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LETTER
Greedy selection of sensors for linear Bayesian estimation under
correlated noise

Yoon Hak KIM†a), Nonmember

SUMMARY We consider the problem of finding the best subset of sen-
sors in wireless sensor networks where linear Bayesian parameter estimation
is conducted from the selected measurements corrupted by correlated noise.
We aim to directly minimize the estimation error which is manipulated by
using the QR and LU factorizations. We derive an analytic result which
expedites the sensor selection in a greedy manner. We also provide the
complexity of the proposed algorithm in comparison with previous selec-
tion methods. We evaluate the performance through numerical experiments
using random measurements under correlated noise and demonstrate a com-
petitive estimation accuracy of the proposed algorithm with a reasonable
increase in complexity as compared with the previous selection methods.
key words: greedy algorithm, sensor selection, QR factorization, LU
factorization, linear Bayesian estimation

1. Introduction

In wireless sensor networks, one of the crucial tasks is the
parameter estimation from noise-corrupted measurements
collected at sensor nodes. The measurements can be lin-
early formulated with the known observation matrix H and
the parameters to be estimated. Selection of sensors makes
a critical impact on the estimation accuracy since the in-
formation measured by sensors depends heavily upon their
locations. The research for the sensor selection has been
conducted in [1]–[4]: the selection methods based on con-
vex relaxation [1] and cross-entropy optimization [2] were
developed at a huge cost of complexity, especially for large
sensor networks. Since greedy approach may lead to a fea-
sible complexity, much effort to solve the selection problem
in a greedy manner has been made, despite of its subopti-
mality. To achieve an additional complexity reduction, the
log-determinant of the inverse estimation error covariance
matrix was greedily maximized to derive a simple analytic
rule by using its monotone submodularity [3]. A greedy
method was also presented to directly minimize the mean
squared estimation error (MSE) by applying the QR factor-
ization [4].

Notice that most of the previous research assumed un-
correlated measurement noise to solve the sensor selection
problem (equivalently, the noise covariance matrix is as-
sumed to have zero or ignorable off-diagonal elements). The
presence of correlated noise imposes more difficulties on the
selection problem: specifically, the inverse estimation error
covariance matrix is no longer expressed as a linear function
of the selected sensors [5], [6]. The selection problem un-
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der correlated noise for the maximum likelihood estimation
(MLE) was addressed and centralized and distributed algo-
rithms for sparsity-aware sensor selection were presented
using convex relaxation [5]. To minimize the MSE for es-
timation of random parameters, two sensor selection meth-
ods were developed by using convex relaxation and greedy
approach, respectively [6]. Recently, efficient greedy meth-
ods were proposed by using different derivation processes
to maximize the log-determinant of the inverse error covari-
ance matrix, yielding an improved estimation accuracy when
measurements are corrupted by correlated noise in [7], [8].

In this paper, we consider a situation where sensors col-
lect linear measurements affected by correlated noise. We
conduct linear Bayesian estimation of parameters by using
the measurements at a subset of sensors. We pursue a direct
minimization of the estimation error to find the best subset
𝑆. Note that the estimation error covariance matrix is given
by a function of the matrix H𝑆 with rows selected from H
and the covariance matrix K𝑆 with entries, each of which
corresponds to noise covariance between the selected nodes.
We then simplify the metric by factoring H𝑆 and K𝑆 based
on the QR and LU factorizations, respectively and derive an
analytic rule which facilitates an iterative selection of such
a minimizing node in a greedy manner. We examine the
performance of various selection methods through numeri-
cal experiments, showing a competitive estimation accuracy
achieved by the proposed method in comparison with previ-
ous methods.

This paper is organized as follows. The problem is
formulated in Section 2. The QR and LU factorizations are
employed to simplify the estimation error and an analytic
selection rule is derived in Section 3. Numerical experiments
are executed in Section 4 and conclusions in Section 5.

