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A clustering-based deep learning method for water level prediction 
 

Chih-Ping Wang†, student member and Duen-Ren Liu†† 

SUMMARY Accurate water level prediction systems improve safety and 
quality of life. This study introduces a method that uses clustering and deep 
learning of multisite data to enhance the water level prediction of the Three 
Gorges Dam. The results show that Cluster-GRU-based can provide 
accurate forecasts for up to seven days.  
key words: water level prediction, clustering, Deep learning, Cluster-GRU-
based, Three Gorges Dam. 

1. Introduction 

The Yangtze River Basin (YZRB) is 6.387 kilometers long 
and flows through 11 provinces in mainland China. It has a 
population of 440 million along the coast and more than 
200,000 square kilometers of arable land. Dams have water 
storage, power generation, irrigation, flood control, and 
navigation functions. Rainfall in this basin has significant 
seasonal changes, with snowmelt and early spring rainfall 
causing the water level to rise, summer rainfall with frequent 
heavy rains, and the water level reaching its highest point, 
autumn rainfall decreasing, and the water level gradually 
falling until winter, when rainfall is minimal. The water 
level reaches its lowest point. The upstream river area is 
located on a plateau, and its rainfall and snow melt speed 
directly affects the water level regulation of the Three 
Gorges Dam (TGD). In recent years, due to climate change, 
heavy rains and snowfall have occurred in the Yangtze River 
Basin, and the uncertainty in the rise and fall of water levels 
has increased [1][2]. Upgrading accurate modeling and 
water level predictions is critical to disaster prevention and 
control. This research applies deep learning and various time 
series forecasting methods to reduce losses and improve 
response systems [3]. 
Research has highlighted the effects of different similarity 
measures on amplitude, temporal, and spatial differences [4]. 
Using stepwise clustering analysis, a statistical hydrological 
model for the Yangtze River basin addresses basin 
complexities [5]. Rapid industrialization requires a balance 
of economic growth, energy sustainability, and 
environmental conservation. Meticulous planning, 

particularly for dam water level forecasts, is crucial for 
agriculture and aquatic ecosystems [6]. 
The study explores time series classification (TSC) and 
prediction techniques in hydrology, using modern deep 
learning algorithms for comparative analysis, including 
experimental group Cluster-GRU-based, control group 
LSTM-based, GRU-based, and Cluster-LSTM-based 
networks. 
Studying how to observe water levels accurately raises two 
issues that must be discussed and resolved. 
A. Water spatial feature extraction problem. 
B. Water level time feature extraction and prediction 

problem. 
In the study, three water level observation stations were 
taken as examples. Fuling, Wanzhou, and Zigui upstream of 
the TGD; and Yichang, Zhijiang, and Shashi downstream. 
A. The clustering method for the TGD is upstream and 

downstream observation stations. 
B. Compute water level forecasts using a clustering 

method based on temporal similarity of water level 
time series.  

Figure 1 shows a clustering-based deep learning water level 
prediction flow chart method. 

 
Fig. 1  A clustering-based deep learning water level prediction flow chart    

method. 

2. Methodology  

2.1 Study Area 

There are 18 water level monitoring stations in the YZRB. 
Figure 2 is divided into the upper reaches, the middle 
reaches, the lower reaches, and the estuary, each with critical 
hydrological stations. 
Six daily water level stations at the TGD were analyzed to 
provide detailed predictions and analysis of these changes. 
Figure 3 Diagram highlighting the TGD region and its six 
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observation hydrological stations. 

 
Fig. 2  Distribution map of eighteen water level observation stations in 

the YZRB. 

 
Fig. 3  Diagram highlighting the TGD region and its six observation 

hydrological stations. 

2.2 Modeling Strategy 

2.2.1 Clustering Method based on water area data 

The model is constructed using TGD daily water level 
station data, and the k-means clustering method is used for 
clustering based on water area data. The proper noun “K-
Means” refers to the L1 norm in this study. 
The study calculates the distance between each observation 
and the previous centroid point. The centroid point in each 
cluster is then updated after updating the observations 
belonging to that cluster. Iterate these steps until the center 
of mass point changes. The steps of k-means are as follows: 

 
Fig. 4  Flowchart of steps using k-means at six water level observation 

stations of the TGD. 

This study applies two clusters and Euclidean distance to a 
k-means model, clustering of time series data using the R 
suite. 

 
Fig. 5  The TGD water level observation stations are clustered into two 

groups. 

There are six observation stations upstream and downstream 
of the TGD, each with unique topography and flow 
characteristics. The upper reaches are hilly, and the water 
level is high; the downstream terrain is flat, and the water 
level is low. These characteristics significantly influence 
changes in water levels. 
The results show that the k-means clustering method was 
used in the Three Gorges Dam. Fuling, Wanzhou, and Zigui 
in the upper reaches are clustered into one group and 
Yichang, Zhijiang, and Shashi in the lower reaches are 
clustered into one group. As shown in Figure 5. 
Cluster analysis was carried out upstream and downstream 
of the TGD and the following phenomenon was obtained: 
The data trends at the three observation points upstream of 
Fuling, Wanzhou, and Zigui are similar, showing a concave 
shape. In contrast, the data trends in Yichang, Zhijiang, 
Shashi, and other places downstream of the TGD are 
precisely the opposite, showing a convex shape. This is an 
exciting phenomenon in the forecasting of water levels. 

