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Temporal correlation-based end-to-end rate control in

DCVC
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SUMMARY Recent deep-learning-based video compression
models have demonstrated superior performance over tradition-
al codecs. However, few studies have focused on deep learning
rate control. In this paper, end-to-end rate control is proposed
for deep contextual video compression (DCVC). With the de-
signed two-branch residual-based network, the optimal bit rate
ratio is predicted according to the feature correlation of the ad-
jacent frames. Then, the bit rate can be reasonably allocated
for every frame by satisfying the temporal feature. To minimize
the rate distortion (RD) cost, the optimal A of the current frame
can be obtained from a two-branch regression-based network us-
ing the temporal encoded information. The experimental results
show that the achievable BD -rate (PSNR) and BD-rate (SSIM)
of the proposed algorithm are -0.84% and -0.35%, respectively,
with 2.25% rate control accuracy.

key words: end-to-end rate control, DCVC, convolutional neu-
ral network, temporal correlation

1. Introduction

Rate control is a critical part of video compression, par-
ticularly in bandwidth-limited tasks such as live and
broadcast. In recent years, end-to-end image compres-
sion [1] has shown that coding outperforms the tradi-
tional image coding. Guo et al.[2] proposed the first
end-to-end framework for video compression, where
the key components of traditional video compression
are replaced by end-to-end neural networks. To im-
prove the end-to-end video compression, Li et al.[3]
proposed a deep contextual video compression (DCVC)
model, which leverages the high-dimensional context to
carry rich information for high-frequency content and
achieves higher video coding quality. Since bit alloca-
tion can directly affect the rate distortion (RD) perfor-
mance, Erenetin et al.[4] exploited frame-level bit allo-
cation for intra- and bi-directionally frames. However,
bit allocation for every frame cannot find a suitable A
to decrease the RD cost, which makes the rate control
scheme in deep learning video compression remain un-
feasible. Li et al.[5] presented an R-D-A rate control
model for the learned video compression. However, the
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rate control parameters are still obtained via tradition-
al methods.

In this paper, we focused on achieving end-to-end
rate control by using a convolutional neural network
(CNN) to obtain the optimal bit allocation and A. The
major contributions of this paper are as follows:

(1) A two-branch residual-based network is de-
signed to predict the bit rate ratio where the temporal
encoded parameters are treated as the coding feature
vector. Then, the bit rate can be reasonably allocat-
ed to every frame according to the low- and high-level
coding features extracted by the designed network.

(2) A two-branch regression-based network is de-
signed to obtain the optimal A. To effectively decrease
the RD cost, the temporal encoded information and
residual feature frame are used as the input vector for
the network. In addition, a regression block is added
to enhance the learning and expression ability of the
network.

2. End-to-end rate control
2.1 Framework

For end-to-end rate control, the original frame is input
into the two-branch residual-based network to optimize
the bit rate ratio. Then, the bit rate can be reasonably
allocated to every frame by considering the bit buffer.
With the allocated bit of the frame, the optimal A can
be predicted by the two-branch regression-based net-
work for the DCVC encoder. Fig. 1 shows the frame-
work of the end-to-end rate control.

2.2  Frame bit allocation

To fully utilize the temporal correlation, a two-branch
structure of the network is used, as shown in Fig. 2.
In Fig. 2, Rp(n — 1), Drp(n — 1) and Ap(n — 1) are
the bit rate, distortion and Lagrangian multiplier of
the previous encoded frame, respectively. Rg is the
target bit rate of the current group of pictures (GoP).
W is the predicted bit rate ratio from the network. For
the up branch of the network, the low-level features
of the frame are extracted by the two convolutional
layers with the 3 x 3 kernel. Then, the residual block
extracts the high-level features. For the down branch
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Fig.1 End-to-end rate control framework

of the network, the encoded information of the previous
frame is input into the network. Since the features of
the two branches have strong temporal correlation, a
multiplication operation is used to fuse the temporal
correlation. Finally, the fusion features are extracted

and converted to predict the bit rate ratio W.
The GoP bit allocation Rg can be expressed as

_ Rtarget . (nencoded + NSW) — Rencoded

R
¢ Nsw

“Ne (1)

where Riarges and Rencoded are the target bit rate and total
used bit rate, respectively; N¢ is the number of frames in
the GoP; N¢g is the encoded frames ; Ngw is the smooth
window. Then, the bit allocation of frame n can be ex-
pressed as
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where Rencoded—a is the used bit rate of the frames in the
current GoP; W, is the bit rate ratio of frame n, which can
be predicted from the two-branch residual-based network.
The loss function of the network is defined as

Rr(n) = (2)

N
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where W, is the predicted bit rate ratio, WZ is the actual
bit rate ratio, and N is the number of frames for training.

Two-branch residual-based network

2.3 Optimal \ decision

Fig. 3 shows the structure of the two-branch regression
network to predict A. Since the residual feature, which is the
difference between predicted frame and original frame, can
indicate the correlation of the adjacent frames, the residual
frame will be used as the up input. The bit allocation of
the current frame Rp(n) is calculated using Eq. 2, and the
bit cost Rp(n — 1), distortion Dr(n — 1), and Ap(n — 1)
of the previous encoded frame are used as the down input.
Then, the fusion feature of the two branches is input into
the regression block. Finally, the network can predict the
optimal A.

Unlike the loss function of the two-branch residual-
based network, the two-branch regression-based network for
A is trained by a multi-tasking loss function, which is defined
as

Rr — Rp[)

)+ (=)D

Lossx = 7( (4)
where 7y is set as 0.4 empirically; Rr is the calculated bit in
Eq. 2; Rr[A] and Dp[A] are the actual bit and distortion,
respectively; [A] denotes parameter A in the range between

Rr and Dp .