2. Problem Formulation

In wireless sensor networks, the measurement vector y with
entries 𝑦𝑖 , 𝑖 ∈ V = {1 · · · 𝑁} is assumed to be corrupted by
additive correlated noise w = [𝑤1 · · ·𝑤𝑁 ]⊤ and collected by
𝑁 sensor nodes deployed in a sensor field. In generating the
measurements, we also assume a linear observation model
with the known 𝑁×𝑝 full column-rank observation matrix H
and the parameter vector 𝜃 ∈ R𝑝 to be estimated as follows:

y = H𝜃 + w (1)

where H consists of 𝑁 row vectors h⊤
𝑖 , 𝑖 ∈ V and the mea-

surement noise w independent of 𝜃 is assumed to follow the
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normal distribution N(0,K) with the covariance matrix K
of rank 𝑁 . We consider the estimation of the random param-
eter 𝜃 drawn fromN(0,𝚺𝜃 ) and the method presented in this
work can be used for the case of the deterministic parameter
by letting 𝚺−1

𝜃 = 0. Then, we aim to select 𝑝 nodes in the
set 𝑆 that minimizes the estimation error computed from the
selected measurement vector y𝑆 with the 𝑝 entries 𝑦𝑖 , 𝑖 ∈ 𝑆.

In this work, we perform the linear Bayesian estima-
tion and the estimation error covariance matrix 𝚺(𝑆) and the
optimal estimator 𝜃 (e.g., maximum a posteriori (MAP) esti-
mator or minimum mean squared error (MMSE) estimator)
are given as follows [3], [9]:

𝚺(𝑆) =
(
𝚺−1
𝜃 + H⊤

𝑆K−1
𝑆 H𝑆

)−1
(2)

𝜃 =
(
𝚺−1
𝜃 + H⊤

𝑆K−1
𝑆 H𝑆

)−1
H⊤

𝑆K−1
𝑆 y𝑆 (3)

where H𝑆 is the |𝑆 |×𝑝 matrix with rows h⊤
𝑖 , 𝑖 ∈ 𝑆 and K𝑆 the

|𝑆 | × |𝑆 | covariance matrix with entries 𝑘𝑖 𝑗 = 𝐸 [𝑤𝑖𝑤 𝑗 ], 𝑖, 𝑗 ∈
𝑆.

Now, we formulate the sensor selection problem in
which the best set 𝑆∗ of sensor nodes is constructed so as to
minimize the mean squared estimation error MSE(S):

𝑆∗ = arg min
𝑆, |𝑆 |=𝑝

MSE(𝑆) = arg min
𝑆, |𝑆 |=𝑝

𝑡𝑟 [𝚺(𝑆)] (4)

We seek to tackle the problem by adopting a greedy ap-
proach in which one sensor node is iteratively selected so as
to minimize the intermediate MSE denoted by MSE(𝑆𝑖) =
𝑡𝑟 [𝚺(𝑆𝑖)], where 𝑆𝑖 is a set of 𝑖 sensors selected until the
𝑖-th iteration. Note that the node at the (𝑖 + 1)-th iteration
is selected from the set 𝑆𝐶𝑖 ≡ (𝑉 − 𝑆𝑖) consisting of the
remaining sensors. Specifically,

𝑗∗ = arg min
𝑆𝑖+1=𝑆𝑖+{ 𝑗 }, 𝑗∈𝑆𝐶

𝑖

𝑡𝑟 [𝚺(𝑆𝑖+1)]

= arg min
𝑆𝑖+1=𝑆𝑖+{ 𝑗 }, 𝑗∈𝑆𝐶

𝑖

𝑡𝑟

[(
𝚺−1
𝜃 + H⊤

𝑆𝑖+1
K−1

𝑆𝑖+1
H𝑆𝑖+1

)−1
]
(5)

𝑆𝑖+1 = 𝑆𝑖 + { 𝑗∗} (6)

where H𝑆𝑖+1 and K𝑆𝑖+1 are constructed as follows:

H⊤
𝑆𝑖+1

=
[
H⊤

𝑆𝑖
h 𝑗

]
, K𝑆𝑖+1 =

[
K𝑆𝑖 k
k⊤ 𝑘

]
(7)

where k⊤
𝑖+1 ≡ [k⊤ 𝑘] with k⊤ = [𝑘 (1) 𝑗 · · · 𝑘 (𝑖) 𝑗 ] and

𝑘 = 𝑘 𝑗 𝑗 . Here, 𝑘 (𝑖) 𝑗 = 𝐸 [𝑤(𝑖)𝑤 𝑗 ] where the subscript (𝑖)
denotes the number of the node selected at the 𝑖-th itera-
tion. The selection process in (5) and (6) continues until |𝑆𝑖 |
reaches 𝑝.

