
DOI:10.1587/transinf.2024EDL8057

Publicized:2024/10/01

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

LETTER
FP-GNN: A Graph Neural Network for Hardware Trojan Detection
in Gate-Level Netlist

Ann Jelyn TIEMPO†a), Member and Yong-Jin JEONG†, Nonmember

SUMMARY Feature-based detection method has been widely used for
hardware trojan detection where hardware trojan features are explicitly
extracted and trained a classifier or build an algorithm that can differentiate
hardware trojan signals from normal ones. This method shows a good
performance in the available benchmark circuits. However, when tested on
a randomly generated circuit, that contains different structural features of
benchmark circuit, it started to fail detecting the stealthy signals, because of
the constraints when the features are explicitly extracted. To overcome this
situation, in this paper, the authors aim to explore the benefit of graph neural
network (GNN) to enhance the hardware trojan detection performance in
both benchmark circuits and randomly generated circuits. More specifically,
finding the appropriate representation of the digital circuit that is suitable for
the GNN model and that can learn hidden feature and relationship between
the signals. Experiments show satisfactory result on benchmark circuit with
an average accuracy of 95.34%. Further, tests done on randomly generated
circuits gives positive result with an average accuracy of 90.82%.
key words: hardware security, hardware trojan detection, GNN, gate-level
netlist, segmentation

1. Introduction

Hardware security has been a hot topic as a large number
of participants is involving and coordinating during the de-
sign and manufacturing process of integrated circuits (ICs)
which can result to possible insertion of hardware trojan on
the design that can compromise the functionality and reli-
ability of ICs. In the past years, several hardware trojan
detection methods have been proposed [1][2], aiming to de-
tect malicious circuits at different stages of the design flow.
These methods can be classified into four types: (1) reverse
engineering, (2) side channel analysis, (3) logic testing, and
(4) circuit feature analysis. Among these methods, circuit
feature analysis is more advantageous because it can do com-
prehensive analysis without the need to simulate the circuit.

Features are extracted by observing different character-
istics of hardware trojan signals and heuristically tests and
tune in the available benchmark [3][4], which demonstrates
good performance. However, these features are constraints
on specifics values, for examples, it assumes that the depth of
hardware trojan circuit is between x-level where 𝑥 ∈ [1, 5]
or hardware trojans are closer to flip-flops and multiplexers.
With this, when it is tested on different circuit, that is out-
side the bounds of defined constraints, it missed to detect the
hardware trojan signals. Further, selecting the limits should

†The authors are with the Dept. of Electronics and Communi-
cations Engineering, Kwangwoon University, Seoul, South Korea.

a) E-mail: annjelyntiempo@yahoo.com

Fig. 1 (a) Adapted FP-based segmentation. (b) Expanded FP nodes seg-
ment including the original flow of outgoing edge.

be optimal in all the data samples.
On the other hand, representing digital circuit as a

graph is suitable because of its inherently unstructured for-
mat where signals can be represented as nodes and the inter-
connection can be represented as edges. In this paper, the au-
thors intend to utilize the advantage of GNN to learn hidden
features directly from the digital circuit graph and improve
the detection performance in both benchmark circuits and
randomly generated circuits. In particular, segmenting the
digital circuit to FP sub-graphs and then defining the nodes
and edges features as well as the link pairs. Then, train a
GNN model to generate graph-level embeddings which then
can be used to train a classifier to identify the hardware tro-
jan signals from normal signals. Experiment demonstrates a
positive result in both benchmark circuit and randomly gen-
erated circuits with average accuracy of 95.34% and 90.82%,
respectively.

2. Methodology

2.1 Fanout Point Sub-Graph

In [5], FP-based segmentation is introduced where fanout
points (FPs) are identified in the circuit and transform the
circuit into FP-nodes’ structure by considering the fanout
points, primary inputs and primary outputs as nodes and
there exists an edge if a node is reachable from another node.
Then, the FP-nodes’ structure is split into segments accord-
ing to nodes that have head ends. In this paper, the concept
of FP-based segmentation is adapted to consider both the

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Fig. 2 (a). Node definition. (b) Node features. (c) Node representation.

incoming and outgoing signals at the head end nodes. Thus,
the outgoing edges at the head ends are included in each seg-
ment as shown in Fig. 1(a). Consequently, the original flow
of outgoing edges at the head end will also be expanded in the
expanded FP nodes segment as shown in Fig. 1(b). These
expanded segments will be treated as the FP sub-graphs and
will be further represented in terms of node features, edge
features and link pairs which are appropriate inputs to the
GNN model.

