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SUMMARY Currently, an increasing number of tasks in speech emotion
recognition rely on the analysis of both speech and text features. However,
there remains a paucity of research exploring the potential of leveraging
large language models like GPT-3 to enhance emotion recognition. In this
investigation, we harness the power of the GPT-3 model to extract semantic
information from transcribed texts, generating text modal features with a
dimensionality of 1536. Subsequently, we perform feature fusion, com-
bining the 1536-dimensional text features with 1188-dimensional acoustic
features to yield comprehensive multi-modal recognition outcomes. Our
findings reveal that the proposed method achieves a weighted accuracy of
79.62% across the four emotion categories in IEMOCAP, underscoring the
considerable enhancement in emotion recognition accuracy facilitated by
integrating large language models.
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1. Introduction

Affective computing, a concept pioneered by Professor Pi-
card in 1997[1], comprises four key stages: signal acquisi-
tion, emotion recognition, emotion understanding and feed-
back, and emotion expression[2]. Emotion recognition en-
compasses diverse modalities such as speech, text, images,
and videos. Each modality independently conveys emotions,
and leveraging these modalities to extract emotion features
for human emotion recognition has been a foundational ap-
proach in early emotion recognition technology. Initially,
emotion recognition tasks predominantly centered on pro-
cessing features from the speech modality to achieve emotion
recognition[3][4][5]. However, with technological advance-
ments and growing privacy concerns, the sensitive nature of
speech has propelled the text modality to the forefront as a
predominant and viable option. Researchers have pivoted
their attention towards extracting emotion-related features
from transcribed text using various tools, thus propelling the
field of emotion recognition to new horizons[6][7][8][9].

Current pre-training methods in natural language pro-
cessing still require fine-tuning for downstream tasks, de-
manding a large volume of task samples. In contrast, hu-
mans can readily tackle new language tasks with just a few
samples. GPT[10] (Generative Pre-trained Transformer), a
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series of pre-trained language models rooted in the Trans-
former architecture developed by OpenAI, emerges as the
most prevalent and commercially successful model in natu-
ral language processing. GPT-3, unveiled in 2020, signifies
the third iteration in the GPT series. Boasting 175 billion
parameters and adjustable weights, GPT-3 stands as the most
sophisticated and potent version of the model to date.

In its model structure, GPT-3 maintains the model archi-
tecture of GPT while integrating the sparse attention module
from the Sparse Transformer. Sparse attention diverges from
conventional self-attention in that each token only engages in
attention computation with a subset of other tokens, leading
to a complexity of n*logn. To be precise, sparse attention
sets the attention to 0 for all tokens except for those within a
relative distance of k and multiples of k.

The advantages of employing sparse attention are
twofold: Firstly, it diminishes the computational complex-
ity of the attention layer, conserving memory and time.
Consequently, it facilitates the processing of longer input
sequences. Secondly, it demonstrates the trait of ”local
tight correlation and remote sparse correlation,” prioritiz-
ing closely related contexts over distant ones.

Due to the unique structure of the attention mechanism,
models can assign varying levels of importance to each word
in a sentence based on the current task, making them well-
suited for tasks such as emotion recognition and related en-
deavors[11]. GPT-3 has demonstrated remarkable efficacy
in several domains[12]:

• Zero-shot learning: GPT-3 exhibits prowess in zero-
shot learning, wherein language models can be applied
to downstream tasks like translation and text summa-
rization without necessitating additional task-specific
data.

• Encoding rich semantic knowledge: GPT-3 adeptly
encodes comprehensive semantic knowledge about the
world, generating learned representations, typically
fixed-size vectors, which are valuable for discrimina-
tive tasks.

Although GPT-3’s applications in emotion analysis
tasks are relatively scarce, this paper utilizes text embeddings
produced by the model for recognition purposes. Studies in-
dicate that text embeddings derived from GPT-3 can reliably
serve emotion analysis tasks, surpassing traditional emotion
analysis methods and even rivaling fine-tuned models[13]. In
essence, text embeddings based on the GPT-3 model present
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a highly viable option for emotion analysis tasks and exhibit
substantial potential for applications in this domain.

Building upon the superior performance of GPT-3, this
paper delves into its potential to predict emotions from both
speech and transcribed text, leveraging the extensive seman-
tic knowledge embedded within the model. The efficacy
of this approach is substantiated through multimodal fusion
experiments, ultimately validating its effectiveness.

2. Methodology

The main method outlined in this paper is depicted in Figure
1, encompassing three primary components.

• The acoustic feature module (highlighted in blue) is
tasked with providing acoustic features.

• The text feature module (highlighted in yellow) is re-
sponsible for extracting text features from the tran-
scribed text.

• The feature fusion module (highlighted in green)
merges the corresponding features obtained from the
first two modules.
In Fig 1, we illustrate the two distinct procedures used

for text modes. For training process, the training set in-
cludes transcriptions. Textual features are directly extracted
from these transcripts during the training phase. For testing
process, we simulate real-world scenarios by assuming the
testing set only contains speech data, without accompanying
transcripts. Therefore, an Automatic Speech Recognition
(ASR) system is first employed to convert the speech into
text. GPT-3 then extracts textual features from this gener-
ated text.

