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LETTER
Differential-Neural Cryptanalysis on AES∗

Liu ZHANG† ,††, Student Member, Zilong WANG† ,††, and Jinyu LU†††a), Nonmembers

SUMMARY Based on the framework of a multi-stage key recovery at-
tack for a large block cipher, 2 and 3-round differential-neural distinguishers
were trained for AES using partial ciphertext bits. The study introduces the
differential characteristics employed for the 2-round ciphertext pairs and
explores the reasons behind the near 100% accuracy of the 2-round dif-
ferential neural distinguisher. Utilizing the trained 2-round distinguisher,
the 3-round subkey of AES is successfully recovered through a multi-stage
key guessing. Additionally, a complexity analysis of the attack is provided,
validating the effectiveness of the proposed method.
key words: deep learning, differential-neural distinguisher, AES, key re-
covery attack

1. Introduction

In CRYPTO 2019, Gohr introduced the concept of
differential-neural cryptanalysis [1]. This technique enables
a distinguisher to differentiate between ciphertexts encrypted
from plaintexts with a specific input difference and those en-
crypted from random numbers. Gohr effectively integrated
this distinguisher with classical differentials, facilitating a
12-round key recovery attack on SPECK32/64 (from a to-
tal of 22 rounds). At EUROCRYPT 2021, Benamira [2]
noted that Gohr’s differential-neural distinguisher provides
a robust approximation of the cipher’s differential distribu-
tion table (DDT) and learns additional information beyond
the DDT. In ASIACRYPT 2022, Bao et al. [3] refined the
concept of neutral bits, extending key recovery attacks to
13 rounds for SPECK32/64 and to 16 rounds (from a to-
tal of 32) for SIMON32/64. Further developments were
presented at ASIACRYPT 2023, where Bao et al. [4] pro-
posed specific rules that, when used in conjunction with
the DDT, enhance the accuracy of DDT-based distinguish-
ers for SPECK32/64. Additionally, they demonstrated that
combining these rules does not improve the performance
of the differential-neural distinguisher, suggesting that the
distinguisher may already be leveraging these rules or their
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equivalent forms—underscoring the effectiveness of neural
networks in cryptanalysis.

Most previous research has focused on ciphers with
smaller block sizes. However, Yi Chen et al. [5] have pro-
posed a multi-stage differential-neural cryptanalysis frame-
work applicable to larger block ciphers, facilitating key re-
covery attacks on all ciphers in the SPECK family. In this
study, we apply differential-neural cryptanalysis to AES, uti-
lizing the multi-stage key recovery framework designed for
large block ciphers.

Our Contribution. We have developed a differential-neural
distinguisher for AES, which was trained using various sub-
sets of ciphertext data, including full ciphertext, a single
row or column, two bytes, and one byte. Currently, our
capabilities are limited to training a 3-round differential-
neural distinguisher. Our findings indicate that there is a
proportional decrease in the true negative rate of the dis-
tinguisher as the amount of ciphertext used for training
diminishes. Remarkably, using just two bytes of cipher-
text, we have achieved a distinguisher accuracy close to
100%. We attribute this high level of accuracy to the
effective capture of differential propagation characteristics
inherent in AES. Furthermore, we utilize the trained 2-
round distinguisher to conduct a 3-round key recovery attack
on AES. The source codes for our experiments are pub-
licly available at https://github.com/CryptAnalystDesigner/
differential-neural-cryptanalysis-on-aes.git.

The remainder of this letter is organized as follows:
Sect. 2 introduces the fundamental concepts of AES, de-
scribes the neural network architecture, outlines the training
process, and presents the results of the distinguisher trained
using the full ciphertext. Section 3 details the training and
performance of the differential-neural distinguisher using
partial ciphertexts. The methodology and results of the key
recovery attack, utilizing the distinguisher trained with par-
tial ciphertexts, are discussed in Sect. 4. Finally, Sect. 5
summarises our work.

2. Differential-Neural Distinguisher on AES-128

2.1 Description of AES-128

The AES [6] is a Substitution-Permutation network that sup-
ports key sizes of 128, 192 and 256 bits. The 128-bit plaintext
initializes the internal state represented by a 4 × 4 matrix of
bytes seen as values. Depending on the version of AES, Nr
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rounds are applied to the state: Nr = 10 for AES-128. A
round function applies four operations to the state matrix:

• SubBytes (SB): applying the same 8-bit to 8-bit in-
vertible S-Box 16 times in parallel on each byte of the
state;

• ShiftRows (SR): cyclic shift of each row (i-th row is
shifted by i bytes to the left);

• MixColumns (MC): multiplication of each column by
a constant 4×4 invertible matrix over the field GF(28);

• AddRoundKey (AK): XORing the state with a 128-bit
subkey.

