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BP-CRN: A Lightweight Two-Stage Convolutional Recurrent
Network For Multi-channel Speech Enhancement∗

Cong PANG†a), Ye NI†, Jia Ming CHENG†, Lin ZHOU†, and Li ZHAO†, Nonmembers

SUMMARY In our work, we propose a lightweight two-stage convolu-
tional recurrent network (BP-CRN) for multichannel speech enhancement
(mcse), which consists of beamforming and post-filtering. Drawing inspira-
tion from traditional methods, we design two core modules for spatial filter-
ing and post-filtering with compensation, named BM and PF, respectively.
Both core modules employ a convolutional encoding-decoding structure
and utilize complex frequency-time long short-term memory (CFT-LSTM)
blocks in the middle. Furthermore, the inter-module mask module is in-
troduced to estimate and convey implicit spatial information and assist the
post-filtering module in refining spatial filtering and suppressing residual
noise. Experimental results demonstrate that, our proposed method con-
tains only 1.27M parameters and outperforms three other mcse methods in
terms of PESQ and STOI metrics.
key words: multichannel speech enhancement, lightweight, neural beam-
forming, convolutional recurrent network, complex network.

1. Introduction

Multichannel speech enhancement involves utilizing multi-
channel noisy speech to reconstruct and restore clear speech.
As the presence of noise inevitably diminishes speech quality
and clarity, speech enhancement has attracted significant in-
terest from researchers in recent years. Compared to single-
channel speech, microphone arrays can capture much richer
spatial and inter-channel information of the target speech
signal, leading to improved performance in tasks such as
noise suppression, dereverberation, and speech recognition
[1], [2].

As deep neural networks (DNNs) become increasingly
prevalent in various audio processing fields, they have proven
to be highly effective methods [3], [4]. For multichannel au-
dio processing, there are two primary applications of DNNs.
One approach involves combining DNNs with traditional sig-
nal processing methods, which is called mask-based beam-
forming. For mask-based beamforming, the role of DNNs is
to provide a more accurate estimation of the spatial statistical
information of speech and noise for various data-dependent
beamformers such as GEV or MVDR [5].

However, beamforming is a linear spatial filter for each
frequency bin [6], and the performance of the mask-based
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beamforming method is limited by the nature of beamform-
ing. Recently, more attention has been focused on perform-
ing spatial filtering implicitly using a full neural network,
which is called “All-neural Beamformer”. The TaylorBeam-
former was first introduced for multichannel speech enhance-
ment in [7], where the restoration process is decomposed into
a spatial filter and a residual noise canceller. FaSNet [8] em-
ploys a two-stage module to directly estimate time-domain
beamforming filters, using Transformed Average Connectiv-
ity (TAC) to enable the network to utilize information from
all microphones.

In this paper, we introduce a lightweight two-stage con-
volutional recurrent network (BP-CRN) for multichannel
speech enhancement. The first core module, BM, derives
local representations from complex spectrum and directional
feature, capturing correlations along the frequency and time
axes through multiple CFT-LSTM modules and implement-
ing spatial filtering. Concurrently, inter-module masking is
estimated to better assist the PF module performing further
spatial filtering on low-frequency features and post-filtering.

2. Methodology

Fig. 1 presents the overall block diagram of our proposed
model. The primary objective is to extract the target speech
from the multichannel mixture signal 𝑦𝑐 captured by the
microphone array, where 𝑐 denotes the microphone index.
Correspondingly, 𝑌𝑐 (𝑡, 𝑓 ) denotes the complex spectrum of
the mixture where as 𝑐, 𝑡, 𝑓 are the microphone, frame and
frequency index, respectively. In the first stage (BM mod-
ule), the complex spectrum and directional features of the
original multichannel mixture signal are fed as the input. A
stacked complex FT-LSTMs (CFT-LSTM) proposed in [9] is
employed to capture the correlation along the frequency and
time axes. Moreover, in the inter-module masking path, the
group attention mechanism extracts implicit spatial informa-
tion from the encoder feature stream, assisting the PF module
in further implementing spatial filtering. In the second stage
(PF module), a similar encoder-decoder architecture is uti-
lized in conjunction with the inter-module mask to conduct
further spatial filtering and suppress residual noise more ef-
fectively.

