOI: 10.1587/transinf.2024EDL8024

covariance matrix is no longer expressed as a linear function
of the selected sensors [5], [6]. The selection problem un-
der correlated noise for the maximum likelihood estimation
(MLE) was addressed and centralized and distributed algo-
rithms for sparsity-aware sensor selection were presented
using convex relaxation [5]. To minimize the MSE for es-
timation of random parameters, two sensor selection meth-
ods were developed by using convex relaxation and greedy
approach [6]. Recently, efficient greedy methods were pro-
posed by using different derivation processes to maximize
the log-determinant of the inverse error covariance matrix,
yielding an improved estimation accuracy when measure-
ments are corrupted by correlated noise in [7], [8].

In this paper, we consider a situation where sensors col-
lect linear measurements affected by correlated noise. We
conduct linear Bayesian estimation of parameters by using
the measurements at a subset of sensors. We pursue a direct
minimization of the estimation error to find the best subset
S. Note that the estimation error covariance matrix is given
by a function of the matrix HS with rows selected from H
and the covariance matrix KS with entries, each of which
corresponds to noise covariance between the selected nodes.
We then simplify the metric by factoring HS and KS based
on the QR and LU factorizations, respectively and derive an
analytic rule which facilitates an iterative selection of such
a minimizing node in a greedy manner. We examine the
performance of various selection methods through numeri-
cal experiments, showing a competitive estimation accuracy
achieved by the proposed method in comparison with previ-
ous methods.

This paper is organized as follows. The problem is
formulated in Sect. 2. The QR and LU factorizations are
employed to simplify the estimation error and an analytic
selection rule is derived in Sect. 3. Numerical experiments
are executed in Sect. 4 and conclusions in Sect. 5.

2. Problem Formulation

In wireless sensor networks, the measurement vector y with
entries yi, i ∈ V = {1 · · · N} is assumed to be corrupted by
additive correlated noise w = [w1 · · · wN ]⊤ and collected by
N sensor nodes deployed in a sensor field. In generating the
measurements, we also assume a linear observation model
with the known N×p full column-rank observation matrix H
and the parameter vector θ ∈ Rp to be estimated as follows:

y = Hθ + w (1)
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where H consists of N row vectors h⊤
i , i ∈ V and the mea-

surement noise w independent of θ is assumed to follow the
normal distribution N(0,K) with the covariance matrix K of
rank N . We consider the estimation of the random parame-
ter θ drawn from N(0,Σθ ) and the method presented in this
work can be used for the case of the deterministic parameter
by letting Σ−1

θ = 0. Then, we aim to select p nodes in the
set S that minimizes the estimation error computed from the
selected measurement vector yS with the p entries yi, i ∈ S.

In this work, we perform the linear Bayesian estima-
tion and the estimation error covariance matrix Σ(S) and the
optimal estimator θ̂ (e.g., maximum a posteriori (MAP) esti-
mator or minimum mean squared error (MMSE) estimator)
are given as follows [3], [9]:

Σ(S) =
(
Σ−1
θ +H⊤

SK−1
S HS

)−1
(2)

θ̂ =
(
Σ−1
θ +H⊤

SK−1
S HS

)−1
H⊤

SK−1
S yS (3)

where HS is the |S | ×p matrix with rows h⊤
i , i ∈ S and KS the

|S | × |S | covariance matrix with entries ki j = E[wiwj], i, j ∈
S.

Now, we formulate the sensor selection problem in
which the best set S∗ of sensor nodes is constructed so as to
minimize the mean squared estimation error MSE(S):

S∗ = arg min
S, |S |=p

MSE(S) = arg min
S, |S |=p

tr [Σ(S)] (4)

We seek to tackle the problem by adopting a greedy ap-
proach in which one sensor node is iteratively selected so as
to minimize the intermediate MSE denoted by MSE(Si) =
tr [Σ(Si)], where Si is a set of i sensors selected until the i-th
iteration. Note that the node at the (i + 1)-th iteration is se-
lected from the set SC

i ≡ (V −Si) consisting of the remaining
sensors. Specifically,

j∗ = arg min
Si+1=Si+{ j }, j∈SC

i

tr [Σ(Si+1)]

= arg min
Si+1=Si+{ j }, j∈SC

i

tr
[(

Σ−1
θ +H⊤

Si+1
K−1

Si+1
HSi+1

)−1
]

(5)
Si+1 = Si + { j∗} (6)

where HSi+1 and KSi+1 are constructed as follows:

H⊤
Si+1
=

[
H⊤

Si
hj

]
, KSi+1 =

[
KSi k
k⊤ k

]
(7)

where k⊤
i+1 ≡

[
k⊤ k

]
with k⊤ = [k(1)j · · · k(i)j] and

k = k j j . Here, k(i)j = E[w(i)wj] where the subscript (i)
denotes the number of the node selected at the i-th itera-
tion. The selection process in (5) and (6) continues until |Si |
reaches p.