2.2 Input Representation

The input to the GNN model is a set of node feature vectors
and an adjacency matrix with vector valued entries indicating
the similarities of signal paths as well as the indicator if the
path is incoming or outgoing to and from head ends. In this
paper, a node is defined as the signal path in each expanded
FP nodes segment and each signal path within the segment is
linked with each other because of the common fanout point.

In previous studies, number of features are proposed
which describe the different structural features of hardware
trojan, however, these features are based on a viewpoint
of individual signals. Whereas in our method, the node is
defined as the signal path, thus the node feature is represented
in terms of discrete logic type used within the path. Ten (10)
basic logic block types are used, as shown in Fig. 2, and
represented by 1 if specific logic type is observed within
the signal path, for example, node 4 has node representation
of 1000100000 because NAND and NOT gates are present
within the path.

The adjacency matrix entries are described in terms of
structural similarity of linked signal paths. Structural simi-
larity can capture how correlated are signal path to another
and how a signal can affect in the signal path. In this pa-
per, we adopt the definition of [6] of structural similarity
which can be computed by looking on the common signal of
two paths and is normalized by the geometric mean of the
signal paths’ size. Since matrix multiply message function
assumes discrete edge types, the structural similarity values
are one-hot encoded into five (5) value ranges as described in
Fig. 3. Further, directed paths are explicitly represented by
encoding if the path is an incoming or outgoing to and from
head end. If each path of link pair is incoming and outgoing
respectively, features 0 and 1 are set to 1, otherwise, only
either will be applied.

Fig. 3 (a) Edge features. (b) Edge representation.

2.3 Graph Neural Network Model

Various GNN architectures are proposed [7][8][9] to handle
different graph problems. In this paper, the architecture
described in [8] is adopted but using a transformer encoder
and average pooling as the readout function. The architecture
is consisting of three stages: (1) message passing, (2) readout
and (3) classification network, as shown in Fig. 4, where
message passing stage is the propagation step that computes
the node representation of each node while the readout stage
maps the node representations to graph-level embeddings.

The message passing stage is consists of edge network
and Gated Recurrent Units (GRU) which used message func-
tion 𝑀 (ℎ𝑣, ℎ𝑤, 𝑒𝑣𝑤) = 𝐴(𝑒𝑣𝑤)ℎ𝑤 where 𝐴(𝑒𝑣𝑤) is a neural
network that maps the edge vector 𝑒𝑣𝑤 to a 𝑑𝑥𝑑 matrix. 𝑑

is denoted as the dimension of the internal hidden repre-
sentation at each node. This step has iterative procedure to
propagate the representation where in initial state, the input
node feature will be the first components of the hidden state
and pads the rest with zeros. Then, in each step, it passes
the information, based on the edge features, between the
neighboring nodes and use the GRU to update each node’s
hidden state by incorporating the information from neigh-
boring nodes and from previous timesteps. Further, weight
tying is used, so the same update function is used at each
timestep.

The readout model is defined per node and is a differ-
entiable function that maps to an output but it operates on
the set of nodes states instead of individual nodes. Thus, the
k-step-aggregated states are partitions according to the FP
sub-graph and are padded to match the FP sub-graph with
the highest number of nodes and stacked together. Though
some of the FP sub-graph are padded, it also masked to make
sure that the paddings do not interfere with training. Then,
it is passed to the transformer encoder followed by average
pooling to reduced to graph-level embeddings. Finally, a
two-layer classification is added to make predictions if the
FP sub-graph contains hardware trojan signals or not.

3. Experimental Results

3.1 Setup

Our experiment used the available gate-level netlist provided
on Trust-HUB benchmark [10] and follow a leave-one-out
cross-validation [11] where the circuit under test is not in-
cluded in the training sets. In addition, randomly generated

LETTER
3

Fig. 4 FP-GNN model.

Table 1 Result of TrustHUB benchmark circuit on proposed detection
method.

Benchmark TP TN FP FN TPR TNR Accuracy
(%) (%) (%)

RS232-T1000 3 202 40 0 100 83.47 91.74
RS232-T1100 12 203 39 0 100 83.88 91.94
RS232-T1200 13 208 35 0 100 85.60 92.80
RS232-T1300 9 217 25 0 100 89.67 94.83
RS232-T1400 13 204 37 0 100 84.65 92.32
RS232-T1500 14 204 39 0 100 83.95 91.98
RS232-T1600 12 212 30 0 100 87.60 93.80
s15850-T100 27 2373 33 0 100 98.63 99.31
s35932-T100 15 5557 830 0 100 87.00 93.50
s35932-T200 16 5508 975 0 100 84.96 92.48
s35932-T300 36 5391 996 0 100 84.41 92.20
s38417-T100 12 5763 26 0 100 99.55 99.78
s38417-T200 15 5732 57 0 100 99.02 99.51
s38417-T300 44 5773 16 0 100 99.72 99.86
s38584-T100 19 7180 94 0 100 98.71 99.35
s38584-T200 124 7275 2 0 100 99.97 99.99