2.1 Directional feature extraction

To better utilize the spatial information present in the original
multichannel mixture signal and achieve an improved spatial
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Fig. 1 The network architecture of our proposed BP-CRN model.

filtering effect, we consider extracting directional feature de-
scribed in [10] to be used as input together with spectral. The
inter-channel phase differences (IPD) between 𝑝-th pair of
microphones can be calculated using the following formula:

𝐼𝑃𝐷 (𝑝) (𝑡, 𝑓 ) = ∠𝑌 𝑝1 (𝑡, 𝑓 ) − ∠𝑌 𝑝2 (𝑡, 𝑓 ), (1)

where, 𝑝 = (𝑝1, 𝑝2) represents the index of the microphone
pair,𝑌 (𝑡, 𝑓 ) denotes the complex-valued spectrogram at time
𝑡 and frequency 𝑡, and ∠(∗) denotes the phase of spectrogram.
Directional feature reveals the similarity between the IPD
and the target phase differences (TPD) of each candidate
direction, and can better reveal the arrival direction of the
sound source in the mixture signal. TPD represents the
theoretical phase difference at frequency 𝑓 between the 𝑝-th
pair of microphones in the 𝜃 direction. Given the microphone
array structure, microphone pair index 𝑝 and azimuth angle
𝜃, we can calculate the TPD in each direction by the following
formula:

𝑇𝑃𝐷 (𝑝) (𝜃, 𝑓 ) = 2𝜋f
𝑐

𝑓𝑠𝑑𝑝

𝑑𝑝 = Δ𝑝 cos 𝜃 , (2)

where, 𝑐 represents the speed of sound, Δ𝑝 represents the
spatial distance between the 𝑝-th pair of microphones, 𝑓 𝑠

represents the sampling rate. Directional feature at all can-
didate azimuths can be calculated as:

𝐷𝐹 (𝜃𝑖 , 𝑡, 𝑓 ) =
∑
𝑝

〈
K𝐼𝑃𝐷 (𝑝) (𝑡 , 𝑓 ) ,K𝑇𝑃𝐷 (𝑝) (𝜃, 𝑓 )

〉
, 𝑖 = 1, 2, ..., 𝑀,

(3)

where, ⟨·⟩ represent the inner product, K(∗) =

[
cos(∗)
sin(∗)

]
is a 2-D vector composed of the cosine and sine values
of the phase difference, and 𝑀 represents the number of
candidate azimuth angles. The larger the value of𝑉 (𝜃𝑖 , 𝑡, 𝑓 ),
the greater the probability that there is target speech from the
direction 𝜃𝑖 in the mixture signal.

2.2 Beamforming module

The beamforming module (BM) primarily consists of a com-
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Fig. 2 Architecture design of CFT-LSTM.

plex convolutional encoder, a complex convolutional de-
coder, and the stacked CFT-LSTM blocks in the middle.
The obtained directional features are used as the input of
the first-stage encoder, and its encoded output is used to
weight the encoded multichannel spectrum, corresponding
to the complex multiplication operation in the BM block di-
agram in Figure 1. The encoder comprises three complex
convolutional layers, while the decoder features three com-
plex transposed convolutional layers. The 2-D convolutional
layer is employed to extract local patterns from the noisy
spectrum and reduce feature resolution. In contrast, the
decoder utilizes a transposed convolutional layer to restore
low-resolution features to their original size. The architec-
ture design of CFT-LSTM used is illustrated in Fig. 2.

2.3 Inter-module mask based on implicit spatial features

We introduce an inter-module mask approximation path be-
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tween the spatial filtering module and the post-filtering mod-
ule. The inter-module mask path employs four frequency-
time blocks based on group attention which is illustrated in
the Fig. 3. The frequency-axis RNN is employed to model the
long-term dependency along the frequency axis, while the
time-domain processing block uses the GRU network [11]
to perceive long-term correlation in the time domain. Group
attention is applied to weight the output of 𝑁 frequency-
time blocks. The inter-module mask extracts features from
the encoded output of the spatial filtering module through
frequency-time blocks, passing the implicit spatial infor-
mation to the post-filtering module. This assists the post-
filtering module in further spatial filtering and suppressing
residual noise.

2.4 The post-filtering module

The main function of the PF module is to perform further
spatial filtering and suppress residual noise. we concate-
nate the spatial filtered signal and the first channel of origin
mixture signals and then fed it to the PF module. The pur-
pose of this procedure is to compensate the under-estimated
spectral details. After the multichannel input is encoded,
it will be element-wise multiplied by the estimated inter-
module mask. The inter-module mask extracts the implicit
spatial information in the feature stream of the spatial filter-
ing module through the stacked frequency-time blocks and
will better assist the post-filtering module performing fur-
ther spatial filtering on low-frequency features. Then, two
separate decoder predict the real and imaginary part of 𝐶
channel complex ideal ratio mask (cIRM), which will be
element-wise multiplied to the STFT of mixture signals to
reconstruct the estimation of clean speech spectrum 𝑆.