2.2.2 Forecasting method based on water level time series 

In the GRU-plus-based method, time series-based similarity 
is used to calculate clustered water levels upstream and 
downstream of the TGD. Fuling, Wanzhou, and Zigui are 
located upstream of the TGD, and the water level changes at 
each observation station are similar. Fuling is situated in the 
central area of Wanzhou, and Zigui is the first county in the 
TGD Reservoir Area. According to observations, when the 
water level in Fuling reaches its peak, the water level in 
Wanzhou, Zigui, and other places will reach its peak later or 
the next day. For example, the modeling uses water level 
data in Fuling, Wanzhou, and Zigui as input, and the Zigui 
water level observation station is used to establish a 
prediction model. 
The downstream location of the Three Gorges Dam is lower 
than the upstream location. Observation of the water levels 
in Yichang, Zhijiang, and Shashi downstream found that 
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after the water level changed, the water level trends in 
Yichang, Zhijiang, and Shashi differed from those upstream. 
For example, in the modeling, the water level data of 
Yichang, Zhijiang, and Shashi were used as input, and the 
Shashi water level observation station was used to establish 
a prediction model, which achieved good results. 
Research shows that using the k-means clustering method 
for time series prediction on GRU-PLUS-based time series 
data from upstream and downstream water level observation 
stations of the TGD, we can expect differences in water level 
observations to understand the accuracy of predictions.  

3. Experimental Results and Discussions 

The experiment aims to predict water levels upstream and 
downstream of the TGD and provide accurate predictions 
for up to seven days. The experiment was conducted using 
predictions from six water level observation stations of the 
TGD. To evaluate the water level prediction, this study 
collected water level information from January 1 to 
December 31, 2022, and analyzed and assessed the water 
level prediction. 
This research method utilizes the gated recurrent unit (GRU), 
a recurrent neural network (RNN) architecture proposed by 
Cho et al. in 2014 [7]. GRU combines input and forgets gates 
into a single update gate, simplifying the model structure 
and improving computational efficiency. 
In the GRU model, this study uses two types of gates: update 
gate (𝑧) and reset gate (𝑟). Update gates control the flow of 
messages to hidden states, determining how much past 
messages should be passed into the future. The reset gate 
determines how much past information should be forgotten. 
By using these gates, GRUs can capture long-term 
dependencies in sequential data using fewer parameters and 
faster training times than long-short-term memory (LSTM) 
networks while still maintaining similar performance. In the 
initial GRU model of this study, we used the applied row 
windowing method to obtain prior data for assumed window 
periods (7 days, 14 days, 28 days) at the target site as 
covariates in the GRU model. 
However, in this research method the Cluster-GRU-based 
model, the research method first uses Pearson's correlation 
to cluster those water level stations whose data have the 
same trend. Then, the study applied the row-window method 
to obtain previous data for assumed window periods (7 days, 
14 days, 28 days) in the target site and cluster sites as 
covariates in the GRU model. 
The data come from January to September 2022 as the 
training data set. The data from October to December 2022 
is used as the test data set. 
To evaluate the accuracy and reliability of the proposed 
Cluster-GRU-based model, multiple performance metrics 
are used to analyze the prediction results, including MAE 
(Mean Absolute Error), MAPE (Mean Absolute Percentage 
Error), MSE (Mean-Square Error), and RMSE (Root Mean 
Square Error), as shown in Equations (1), (2), (3), (4). 
MAE is the mean absolute difference between the predicted 

and actual values. The formula for MAE is as Eq. (1). 

MAE =∑ |"#!$"!|
%

%
&'(                              (1) 

MAPE stands for mean absolute percentage error, which 
calculates the absolute percentage between the predicted and 
actual values. The formula for the MAPE is as Eq. (2). 

MAPE =∑ |"#!$"!|/"!
%

%
&'(                           (2) 

MSE stands for mean square error, which is close to MAE 
but uses the squared difference instead of the absolute value. 
The formula for MSE is as Eq. (3). 

MSE =∑ ("#!$"!)"

%
%
&'(                             (3) 

RMSE represents the root mean square error, which is the 
root of MSE. The formula for RMSE is as Eq. (4). 

RMSE =$∑ ("#!$"!)"