3. Proposed sensor selection algorithm

We first manipulate the metric in (5) by performing the QR
and LU factorizations of H⊤

𝑆𝑖+1
= QR̄𝑖+1 and the symmetric

matrix K𝑆𝑖+1 = M𝑆𝑖+1M⊤
𝑆𝑖+1

where Q is the 𝑝 × 𝑝 orthogonal

matrix with 𝑝 column vectors q 𝑗 , R̄𝑖+1 the 𝑝 × (𝑖 + 1) matrix
and M𝑆𝑖+1 the (𝑖 + 1) × (𝑖 + 1) lower triangular matrix. Then,
assuming 𝚺𝜃 = 𝜎2

𝜃I𝑝 where I𝑝 is 𝑝 × 𝑝 identity matrix, we
have

MSE(𝑆𝑖+1)

= 𝑡𝑟


(

1
𝜎2
𝜃

I𝑝 + QR̄𝑖+1 (M𝑆𝑖+1M
⊤
𝑆𝑖+1

)−1R̄⊤
𝑖+1Q⊤

)−1
= 𝑡𝑟


(

1
𝜎2
𝜃

I𝑝 + R̄𝑖+1 (M𝑆𝑖+1M
⊤
𝑆𝑖+1

)−1R̄⊤
𝑖+1

)−1 (8)

where (8) follows from the cyclic property of the trace op-
eration and Q⊤ = Q−1. Notably, R̄𝑖+1 can be expressed
by using the (𝑖 + 1) × (𝑖 + 1) upper triangular matrix R𝑖+1
which is constructed from R𝑖 given at the previous iteration
as follows:

R̄𝑖+1 =

[
R𝑖+1

0(𝑝−𝑖−1)×(𝑖+1)

]
, R𝑖+1 =

[
R𝑖 r𝑖
0 𝑟𝑖+1

]
(9)

where 0𝑎×𝑏 indicates 𝑎×𝑏 zero matrix and r⊤𝑖+1 = [r⊤𝑖 𝑟𝑖+1]
can be obtained from the QR factorization of H⊤

𝑆𝑖+1
. Further-

more, M𝑆𝑖+1 and M−1
𝑆𝑖+1

can be computed from M𝑆𝑖 and M−1
𝑆𝑖

at the previous iteration, respectively [8]:

M𝑆𝑖+1 =

[
M𝑆𝑖 0
m⊤

𝑖 𝑚𝑖+1

]
(10)

M−1
𝑆𝑖+1

=

[
M−1

𝑆𝑖
0

(m𝑖𝑛𝑣
𝑖 )⊤ 𝑚−1

𝑖+1

]
, (m𝑖𝑛𝑣

𝑖 )⊤ = −
m⊤

𝑖 M−1
𝑆𝑖

𝑚𝑖+1
(11)

where M𝑆𝑖m𝑖 = k, 𝑚2
𝑖+1 = 𝑘− ∥ m𝑖 ∥2. Denoting

R𝑖+1

(
M−1

𝑆𝑖+1

)⊤
by the upper triangular matrix T𝑖+1 and plug-

ging (9), (10) and (11) into (8), we produce

MSE(𝑆𝑖+1)

= 𝑡𝑟


(
T𝑖+1T⊤

𝑖+1 +
1
𝜎2

𝜃

I𝑖+1

)−1
0⊤(𝑝−𝑖−1)×(𝑖+1)

0(𝑝−𝑖−1)×(𝑖+1)
1
𝜎2

𝜃

I𝑝−𝑖−1

 (12)

∝ 𝑡𝑟


(
T𝑖+1T⊤

𝑖+1 +
1
𝜎2
𝜃

I𝑖+1

)−1 (13)

where (13) follows since 𝑡𝑟 ( 1
𝜎2

𝜃

I𝑝−𝑖−1) is irrelevant to the
process of finding the minimizing sensor at the (𝑖 + 1)-th
iteration. Note that T𝑖+1 ≡ R𝑖+1

(
M−1

𝑆𝑖+1

)⊤
is also written by

using the matrices at the previous iteration:

T𝑖+1 =

[
R𝑖 (M−1

𝑆𝑖
)⊤

−R𝑖 (M−1
𝑆𝑖

)⊤m𝑖+r𝑖
𝑚𝑖+1

0 𝑟𝑖+1/𝑚𝑖+1

]
≡

[
T𝑖 t𝑖
0 𝑡𝑖+1

]
(14)

Now, we present a theorem which provides a simple
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criterion to find the sensor node minimizing (13).