2.5 Loss function

The model proposed in this paper extracts the STFT coeffi-
cients from multichannel noisy speech as input features and
the corresponding clean speech as labels, respectively. We
train the model by jointly optimizing the mean square error
(MSE) [12] of the estimated cIRM and the weighted source
distortion ratio loss (Weighted-SDR Loss) [13], with the es-
timated cIRM as the training target. The model is optimized
using a learning rate set to 0.001 via the Adam optimizer.
The joint loss function is defined as:

𝐿 𝑗𝑜𝑖𝑛𝑡 = 𝐿𝑐𝐼𝑅𝑀 + 𝐿𝑆𝐷𝑅

=
1
𝐶

𝐶−1∑︁
𝑛=0

∥
∧
𝑀𝑛

𝑟 −𝑀𝑛
𝑟 ∥2 + 1

𝐶

𝐶−1∑︁
𝑛=0

∥
∧
𝑀𝑛

𝑖 −𝑀𝑛
𝑖 ∥2

+ 1
𝐶

𝐶∑︁
𝑛=1

𝑙𝑜𝑠𝑠𝑤𝑆𝐷𝑅 (𝑥𝑛, 𝑦,
∧
𝑦𝑛), (4)

where, 𝐶 denotes the number of channels,
∧
𝑀𝑛

𝑟 and
∧
𝑀𝑛

𝑖
are

the estimated real and imaginary parts of cIRM in channel
𝑛, respectively and 𝑙𝑜𝑠𝑠𝑤𝑆𝐷𝑅 is the weighted-SDR loss.

3. Experiment

3.1 Experimental setup

We use the publicly available CHIME-3 dataset [14] for train-
ing and evaluating speech enhancement performance. The
CHIME-3 dataset is a 6-channel (C = 6) microphone record-
ing of talkers speaking in a noisy environment, sampled at
16 kHz. It includes 7138, 1640, 1320 simulation statements
for training, development, and test, respectively. We plan
to conduct detailed ablation experiments and compare the
performance of our proposed algorithm with the current best
methods on CHIME-3 dataset. Two evaluation metrics are
used: PESQ [15] and STOI [16].

3.2 Ablation experiment

We conducted an ablation experiment on the test set of the
CHIME-3 dataset. In ablation experiments, the acronyms
’BM’, ’DF’, and ’PF’ will be utilized to denote the beam-
forming module, the directional feature extraction module
and the postfiltering module, respectively. For fair compar-
ison, all compared models share the same input and labels.
By comparing the metrics in the Table 1, it can be seen that
for the four noises, every structure proposed is crucial.

3.3 Performance comparison of different algorithms on
CHIME-3

To evaluate the effectiveness of different multichannel speech
enhancement methods, we select the following four meth-
ods to compare with our proposed method (Proposed): the
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Table 1 Results of Ablation Studies.
BUS STR CAF PED

Method PESQ STOI PESQ STOI PESQ STOI PESQ STOI
Mic-5 Noisy 1.29 0.875 1.24 0.868 1.23 0.849 1.32 0.880

BM 2.50 0.970 2.23 0.960 2.53 0.968 2.55 0.969
BM+DF 2.54 0.968 2.27 0.960 2.57 0.968 2.55 0.965

BM+DF+PF 2.58 0.971 2.34 0.962 2.58 0.970 2.57 0.966
BP-CRN(Prop.) 2.63 0.974 2.38 0.965 2.66 0.972 2.68 0.971

baseline (Mic-5 Noisy), which selects the data collected by
microphone 5 with the highest signal-to-noise ratio; The U-
Net based on CA Dense U-Net (CADUNet) proposed by
Bahareh et al. [17] for MCSE; The Dense frequency-time
attentive network (DeFTAN) proposed by Dongheon et al.
[18] for MCSE; he dual-path dilated convolutional recur-
rent network with group attention (DPDCRN) proposed by
Jiaming et al. [19] for L3DAS23 Challenge.

We compare the performance of our method to the above
three state-of-the-art methods on CHiME-3 dataset. In or-
der to make a fair comparison, all the evaluations utilize
the same experimental setup. The following Table 2 shows
the performance comparison of the proposed method with
state-of-the-art results on CHIME-3 dataset. Our proposed
method outperforms state-of-the-art results on the CHiME-3
speech enhancement task. Another advantage of this model
is its smaller parameter size (1.27M) compared to other mod-
els. Furthermore, the complexity of our model (13.334G
MAC/s) is significantly less than that of following models.

Table 2 Performance comparison of proposed BP-CRN with state-of-
the-art results on CHIME-3.

SIM-DEV SIM TEST Parameter Size MAC/sMethod PESQ STOI PESQ STOI
Mic-5 Noisy 1.27 0.863 1.27 0.870 / /
CADUNET 2.39 0.963 2.43 0.959 13.33M 35.251G

DeFTAN 2.43 0.962 2.42 0.954 2.53M 42.735G
DPDCRN 2.46 0.973 2.49 0.959 1.64M 21.878G

BP-CRN(Prop.) 2.57 0.973 2.61 0.968 1.27M 13.334G

4. Conclusions

In our work, we introduce a lightweight two-stage convolu-
tional recurrent network (BP-CRN) for multichannel speech
enhancement. Experimental results demonstrate that our
proposed method contains only 1.27M parameters and out-
performs other methods in terms of PESQ and STOI metrics.
For future work, we will attempt to improve the effectiveness
of the proposed method at lower signal-to-noise ratios.
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