One round of AES can be described as R(x) = AK ⊕
MC◦SR◦SB(x). In the first round an additional AddRound-
Key operation (using a whitening key) is applied, and in the
last round the MixColumns operation is omitted.

2.2 Network Architecture

We employ the neural network architecture originally de-
signed by Gohr for Speck32/64 [1], with adaptations made
solely to accommodate the data format of AES ciphertext.

• Input Representation. The neural network takes a
ciphertext pair (C,C ′) or parts thereof as input, refor-
matted into a [2,Npb] matrix which is then transposed.

• Initial Convolution. The input is processed through
an initial convolution layer with width-1 and Nf = 16
channels, followed by batch normalization and a ReLU
activation, producing a [Npb,Nf ] matrix.

• Convolutional Blocks. Each block contains two convo-
lution layers with Nf filters and a kernel size of ks = 3,
followed by batch normalization and a ReLU layer. A
skip connection from the output of the block’s final
ReLU layer to its input enhances continuity and flow to
the next block. The model includes five such blocks.

• Prediction Head. The prediction head features a fully
connected layer with 64 neurons each in two segments
(d1 = d2 = 64), culminating in a Sigmoid activation
function for the output.

Fig. 1 Network architecture [1].

2.3 Model Training Process and Results

Training and test sets were generated using the Linux random
number generator to produce uniformly distributed keys Ki

and plaintext pairs (Pi,P′
i ) with an input difference of ∆ =

0x80, along with a vector of binary-valued labels Yi . For
each pair, if Yi = 1, both plaintexts were encrypted for r
rounds. If Yi = 0, the second plaintext was replaced by a
newly generated random plaintext and then encrypted for r
rounds.

We trained over 20 epochs on a dataset consisting of
N = 107 instances and M = 106 instances for testing. The
batch size was set to Bs = 1000. Optimization was car-
ried out against a cost function comprising mean square
error loss augmented by an L2 regularization term with
a parameter λ = 10−5, using the Adam optimization al-
gorithm. A cyclic learning rate schedule was employed,
where the learning rate li for the i-th epoch was defined
as: li = α +

(
(n−i) mod (n+1)

n

)
(β − α), with β = 0.002,

α = 0.0001, and n = 9. Networks obtained at the end of
each epoch were archived, and the network exhibiting the
lowest validation loss was subsequently evaluated against
the test set. We report the accuracy (Acc), true positive rate
(TPR), and true negative rate (TNR) of the distinguishers, as
evaluated on newly generated datasets, in Table 1.

In Table 1, the 2 and 3-round differential-neural distin-
guishers are trained using a complete ciphertext pair. No-
tably, the ciphertext pair used for training the 3-round dis-
tinguisher does not undergo the MC operation in the final
round of the encryption process, classifying the approach
as a pure distinguish attack. However, the values for TPR
and TNR are somewhat peculiar. All positive instances are
predicted correctly, while negative instances are only pre-
dicted correctly with a probability of about 1

16 . This suggests
that the differential-neural distinguisher might have learned
a characteristic that all positive instances satisfy, whereas
the negative instances, being random numbers, have a 15

16
probability of satisfying it.

3. Distinguisher Using Partial Ciphertext on AES-128

According to the framework proposed by Gohr for key recov-
ery attacks using differential-neural distinguishers [1], the
entire subkey space must be guessed. However, the subkey
space for AES amounts to 2128, impractical for exhaustive
search. Therefore, we employ the key recovery attack frame-
work for large block ciphers proposed by Yi Chen et al. [5],
which suggests dividing the subkey space into manageable

Table 1 Acc, TPR, TNR of differential-neural distinguisher on AES.
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Fig. 2 The multi-stage key recovery framework for large state block
ciphers.

Fig. 3 The numbering of the AES state.

Table 2 Acc, TPR, TNR of 3-round distinguisher with one row and col.

parts for sequential recovery. This approach is illustrated in
Fig. 2 (where Γi or ∆i , i ∈ [1, x], can be the same).

In differential-neural cryptanalysis, it is essential to con-
duct experiments to verify the success of key recovery at-
tacks. Notably, partial decryption techniques can be utilised
since the last round of AES encryption does not involve
the MC operation. Consequently, we train the differential-
neural distinguisher using partial ciphertexts. It is important
to highlight that during the subsequent training of the 3-round
distinguisher, the final round of the encryption process also
omits the MC operation.

3.1 3-Round Distinguisher Using Partial Ciphertext

We first present the state of AES with byte numbering in
Fig. 3, to facilitate an understanding of the data used in the
subsequent training process of the distinguisher. The param-
eter Npb in the neural network is adjusted according to the
size of the partial ciphertext used. This adjustment ensures
the neural network architecture is optimally configured to
handle the specific data inputs derived from the AES en-
cryption process.