Theorem 1. The sensor node at the (𝑖 + 1)-th iteration that
minimizes the MSE in (13) is determined as follows:

𝑗∗ = arg min
𝑗∈𝑆𝐶

𝑖

𝜎2
𝜃 (1 + 𝑘)− ∥

(
T𝑖T⊤

𝑖 + 1
𝜎2

𝜃

I𝑖
)−1

t𝑖 ∥2

𝑡2𝑖+1𝜎
2
𝜃 + (1 + 𝑘)

(15)

where 𝑘 = t⊤𝑖
(
T𝑖T⊤

𝑖 + 1
𝜎2

𝜃

I𝑖
)−1

t𝑖 .

Proof. We first denote T𝑖T⊤
𝑖 + 1

𝜎2
𝜃

I𝑖 by P𝑖 for a simplified
notation. Then, we employ the derivation process in [4] to
yield(

T𝑖+1T⊤
𝑖+1 +

1
𝜎2
𝜃

I𝑖+1

)−1

=


(P𝑖)−1 − (P𝑖 )−1t𝑖t⊤𝑖 (P𝑖 )−1

𝑡2
𝑖+1𝜎

2
𝜃+1+𝑘 − 𝑡𝑖+1𝜎

2
𝜃 (P𝑖 )−1t𝑖

𝑡2
𝑖+1𝜎

2
𝜃+1+𝑘

− 𝑡𝑖+1𝜎
2
𝜃 t⊤𝑖 (P𝑖 )−1

𝑡2
𝑖+1𝜎

2
𝜃+1+𝑘

𝜎2
𝜃 (1+𝑘 )

𝑡2
𝑖+1𝜎

2
𝜃+1+𝑘

 (16)

Thus, the MSE is given by

MSE(𝑆𝑖+1) ∝ 𝑡𝑟
[
(P𝑖)−1]

− 1
𝑡2𝑖+1𝜎

2
𝜃 + 1 + 𝑘

𝑡𝑟
[
(P𝑖)−1 t𝑖t⊤𝑖 (P𝑖)−1] + 𝜎2

𝜃 (1 + 𝑘)
𝑡2𝑖+1𝜎

2
𝜃 + 1 + 𝑘

(17)

∝
𝜎2
𝜃 (1 + 𝑘)− ∥

(
T𝑖T⊤

𝑖 + 1
𝜎2

𝜃

I𝑖
)−1

t𝑖 ∥2

𝑡2𝑖+1𝜎
2
𝜃 + (1 + 𝑘)

(18)

where the first term in (17) is irrelevant in finding the mini-
mizing node at the (𝑖 + 1)-th iteration. □

For the performance comparison, we first consider two
selection methods previously developed in the assumption
of uncorrelated noise (equivalently, K = 𝜎2I𝑁 ) denoted by
Greedy Sensor Selection (GSS) [3] and by Greedy Sensor
Selection based on QR factorization (GSS-QR) in [4], re-
spectively. The former maximizes the log-determinant of
𝚺(𝑆)−1 while the latter directly minimizes the MSE(S). We
also evaluate the method denoted by Greedy Sensor Selec-
tion under Correlated Noise (GSS-CN) [7] which maximizes
the log-determinant of 𝚺(𝑆)−1 when correlated noise is con-
sidered. In Table 1, the complexity of the selection methods
are provided for comparison, showing that the four selec-
tion methods yield the same complexity order for the case of
|𝑆 | = 𝑝. In what follows, the selection methods are exper-
imentally evaluated in terms of the estimation performance
and the execution time.