%
%
&'(                          (4) 

In this study, the data from January to September are 
considered the training data set. Data from October to 
December were used as a test data set. All analyses were 
performed under R4.4.1 with the Karas3 package. 
The deep learning method based on Cluster-GRU can 
predict the water level time series for seven days per week. 
First, clustering was performed to separate two groups, 
namely the upstream and downstream of the TGD. The 
historical data of the three water level observation stations 
in Fuling, Wanzhou, and Zigui upstream of the TGD were 
normalized to predict the water level heights in Fuling, 
Wanzhou, and Zigui, respectively. The historical data of the 
three water level observation stations in Yichang, Zhijiang, 
and Shashi downstream of the TGD were regularized to 
predict the water level heights in Yichang, Zhijiang, and 
Shashi respectively. Table 1 shows the water level height 
forecast for the six water level observation stations of the 
TGD from the 1st to the 7th day (October 1, 2022, to 
October 7, 2022), such as the predicted water level days P1, 
P2, P3, P4, P5, P6, and P7. 
To compare the accuracy of the water level prediction, this 
study analyzed the water level information of the six water 
level stations of the TGD. The Cluster-GRU-based method 
of the experimental group was compared with the GRU-
based, LSTM-based, and Cluster-LSTM-based methods of 
the control group. The experiment analyzed and compared 
different methods' water level prediction evaluation 
indicators. Data from January to September 2022 is 
considered the training data set. Data from October to 
December are used as the test data set. GRU-based, LSTM-
based, Cluster-LSTM-based, and Cluster-GRU-based 
methods predict water levels. The results of the evaluation 
indicators using MAE, MAPE, MSE, and RMSE are shown 
in Table 2.  
Although GRU-based, LSTM-based, and Cluster-LSTM-
based methods can predict good water level heights in a 
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shorter period, the water level prediction errors become 
more significant as time increases. Therefore, the expected 
water level height of the Cluster-GRU-based method is more 
optimized. Therefore, the Cluster-GRU-based process is 
more suitable for predicting the TGD water level. 

Table 1  Six water level observation stations at the TGD predict seven- 
        day water level heights (m). 

Prediction 
Station P1 P2 P3 P4 P5 P6 P7 

Fuling 154.1 154.5 154.5 153.3 153.4 153.8 155.0 

Wanzhou 154.0 154.3 154.3 153.6 153.1 153.1 154.0 

Zigui 153.6 153.8 153.6 153.2 152.5 152.4 154.2 

Yichang 0.5 0.6 1.4 2.6 3.0 3.0 3.1 

Zhijiang -0.5 -0.3 -0.5 0.9 1.8 1.7 1.8 

Shashi -2.6 -2.5 -2.3 -1.4 0.3 0.3 0.3 

Table 2  Comparison of four deep learning models' MAE, MAPE, MSE, 
and RMSE evaluation indicators from the six water level 
observation stations. 

Prediction 
Station Deep Learning MAE MAPE MSE RMSE 

Fuling Cluster-LSTM-based 2.07 1.30 3.08 7.20 
 Cluster-GRU-based 1.13 0.71 3.21 1.58 
 LSTM-based 2.83 1.78 11.23 12.03 
 

GRU-based 2.89 1.82 12.75 13.03 

Wanzhou Cluster-LSTM-based 1.56 0.98 2.14 4.58 
 Cluster-GRU-based 0.78 0.49 1.45 1.29 

 LSTM-based 2.51 0.84 9.34 7.30 
 GRU-based 2.92 0.89 14.20 14.26 

Zigui Cluster-LSTM-based 1.03 0.65 1.91 2.17 
 Cluster-GRU-based 0.63 0.40 1.14 1.01 

 LSTM-based 1.95 0.77 7.48 7.48 
 GRU-based 1.91 0.83 6.50 6.48 

Yichang Cluster-LSTM-based 0.33 38.39 0.75 0.66 

 Cluster-GRU-based 0.27 28.49 0.42 0.61 
 LSTM-based 0.58 65.32 1.03 1.11 
 GRU-based 0.65 62.36 1.21 1.21 

Zhijiang Cluster-LSTM-based 0.31 61.13 0.61 0.61 
 Cluster-GRU-based 0.29 42.80 0.34 0.57 
 LSTM-based 0.53 82.80 0.76 0.79 

 GRU-based 0.50 88.10 0.71 0.70 

Shashi Cluster-LSTM-based 0.61 58.42 0.7 1.13 
 Cluster-GRU-based 0.36 58.78 0.57 0.70 

 LSTM-based 0.83 101.18 1.92 1.84 
 GRU-based 0.78 95.16 1.50 1.73 

4. Conclusions 

This study proposes a method Cluster-GRU-based to predict 
the water levels upstream and downstream of the TGD. In 
experiments, the study compared data from the TGD water 
level observation station with water levels estimated using 
this method. Although the GRU-based and LSTM-based 
methods can provide good water level predictions, their 
errors increase over time. However, the Cluster-LSTM-
based and Cluster-GRU-based methods were compared 
through clustering, and the Cluster-LSTM-based method did 

not achieve the optimal results. Experimental results show 
that the experimental group's method Cluster-GRU-based is 
better than other methods in water level prediction. 
Therefore, the deep learning method Cluster-GRU-based 
can predict the water levels upstream and downstream of the 
TGD and provide accurate forecasts for up to 7 days. 
The scalability of this method is limited, but long-term 
historical data can be applied to rivers around the world, 
such as the Nile, Amazon, Mississippi, etc., to perform 
similar clustered water level predictions. 
The prediction of the water level of the TGD may become 
the focus of research on cargo loading, transportation, and 
ship fuel in the future. It will help predict the berthing and 
navigation schedules of the ships to ensure safe navigation. 
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