Subsequently, these fused features are inputted into a
classifier for the final sentiment recognition. The ensuing
subsections will furnish more comprehensive details regard-
ing each module.

2.1 Text feature extraction

The fundamental approach of this paper revolves around
acquiring text embeddings using GPT-3. To access the
GPT-3 embeddings model, we utilize an endpoint provided
in the OpenAI API, which is accessible to registered re-
searchers. Specifically, in our research, we employ the ”text-
embeddings-ada-002” model to encode the transcribed text
within the corpus.

These choices enable us to capture lexical, syntactic,
and semantic attributes that are closely associated with emo-
tions, particularly in lengthy statements. By leveraging these
attributes, we aim to enhance the accuracy of emotion recog-
nition tasks. The utilization of GPT-3 embeddings allows us
to encapsulate rich linguistic information that can signif-
icantly contribute to the recognition and interpretation of
emotions embedded within text data.

2.2 Feature fusion

To assess whether acoustic features and text embeddings

Fig. 1 Overview structure of the proposed method

can synergize to improve emotion classification, we merge
acoustic features from voice audio data with GPT-3-based
text embeddings to create multimodal emotion features. In
our study, the acoustic features comprise 988-dimensional
features extracted from the emobase configuration file us-
ing the openSMILE toolbox[14]. Subsequently, 200-
dimensional depth features pertaining to emotion are ex-
tracted from the initial 988-dimensional features utilizing a
Transformer encoder structure, resulting in a total of 1188
dimensions. In contrast, the text features, derived from GPT-
3, possess a dimensionality of 1536 for transcribed text. The
final fusion feature combining both modes totals 2724 di-
mensions.

Given the disparate dimensions of the acoustic and text
features, we adopt a feature fusion approach. Specifically,
we concatenate the acoustic features and text features, cre-
ating a singular high-dimensional feature vector as the final
fused feature representation. This fused feature vector is then
inputted into a BiLSTM network for recognition, ultimately
yielding the final emotion recognition results.

By integrating information from both acoustic and text
modalities, our method aims to capitalize on the complemen-
tary nature of these features, enhancing the model’s ability to
discern and interpret emotional content within the data. The
fusion of acoustic and text features enables a more compre-
hensive representation of emotional cues, thereby improving
the accuracy of emotion recognition tasks.

3. Experiments

3.1 Dataset

The experimental evaluations conducted in this paper uti-
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lize the publicly available IEMOCAP emotion dataset [15].
This dataset encompasses a total of 10 emotion categories,
including happiness, sadness, anger, neutral, excitement, sur-
prise, disgust, frustration, fear, and other. However, for the
purposes of classification in this study, four emotions have
been selected. To maintain balanced data distribution, the
emotions of happiness and excitement are merged into a sin-
gle category. Consequently, the final experimental dataset
comprises 5,531 utterances, with the following class distribu-
tion: anger: 19.9%, happiness/excitement: 29.5%, sadness:
19.5%, and neutral: 30.8%. This strategic amalgamation
ensures a more equitable representation of emotional cate-
gories within the dataset, thereby enhancing the robustness
and reliability of the experimental analyses conducted in the
paper.

3.2 Parameter setting

In the multimodal fusion experiment, the original dataset is
partitioned into 10 sections on average. Among these, 7 sec-
tions are allocated for training, 2 for testing, and 1 for valida-
tion. The BiLSTM network[16], consisting of both forward
and backward LSTM layers, is employed. Additionally, a lo-
cal attention mechanism is integrated to focus on segments
of speech containing strong emotional information, mitigat-
ing the impact of uneven distribution of emotional features
on the experimental outcomes.

Before the representation is passed to the final output
layer, a dropout with a probability of 0.5 is applied to prevent
overfitting. RMSprop is selected as the optimizer, while the
ReLU function serves as the activation function before the
fully connected layer. For the final output layer responsible
for classification prediction, the softmax function is chosen
as the activation function[17]. The classifier predominantly
utilizes a bidirectional Long Short-Term Memory network
(BiLSTM) comprising 200 neurons, with 100 nodes in the
forward direction and 100 nodes in the backward direction.
The training batch size is set to 64. Two commonly used eval-
uation metrics, Weighted Accuracy (WA) and Unweighted
Accuracy (UA), are employed to assess the performance of
the model. These metrics offer comprehensive insights into
the model’s effectiveness in emotion recognition tasks.

3.3 The text modality experiments

In the text modality, this paper predominantly employs two
major language models to extract text features for emotion
recognition. The first method involves utilizing the classical
BERT model for extracting text features. The comparative
experiment, which is the primary focus of this study, in-
volves leveraging GPT-3 to extract text features for emotion
recognition. The final recognition results for these two sets
of experiments are presented in Table 1.