3. Proposed Sensor Selection Algorithm

We first manipulate the metric in (5) by performing the QR

and LU factorizations of H⊤
Si+1
= QR̄i+1 and the symmetric

matrix KSi+1 =MSi+1M⊤
Si+1

where Q is the p× p orthogonal
matrix with p column vectors qj, R̄i+1 the p × (i + 1) matrix
and MSi+1 the (i + 1) × (i + 1) lower triangular matrix. Then,
assuming Σθ = σ

2
θ Ip where Ip is p × p identity matrix, we

have

MSE(Si+1)

= tr

(

1
σ2
θ

Ip +QR̄i+1(MSi+1M
⊤
Si+1

)−1R̄⊤
i+1Q⊤

)−1
= tr


(

1
σ2
θ

Ip + R̄i+1(MSi+1M
⊤
Si+1

)−1R̄⊤
i+1

)−1 (8)

where (8) follows from the cyclic property of the trace op-
eration and Q⊤ = Q−1. Notably, R̄i+1 can be expressed
by using the (i + 1) × (i + 1) upper triangular matrix Ri+1
which is constructed from Ri given at the previous iteration
as follows:

R̄i+1 =

[
Ri+1

0(p−i−1)×(i+1)

]
, Ri+1 =

[
Ri ri
0 ri+1

]
(9)

where 0a×b indicates a×b zero matrix and r⊤
i+1 = [r⊤i ri+1]

can be obtained from the QR factorization of H⊤
Si+1

. Further-
more, MSi+1 and M−1

Si+1
can be computed from MSi and M−1

Si
at the previous iteration, respectively [8]:

MSi+1 =

[
MSi 0
m⊤

i mi+1

]
(10)

M−1
Si+1
=

[
M−1

Si
0

(minv
i )⊤ m−1

i+1

]
, (minv

i )⊤ = −
m⊤

i M−1
Si

mi+1
(11)

where MSimi = k, m2
i+1 = k− ∥ mi ∥2. Denoting

Ri+1

(
M−1

Si+1

)⊤
by the upper triangular matrix Ti+1 and plug-

ging (9), (10) and (11) into (8), we produce

MSE(Si+1)

= tr

(
Ti+1T⊤

i+1 +
1
σ2

θ

Ii+1

)−1
0⊤(p−i−1)×(i+1)

0(p−i−1)×(i+1)
1
σ2

θ

Ip−i−1

 (12)

∝ tr

(
Ti+1T⊤

i+1 +
1
σ2
θ

Ii+1

)−1 (13)

where (13) follows since tr( 1
σ2

θ

Ip−i−1) is irrelevant to the
process of finding the minimizing sensor at the (i + 1)-th
iteration. Note that Ti+1 ≡ Ri+1

(
M−1

Si+1

)⊤
is also written by

using the matrices at the previous iteration:

Ti+1 =

[
Ri(M−1

Si
)⊤

−Ri (M−1
Si

)⊤mi+ri
mi+1

0 ri+1/mi+1

]
≡

[
Ti ti
0 ti+1

]
(14)
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Table 1 Comparison with various greedy selection methods

Now, we present a theorem which provides a simple
criterion to find the sensor node minimizing (13).

Theorem 1. The sensor node at the (i + 1)-th iteration that
minimizes the MSE in (13) is determined as follows:

j∗ = arg min
j∈SC

i

σ2
θ (1 + k)− ∥

(
TiT⊤

i +
1
σ2

θ

Ii
)−1

ti ∥2

t2
i+1σ

2
θ + (1 + k)

(15)

where k = t⊤i
(
TiT⊤

i +
1
σ2

θ

Ii
)−1

ti .

Proof. We first denote TiT⊤
i +

1
σ2

θ

Ii by Pi for a simplified
notation. Then, we employ the derivation process in [4] to
yield (

Ti+1T⊤
i+1 +

1
σ2
θ

Ii+1

)−1

=


(Pi)−1 − (Pi )−1ti t⊤i (Pi )−1

t2
i+1σ

2
θ+1+k − ti+1σ

2
θ (Pi )−1ti

t2
i+1σ

2
θ+1+k

− ti+1σ
2
θ t⊤i (Pi )−1

t2
i+1σ

2
θ+1+k

σ2
θ (1+k)

t2
i+1σ

2
θ+1+k

 (16)

Thus, the MSE is given by

MSE(Si+1) ∝ tr
[
(Pi)−1]