3. Experimental Results

The proposed algorithm is implemented in DCVC. Li et
al.[5] and Li et al.[6] are used for comparison. The Vimeo-
90k [7] and BVI-DVC [8] datasets are used to train the two
designed networks. One hundred frames are used to encode
every test sequence. DCVC is used as an anchor, and four
RD points are selected: A=256, 512, 1024 and 2048. The
bit rate accuracy is defined as

]sziz
— )

where R is the target bit rate, and R is the actual bit rate.
Table 1 shows the bit rate accuracy results.

Table 1 shows that the average bit rate accuracy re-
sults are 2.62%, 3.89%, 5.93% and 2.25%, respectively. The
proposed algorithm has better control accuracy than the
other algorithms. Since controlling the bit rate is a highly
challenging task for end-to-end coding, the accuracies of the
four algorithms remain high. Table 2 shows a comparison
of the coding quality of the algorithms.

In Table 2, the average BD-rate (PSNR) indices of Li
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Fig.3 Two-branch regression-based network

Table 2  Experimental comparisons of Li et al.[5], Li et al.[6] and the proposed algorithm

Li et al. [5] Li et al. [6] proposed

Class Sequence BD-rate BD-rate BD-rate BD-rate BD-rate BD-rate
(PSNR) (SSIM) (PSNR) (SSIM) (PSNR) (SSIM)

Tango2 -3.63 -0.77 -0.20 -0.03 -0.42 -0.27

Class Al FoodMarket4 0.83 0.10 0.08 0.02 0.74 0.07
Campfire -2.02 -0.65 -0.32 -0.20 -1.66 -0.42

CatRobotl -2.27 -0.68 -0.32 -0.03 -0.63 -0.40

Class A2 DaylightRoad?2 -0.82 -0.12 -0.22 -0.06 -0.07 -0.12
ParkRunning3 0.40 0.04 0.34 0.05 0.29 -0.05
MarketPlace 1.03 0.12 0.14 -0.02 -1.60 -0.67

RitualDance -0.93 -0.31 -0.82 -0.36 -1.30 -0.58

Class B Cactus -0.49 -0.19 -0.40 -0.18 -1.13 -0.51
BasketballDrive -2.52 -0.68 -1.07 -0.67 -2.56 -0.72

BQTerrace -1.83 -0.60 -1.16 -0.65 -1.52 -0.60
BasketballDrill -0.06 -0.01 -0.51 -0.32 -1.14 -0.43

Class C BQMall 0.15 0.00 -0.22 -0.03 -0.50 -0.34
PartyScene 0.23 -0.02 0.18 0.02 -1.96 -0.50

RaceHorses -0.59 -0.08 -0.61 -0.28 -1.12 -0.46
BasketballPass -0.89 -0.30 -1.13 -0.44 -0.05 -0.08

Class D BQSquare 1.03 0.13 -0.93 -0.41 -0.80 -0.30
BlowingBubbles 1.02 0.10 1.04 0.32 -0.01 -0.06
RaceHorses -0.45 -0.20 -0.10 -0.01 -0.46 -0.22

FourPeople -1.33 -0.43 -0.69 -0.23 -1.29 -0.37

Class E Johnny -0.43 -0.12 -0.17 -0.10 -0.43 -0.33
KristenAndSara -1.59 -0.61 -0.50 -0.21 -0.82 -0.38
Average -0.69 -0.24 -0.35 -0.17 -0.84 -0.35

Table 1  Bit rate accuracy comparisons of DCVC, Li et al.[5],

lected to decrease the RD cost.
Li et al.[6] and the proposed algorithm.

Class DCVC | Li et al.[5] | Li et al.[6] | proposed
M% M% M% M%
Class A1 | 4.21 5.41 7.60 2.13 ., partyScene
Class A2 4.18 5.38 7.56 2.12
Class B 1.43 3.24 6.27 3.36 34 ]
Class C 1.31 2.75 4.71 2.80 =
Class D 2.65 3.24 3.83 1.76 %
Class E 1.95 3.30 5.60 1.35 g
Average 2.62 3.89 5.93 2.25 .
¥ “f" —e— proposed++#+ DCVC—4& Lietal[5]-® Liet al[6]
et al.[5], Li et al.[6] and the proposed algorithm are -0.69, 29
-0.35 and -0.84, respectively. This result indicates that the 003 oo oL 020 0 030 033

. . . by
proposed algorithm uses the lowest bit rate but improves the PP

coding quality the most. For the BD-rate (SSIM) indices,
the proposed algorithm achieves -0.35. Li et al.[5] and Li et
al.[6] achieve values of -0.24 and -0.17, respectively. Thus,
the proposed algorithm mostly improves the subjective cod-
ing quality. Since the temporal coding information is used
by the proposed algorithm to train the network for coding, Fig. 4 shows the RD comparisons of DCVC, Li et al.[5],
the bit rate can be more reasonably allocated to satisfy the Li et al.[6] and the proposed algorithm. The proposed algo-
changing frame feature, and A will be more effectively se- rithm has better RD performance than the other algorithms,

Fig.4 RD curve comparisons of DCVC, Li et al.[5], Li et al.[6]
and the proposed algorithm



which indicates the effectiveness of the proposed algorith-
m. In summary, the proposed end-to-end rate control can
improve both objective and subjective coding performance
with good control accuracy.

4. Conclusions

In this work, a two-branch residual-based network and a
two-branch regression-based network are designed to obtain
the bit rate ratio and A for end-to-end rate control. By ful-
ly utilizing the temporal coding correlation, the rate control
parameters are appropriately selected to satisfy the coding
feature. Experimental results show that the proposed al-
gorithm can significantly improve the coding performance
with a high rate control accuracy.
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