From Table 1, it’s evident that using the same BiL-
STM network, employing BERT to extract 768-dimensional
text features results in a recognition accuracy with a WA of
68.78% and UA of 68.69%. Compared with that, utilizing

Table 1 The text modality experiments

Methos WA(%) UA(%)

BERT(768dim) 68.78 68.69
GPT-3(1536dim) 72.84 72.90

GPT-3 to extract text features and inputting them into the
same classifier can significantly improve the results. The
WA is 72.84%, and UA is 72.90%, marking an enhancement
of 4.15% and 4.21% in WA and UA, respectively, compared
to the former method. The experimental results validate the
effectiveness of the proposed approach using GPT-3 for text
feature extraction in emotion recognition.

(a): BERT (b): GPT-3
A:angry H:happy S:sad N:neutral

Fig. 2 Confusion matrices for single text modality

The confusion matrices for the two experimental results
presented in Table 2 are depicted in Figure 2. In Figure (a),
the emotion recognition results are illustrated using text fea-
tures extracted by BERT, while in Figure (b), the emotion
recognition results using text features extracted by GPT-3
are displayed. From the graphs, it can be observed that the
method employing GPT-3 for text feature extraction achieved
accuracies of 77%, 76%, 71%, and 70% for the angry, happy,
sad, and neutral categories, respectively. This represents an
improvement of 3%, 2%, 5%, and 2%, respectively, com-
pared to the method utilizing BERT for text feature extraction
in the four emotion recognition categories. These findings
highlight the overall superior performance of the proposed
approach, leveraging the large-scale GPT-3 model for text
feature extraction, over the use of BERT in handling text
for the four emotion recognition tasks. Consequently, the
effectiveness of the approach proposed in this paper is vali-
dated, emphasizing the significance of selecting appropriate
language models for text feature extraction in emotion recog-
nition tasks.

3.4 The multimodal experiments

In this section, the acoustic features and text features de-
scribed in Section 2.2 are combined through feature fu-
sion and inputted into the BiLSTM network for emotion
recognition.The multimodal recognition results using BERT-
extracted text features serve as the baseline system for this



4
IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015

experiment. A comparison is made with the main recog-
nition method proposed in this study and the recognition
results obtained by other researchers in recent studies to val-
idate the effectiveness of the system. The final experimental
results are presented in Table 2.

Table 2 Experimental results of multimodal fusion

Methos WA(%) UA(%)

Fusing Pairwise Modalities for ERC[18] 69.57 69.34
BiGMF[19] 70.43 70.33

Key-Sparse Transformer[20] 74.3 75.3
Baseline system(1956dim) 71.01 71.69

Emobase+GPT-3(2724dim)(Ours) 79.62 80.38

The experiments detailed in Table 2 were exclusively
conducted using the IEMOCAP dataset, showcasing that the
model proposed in this paper surpasses other models in emo-
tion recognition tasks. Under identical conditions, leverag-
ing GPT-3 to extract text features significantly enhances the
accuracy of multimodal emotion recognition. The Weighted
Accuracy (WA) achieves 79.62%, and the Unweighted Ac-
curacy (UA) reaches 80.38%. Comparing these results to
the final recognition rates obtained using the BERT model
to extract text features in the baseline system of our study,
the WA increases by 8.61%, and the UA increases by 8.69%.

The forthcoming figure will display the confusion ma-
trices for both the baseline system and the method proposed
in this paper, offering deeper insights into the classification
performance and the distribution of predicted classes.

(a): BERT+acoustic feature (b): GPT+acoustic feature
A:angry H:happy S:sad N:neutral
Fig. 3 Confusion matrices for multimodal experiments

Figure 3 illustrates the confusion matrix resulting from
the fusion of text features and acoustic features extracted by
BERT (Figure (a)), as well as the confusion matrix resulting
from text features and acoustic features extracted by GPT-3
(Figure (b)).

Upon comparing the two, it becomes evident that in
terms of recognition rates for the four emotion categories,
the method employing GPT-3 for feature extraction outper-
forms the method using BERT for feature extraction. Specif-
ically, the accuracies for the angry, happy, sad, and neutral
categories using GPT-3 are 84%, 83%, 82%, and 76%, re-
spectively. This represents an improvement of 8%, 8%, 11%,

and 4%, respectively, compared to the accuracies obtained
by utilizing BERT for feature extraction in the recognition
of the four emotion categories.

These results provide further evidence of the effective-
ness of the proposed approach, highlighting the superiority
of GPT-3 in extracting text features for emotion recogni-
tion tasks. The enhanced performance achieved by lever-
aging GPT-3 underscores its capability to capture semantic
nuances and improve the accuracy of emotion recognition
systems when compared to other language models such as
BERT.

4. Conclusion

In this study, we utilized the existing large language model
GPT-3 to extract text features from transcription texts. By
integrating these text features with the best acoustic features
obtained from acoustic experiments, we achieved optimal re-
sults in multimodal experiments. The recognition accuracy
significantly surpassed the baseline system in this paper,
which employed the BERT model for text feature extraction.
Moreover, it exhibited clear superiority over most existing bi-
modal recognition systems. These results provide evidence
for the excellence of the proposed main methodology in this
paper.
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