− 1
t2
i+1σ

2
θ + 1 + k

tr
[
(Pi)−1 tit⊤i (Pi)−1] + σ2

θ (1 + k)
t2
i+1σ

2
θ + 1 + k

(17)

∝
σ2
θ (1 + k)− ∥

(
TiT⊤

i +
1
σ2

θ

Ii
)−1

ti ∥2

t2
i+1σ

2
θ + (1 + k)

(18)

where the first term in (17) is irrelevant in finding the mini-
mizing node at the (i + 1)-th iteration. □

For the performance comparison, we first consider two
selection methods previously developed in the assumption
of uncorrelated noise (equivalently, K = σ2IN ) denoted by
Greedy Sensor Selection (GSS) [3] and by Greedy Sensor
Selection based on QR factorization (GSS-QR) in [4], re-
spectively. The former maximizes the log-determinant of
Σ(S)−1 while the latter directly minimizes the MSE(S). We
also evaluate the method denoted by Greedy Sensor Selec-
tion under Correlated Noise (GSS-CN) [7] which maximizes

the log-determinant of Σ(S)−1 when correlated noise is con-
sidered. In Table 1, the complexity of the selection methods
are provided for comparison, showing that the four selec-
tion methods yield the same complexity order for the case of
|S | = p. In what follows, the selection methods are exper-
imentally evaluated in terms of the estimation performance
and the execution time.

4. Experimental Results

We conduct numerical experiments to evaluate the proposed
selection algorithm in comparison with previous methods in
two cases as follows:

• Case 1: random matrix H with Gaussian iid entries,
hi j ∼ N(0,0.12) and covariance matrix K constructed
from random uniform data distributed over [0 1]

• Case 2: random matrix H with Gaussian iid entries,
hi j ∼ N(0,0.12) and covariance matrix K constructed
from random normal data ∼ N(0,1)

We generate 200 measurement vectors y ∈ RN ,N = 500 for
each of 50 realizations of H ∈ RN×p , the covariance matrix
K and the parameter θ ∼ N(0,σ2

θ Ip). We construct two
types of the covariance matrix K using random data which
are generated from uniform distribution (Case 1) or normal
distribution (Case 2), respectively. The random data are av-
eraged over 5 neighboring nodes to incur correlation between
nodes which yields non-ignorable off-diagonal elements of

Fig. 1 Evaluation of estimation performance for random Gaussian ma-
trix H and covariance matrix K from random uniform data: the proposed
algorithm is compared with different selection methods by varying the di-
mension of the parameter, p = |S |.
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Fig. 2 Evaluation of estimation performance for random Gaussian ma-
trix H and covariance matrix K from random normal data: the proposed
algorithm is compared with different selection methods by varying the di-
mension of the parameter, p = |S |.

Fig. 3 Evaluation of complexity for random Gaussian matrix H and co-
variance matrix K from random uniform data: the various selection algo-
rithms are evaluated in terms of the execution time in second by varying the
dimension of the parameter, p = |S |.

K. Then, we obtain the set S with |S | = p sensor nodes
by applying the selection methods such as GSS, GSS-QR,
GSS-CN, and the proposed algorithm. Note that since GSS
and GSS-QR assume uncorrelated noise, we use the noise
covariance matrix as the diagonal matrix with diagonal en-
tries of K. We generate the parameter vector θ in the range of
σθ from 0.1 to 0.5 and compute the MSE E ∥θ−θ̂ ∥2

∥θ ∥2 averaged
over the range to validate the proposed algorithm.

We first investigate the estimation performance by vary-
ing parameter dimension p = |S | = 10,15, . . . ,40. The
MSEs are plotted in Fig. 1 and 2. As expected, the proposed
method outperforms all of the previous methods because it
directly optimizes the estimation error in consideration of
the impact of correlated noise. It can be noticed that the

better estimation accuracy is achieved as the parameter di-
mension increases because the linear Bayesian estimation
with more measurements tends to suppress correlated noise
more efficiently. For evaluation of the complexity, we com-
pare the execution time in second. Figure 3 shows the ex-
ecution times in Case 1 for various parameter dimensions
p = |S | = 10, . . . ,40. The proposed method offers a rea-
sonable increase in the execution time as compared with
GSS-CN while achieving a superior estimation accuracy to
the other methods.

5. Conclusions

We proposed a greedy sensor selection method which di-
rectly minimizes the estimation error under correlated noise.
We manipulated the estimation error by applying the QR and
LU factorizations and presented an iterative analytic selec-
tion rule. We validate the proposed algorithm through nu-
merical experiments in comparison with the previous novel
methods, demonstrating a competitive estimation perfor-
mance with a reasonable increase in complexity.
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