From Tables 1, 2, and 3, it is evident that the TNRs
for the differential-neural distinguisher trained with different
data subsets—namely, all ciphertexts, one column or one
row of ciphertext, and two bytes—are approximately 1

16 ,
1
64 , and 1

128 , respectively. The reduction in data volume
corresponds proportionally with these TNR values. Despite
the low overall accuracy of the distinguishers, these TNR

Table 3 Acc, TPR, TNR of 3-round distinguisher with two bytes.

Table 4 Acc, TPR, TNR of 2-round distinguisher with one byte.

Table 5 Acc, TPR, TNR of 2-round distinguisher with two bytes.

Fig. 4 The differential propagation of 2-round AES.

values suggest that the distinguisher has learned a specific
characteristic from the data.

3.2 2-Round Distinguisher Using Partial Ciphertext

Given the challenges associated with training an effective 3-
round distinguisher, our efforts have shifted towards develop-
ing a 2-round differential-neural distinguisher. As illustrated
in Table 4, utilizing only one byte of ciphertext proves in-
sufficient for training an effective distinguisher. However, as
demonstrated in Table 5, employing two bytes of ciphertext
enables the training of a 2-round differential-neural distin-
guisher, achieving an accuracy close to 100%. Notably, this
2-round distinguisher is tailored for key recovery attacks,
and thus the last round of encryption incorporates the MC
operation.

Figure 4 shows the propagation diagram for two rounds
of AES, from which it can be inferred that a strong relation-
ship exists between ∆10 and ∆11.

∆10 = 02MC ◦ ∆6; ∆11 = 01MC ◦ ∆6
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Fig. 5 Wrong key response profile of distinguisher using 0 and 1 bytes.

The distinctive characteristics encapsulated within
these two bytes likely contribute to the outcomes observed
in Table 5, differentiating them significantly from random
numbers. In contrast, when training the differential-neural
distinguisher using only one byte of ciphertext (meeting ∆10
or ∆11), the ciphertext is subject to two SB (SubBytes) op-
erations. This produces a very low probability of producing
distinguishable differentials, rendering them indistinguish-
able from random numbers, as seen in Table 4.

4. Key Recovery Attack on AES-128

In light of Gohr’s work on differential-neural distinguish-
ers [1], we also examine the wrong key response profile for
AES.

Wrong Key Response Profile. We generated 200 random
key and plaintext pairs (P0,P1), encrypted them through r+1
rounds to produce ciphertexts (C0,C1). Assuming the last
round partial subkey is k, we traversed all possible δ, per-
formed single-round partial decryption on E−1

k⊕δ(C0) and
E−1
k⊕δ(C1), and evaluated them using an r-round differential-

neural distinguisher. It is essential that the subkey positions
align with the ciphertext positions used by the distinguisher.
The results, specifically the empirical means µδ , are shown
in Fig. 5, where the X-axis represents the difference between
the real and guessed subkey, and the Y-axis shows the average
response.

From Fig. 5, it is evident that the wrong key hypothesis
for AES is validated. Theoretically, decrypted data will
be identified as ciphertext (a positive instance) only if the
subkey guess is exact. Figure 5 specifically illustrates the
wrong key response profile for indices {0,1} from Table 5,
as the trends for other distinguishers align consistently with
this depiction.

Theoretical Key Recovery Attack. According to Fig. 5,
data decrypted using the correct subkey is identified as posi-
tive. Consequently, one can traverse two bytes of the subkey,
i.e., 216 subkeys, with just one ciphertext pair to isolate the
actual subkey. To recover the complete 3-round subkey, this
experiment is repeated 8 times.

Practical Key Recovery Attack. For a more robust filter,
scores s from 3 ciphertext pairs are combined using the
formula

∑2
i=0 log si

1−si , effectively isolating the real subkey.
Using only 2 ciphertext pairs retains 2 guessed subkeys,
including the real one. Hence, the data complexity Dc for
a 3-round key recovery attack is 3 × 2 = 22.585; the time
complexity Tc is 216 × Dc × 8 = 221.585.

It is feasible to prepend a high-probability classical dif-
ferential to the differential-neural distinguisher to extend the
number of rounds in the key recovery attack. However, this
adjustment correspondingly increases the complexity.

5. Conclusions

This paper has demonstrated the utility of differential-neural
distinguishers in enhancing key recovery attacks of AES.
Our investigations confirmed that minimal ciphertext data,
such as two bytes, enables distinguishers to achieve near-
perfect accuracy. The validation of the wrong key hypothesis
through the wrong key response profile has been pivotal in
optimizing theoretical and practical key recovery strategies.
These findings illustrate the potential of differential-neural
distinguishers to refine cryptographic security assessments
and guide future research directions.
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