Average 100 90.67 95.34

circuits are generated using the tool described in [12]. In
this tool, the user can set the circuit depth, the number of
gates and the number of primary inputs and outputs and will
then generate a circuit that is different from the reference
circuits. When generating the circuits, the reference circuits
are the hardware trojan describe in the benchmark circuit.
Further, randomly generated circuits are not used as training
set but exclusively for test set only. With regards with data
labelling, each expanded FP nodes segment is labelled as 1
if it contains hardware trojan signal, otherwise 0. Moreover,
the result is evaluated in terms of True Positive Rate (TPR),
True Negative Rate (TNR) and Balanced Accuracy. Lastly,
the parameters such as number of batches, number of feature
dimensions, number of k-steps, number of heads and dense
unit are set as 32, 64, 4, 8 and 512, respectively.

3.2 Result

Table 1 shows the detection results of proposed method on
benchmark circuits where average TPR is 100%, a TNR aver-
age of 90.67% and balanced accuracy of 95.34%. In Table 2,
the comparison between our proposed method and previous
papers is shown, where proposed method has promising re-
sult. Further, the proposed method and the previous methods
are tested on randomly generated circuit where the structure
of the hardware trojan is different on the benchmark circuits
in terms of the circuit depth, the number of inputs to the
hardware trojan circuit, the number of gates and the con-
nectivity of signals within the hardware trojan circuit. The
proposed method gives a better result than on the previ-
ous methods even without using explicitly extracted features
which validate that it can learn features and relationships by
representing the circuit as a graph.

Further, GNN has been explored as a detection method
in recent studies [14][15][16] where hardware trojan detec-
tion is treated as a node-level problem, which means that
each signal is defined as a node. On the other hand, the pro-
posed detection method treated the hardware trojan detec-
tion problem as a graph-level task where a gate-level netlist
is transformed into sub-graphs. Table 3 shows the compar-
ison of the proposed method with the previous GNN-based
detection method on benchmark circuits. The proposed de-
tection method shows better performance in terms of TPR,
or detection rate, but falls behind in terms of TNR. Since the
hardware trojan detection is treated as a graph-level task, the
signals within the sub-graph include hardware trojan signals
with some genuine signals, however, these genuine signals
are directly incorporated with the hardware trojan circuit,
such as the genuine signals used as inputs to the hardware
trojan circuit. Comparing with a node-level task, each node
is equivalent to one signal in the design, making it indepen-
dent from other signals, resulting in no direct connection

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Table 2 Comparison on existing methods and performance on unknown HTs.

Detection Method
TPR(%) TNR(%) Balanced Accuracy(%)

Benchmark
Circuit

Modified
Circuit

Benchmark
Circuit

Modified
Circuit

Benchmark
Circuit

Modified
Circuit

[13] Unsupervised ML 42.42 0 97.25 94.41 69.83 47.21
[4] Supervised ML 64.22 19.40 99.94 100 82.08 59.70
[5] Split and Eliminate 100 26.43 98.62 99.16 99.31 62.80
FP-GNN (Proposed) 100 87.72 90.67 93.92 95.34 90.82

Table 3 Average performance comparison with previous GNN-based
detection method on benchmark circuits.

Benchmark TPR TNR Balanced Accuracy
(%) (%) (%)

[16] NHTD-GL 89.04 99.95 94.50
[15] Unioned GNN 93.4 99.9 96.65
FP-GNN (Proposed) 100 90.67 95.34

of the detected signals. In the context of the ASIC design
process, the detection of possible hardware trojans is further
analyzed to ensure the functionality of the design, thus, an-
alyzing a segment of connected signals gives better insights
than individual nodes. Moreover, representing the graph in
terms of its logic types as the node features and the struc-
tural similarities as the edge features improves the detection
rate since the features are not constrained to specific values,
unlike previous studies methods of representing the features.
Removing the constraints on the features, the proposed de-
tection method demonstrates good results in both benchmark
circuits and randomly generated circuits.