4. Experimental results

We conduct numerical experiments to evaluate the proposed

selection algorithm in comparison with previous methods in
two cases as follows:

• Case 1: random matrix H with Gaussian iid entries,
ℎ𝑖 𝑗 ∼ N(0, 0.12) and covariance matrix K constructed
from random uniform data distributed over [0 1]

• Case 2: random matrix H with Gaussian iid entries,
ℎ𝑖 𝑗 ∼ N(0, 0.12) and covariance matrix K constructed
from random normal data ∼ N(0, 1)

We generate 200 measurement vectors y ∈ R𝑁 , 𝑁 = 500 for
each of 50 realizations of H ∈ R𝑁×𝑝 , the covariance matrix
K and the parameter 𝜃 ∼ N(0, 𝜎2

𝜃I𝑝). We construct two
types of the covariance matrix K using random data which
are generated from uniform distribution (Case 1) or normal
distribution (Case 2), respectively. The random data are av-
eraged over 5 neighboring nodes to incur correlation between
nodes which yields non-ignorable off-diagonal elements of
K. Then, we obtain the set 𝑆 with |𝑆 | = 𝑝 sensor nodes
by applying the selection methods such as GSS, GSS-QR,
GSS-CN, and the proposed algorithm. Note that since GSS
and GSS-QR assume uncorrelated noise, we use the noise
covariance matrix as the diagonal matrix with diagonal en-
tries of K. We generate the parameter vector 𝜃 in the range of
𝜎𝜃 from 0.1 to 0.5 and compute the MSE E ∥ 𝜃−𝜃 ∥2

∥ 𝜃 ∥2 averaged
over the range to validate the proposed algorithm.

We first investigate the estimation performance by vary-
ing parameter dimension 𝑝 = |𝑆 | = 10, 15, . . . , 40. The
MSEs are plotted in Figure 1 and 2. As expected, the pro-
posed method outperforms all of the previous methods be-
cause it directly optimizes the estimation error in consider-
ation of the impact of correlated noise. It can be noticed
that the better estimation accuracy is achieved as the param-
eter dimension increases because the linear Bayesian estima-
tion with more measurements tends to suppress correlated
noise more efficiently. For evaluation of the complexity, we
compare the execution time in second. Figure 3 shows the
execution times in Case 1 for various parameter dimensions
𝑝 = |𝑆 | = 10, . . . , 40. It can be said that the proposed method
offers a reasonable increase in the execution time as com-
pared with GSS-CN while achieving a superior estimation
accuracy to the other methods.

5. Conclusions

We proposed a greedy sensor selection method which di-
rectly minimizes the estimation error under correlated noise.
We manipulated the estimation error by applying the QR and
LU factorizations and presented an iterative analytic selec-
tion rule. We validate the proposed algorithm through nu-
merical experiments in comparison with the previous novel
methods, demonstrating a competitive estimation perfor-
mance with a reasonable increase in complexity.
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Table 1 Comparison with various greedy selection methods
Method Optimality criteria Decomposition Operation count
GSS [3] log det

(
𝚺−1
𝜃 + 1

𝜎2 H⊤
𝑆H𝑆

)
- 𝑂 (𝑁 𝑝2 |𝑆 | )

GSS-QR [4] 𝑡𝑟

[(
𝚺−1
𝜃 + 1

𝜎2 H⊤
𝑆H𝑆

)−1
]

QR 𝑂 (𝑁 𝑝 |𝑆 |2 )

GSS-CN [7] log det
(
𝚺−1
𝜃 + H⊤

𝑆K−1
𝑆 H𝑆

)
- 𝑂 (𝑁 |𝑆 |3 )

Proposed method 𝑡𝑟

[(
𝚺−1
𝜃 + H⊤

𝑆K−1
𝑆 H𝑆

)−1
]

QR, LU 𝑂 (𝑁 𝑝 |𝑆 |2 )
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Fig. 1 Evaluation of estimation performance for random Gaussian ma-
trix H and covariance matrix K from random uniform data: the proposed
algorithm is compared with different selection methods by varying the di-
mension of the parameter, 𝑝 = |𝑆 |.
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Fig. 2 Evaluation of estimation performance for random Gaussian ma-
trix H and covariance matrix K from random normal data: the proposed
algorithm is compared with different selection methods by varying the di-
mension of the parameter, 𝑝 = |𝑆 |.
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