4. Conclusion

In this paper, we proposed a HT detection method that ex-
plores the benefit of graph neural network to improve the
detection performance in both benchmark circuit and ran-
domly generated circuit where digital circuit is represented
as a graph. The circuit is segmented first according to fanout
points and defined the paths within the segment as the node
and paths within the nodes are link with each other which
then treated as link pairs. The node features are represented
by the basic logic gate types used within the path and edge
features are represented by the structural similarity. Ex-
perimental result shows a satisfactory performance with an
average accuracy of 95.34% on benchmark circuits and an
average accuracy of 90.82% on randomly generated circuit.
In conclusion, GNN can be employed to learn graph em-
bedding and used this embedding to train a classifier to de-
tect hardware trojan which is more efficient and generalized
method.

Acknowledgments

This work was supported by Kwangwoon University and by
the MISP Korea, under the National Program for Excellence
in SW (2017-0-00096) supervised by IITP.

References

[1] K. Liakos, G. Georgakilas, S. Moustakidis, N. Sklavos, F. Plessas,
“Conventional and machine learning approaches as countermeasures
against hardware trojan attacks,” Microprocess Microsys, 79 (2020).

[2] Z. Huang, Q. Wang, Y. Chen and X. Jiang, “A Survey on Ma-
chine Learning Against Hardware Trojan Attacks: Recent Advances
and Challenges,” in IEEE Access, vol. 8, pp. 10796-10826, 2020,
doi:10.1109/ACCESS.2020.2965016.

[3] K. Hasegawa, M. Yanagisawa and N. Togawa, ”Trojan-feature ex-
traction at gate-level netlists and its application to hardware-Trojan
detection using random forest classifier,” 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA,
2017, pp. 1-4, doi: 10.1109/ISCAS.2017.8050827.

[4] T. Kurihara and N. Togawa, ”Hardware-Trojan Detection Based on
the Structural Features of Trojan Circuits Using Random Forests,”
IEICE Trans. on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 105-A, no. 7, pp. 1049-1060, Jul. 2022.
DOI: 10.1587/transfun.2021EAP1091.

[5] A. Tiempo, Y. Jeong, “Split and Eliminate: A Region-Based Seg-
mentation for Hardware Trojan Detection”, in IEICE Transactions
on Information and Systems, vol. E106-D, no. 3, pp. 349-356, Mar.
2023. DOI: 10.1587/transinf.2022EDP7169.

[6] X. Xu, N. Yuruk, Z. Feng, T.A.J. Schweiger, “SCAN: a structural
clustering algorithm for networks,” in Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, New York, NY, USA, 2007, pp. 824–833,
https://doi.org/10.1145/1281192.1281280.

[7] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in International Conference on Learning
Representations, 2019.

[8] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of
the 34th International Conference on Machine Learning - Volume
70, 2017, p. 1263–1272

[9] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and ‘Y.
Bengio, “Graph attention networks,” in International Conference on
Learning Representations, ICLR, 2018.

[10] M. Tehranipoor, D. Forte, Trust-Hub, Aug. 2016, [online] Available:
https://www.trust-hub.org/benchmarks.php.

[11] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Proc. International Joint Confer-
ence on Artificial Intelligence, vol. 2, 1995, pp. 1137–1143.

[12] S. Amir and D. Forte, ”EigenCircuit: Divergent Synthetic Bench-
mark Generation for Hardware Security Using PCA and Linear Pro-
gramming,” in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 12, pp. 5207-5219,
Dec. 2022, doi: 10.1109/TCAD.2022.3166675.

[13] C. Dong, Y. Liu, J. Chen, X. Liu, W. Guo and Y. Chen, “An Un-
supervised Detection Approach for Hardware Trojans,” in IEEE
Access, vol. 8, pp. 158169-158183, 2020, doi: 10.1109/AC-
CESS.2020.3001239.

[14] R. Yasaei, L. Chen, S. -Y. Yu, and M. A. A. Faruque, ”Hard-
ware Trojan Detection using Graph Neural Networks,” IEEE Trans.

LETTER
5

Computer-Aided Design of Integrated Circuits and Systems, doi:
10.1109/TCAD.2022.3178355.

[15] W. Pan, M. Dong, C. Wen, H. Liu, S. Zhang, B. Shi, Z. Di, Z. Qiu, Y.
Gao, and L. Zheng, ”A unioned graph neural network based hardware
Trojan node detection,” IEICE Electronics Express, vol. 20, no. 13,
pp. x-x, 2023. doi: 10.1587/elex.20.20230204.

[16] K. Hasegawa, K. Yamashita, S. Hidano, K. Fukushima, K.
Hashimoto, and N. Togawa, ”Node-wise Hardware Trojan De-
tection Based on Graph Learning,” IEEE Trans. Computers, doi:
10.1109/TC.2023.3280134.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

