
DOI:10.1587/transinf.2024EDL8060

Publicized:2024/09/20

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

1

LETTER

Dalio: In-Kernel Centralized Replication for Key-Value Stores

Gyuyeong KIM†a), Nonmember

SUMMARY Replication is commonly used in distributed key-value

stores for high availability. Recent works show that centralized replica-

tion provides high throughput through low-overhead write coordination and

consistency-aware read forwarding. Unfortunately, they rely on specialized

hardware, which is deploy-challenging and poses various limitations. To

this end, we present Dalio, a software-based centralized replication system

that does not require extra hardware while supporting high throughput. Our

key idea is to offload the replication function to per-shard load balancers

with eBPF, an emerging kernel-native technique. By building a replica-

tion coordinator with eBPF, we can avoid burdensome kernel networking

stack overhead. Our experimental results show that Dalio achieves through-

put better than the vanilla Linux by up to 2.05× and is comparable to a

hardware-based solution.

key words: Networking stacks, Replication protocol, In-kernel acceleration

1. Introduction

Key-value stores are essential building blocks of modern on-

line services. To mask failures, items in a data shard are often

replicated over multiple servers, typically 3 replicas [1], [2].

Traditionally, replication is performed by distributed proto-

cols. Leader-based protocols [3], [4] can achieve lineariz-

ability easily but suffer from poor performance as only the

leader handles requests. To improve performance, leaderless

replication [2], [5] allows any replica to handle reads and

writes but fails to achieve linearly-increasing performance

due to extra coordination overhead for linearizability.

A recent work [6] shows that performing centralized

leaderless replication provides high performance and lin-

earizability. In particular, it moves the entire replication

function into the Top-of-Rack (ToR) switch. The switch co-

ordinates writes among replicas by maintaining the list of

temporarily inconsistent keys (i.e., dirty set) due to pend-

ing writes. The switch also tracks the number of aggregated

write replies, and commits the write when all replies are ag-

gregated. For reads, the switch sends requests to a random

replica by default. However, if the requested key is included

in the dirty set, the switch forwards the requests to the latest

known consistent replica, which is also tracked in the switch.

Write coordination overhead is reduced as the replication

function is offloaded from storage servers to the network.

In addition, linearizability can be ensured since reads can

always be forwarded to a consistent replica, even if the key

is inconsistent.

†The author is with the Department of Computer Engineering,
Sungshin Women’s University, Seoul, Republic of Korea.

a) E-mail: gykim@sungshin.ac.kr (Corresponding author)

Unfortunately, the existing work has limitations as fol-

lows. First, they rely on specialized hardware like an Intel

Tofino ASIC [7], which is not widely available in modern

data centers. Second, they require all replicas to be under

the same rack due to L2 multicast, which means the re-

quest cannot be delivered to other racks. Third, the resource

constraints of switch hardware pose several limits on appli-

cations. For example, item key size is limited to 4 bytes,

which is insufficient for typical workloads where key sizes

are tens of bytes [8].

To this end, we present Dalio, a software-based cen-

tralized replication system that provides high performance

without relying on specialized hardware. Our key idea is to

build a replication coordinator in per-shard load balancers

by leveraging the power of extended Berkeley Packet Fil-

ter (eBPF) [9]. The insights behind the idea are as follows.

First, storage servers in the same replication group are con-

nected via a software per-shard load balancer (PSLB) [10]

that determines destination replicas. Therefore, PSLBs are a

vantage point for centralized replication similar to the ToR

switch.

Second, the emerging eBPF [9] allows us to build a

high-performance replication coordinator in software. We

can manipulate the packet header and payload in the host

network stack by attaching a custom eBPF program to var-

ious hook points like the eXpress Data Path (XDP) layer

located in the NIC driver and the Traffic Control (TC) layer.

This means that we have the opportunity to perform replica-

tion functions in high performance by avoiding burdensome

kernel networking stack overhead through in-kernel function

offloading. Although there are kernel-bypass techniques like

DPDK, they are also challenging to deploy because develop-

ers should implement complex networking stack functions

in userspace. Furthermore, they trade rich kernel properties

like security and isolation. Lastly, the kernel-bypass tech-

niques waste CPU resources with constant usage of 100%

even at low loads due to polling-based packet reception [11].

We have implemented a Dalio prototype on a testbed

consisting of 8 commodity servers. We compare Dalio with a

vanilla Linux-based replication coordinator and NetLR [6], a

switch-based replication coordinator. Our evaluation results

show that Dalio has better throughput than the vanilla Linux

by 2.05× and is robust to skewed workloads. In addition,

we show that Dalio is comparable to NetLR by providing a

sufficient throughput for a replication group.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

���������	
�

������

���

	�����


����������

�����

�������	
�

�����

������

�������

	�����

����������

��������

������

������������ 	������������ 	����������

������

�������

����������

	��
�
��������	�

����������

� �����������������

���	�����

������������������
��

�����������
������������

�����������������
�
����

	���������������
�

�
��
�
�
��

�
�	

�
�
�
�
�
�
��
��
�

Fig. 1 Dalio architecture and message handling. Read requests/replies

and write replies never visit user space, hence the kernel stack overhead is

avoided. A write request visits user space since only the TC layer allows

packet cloning, but it still improves performance since the packet send

function is called only once in user space.

2. Dalio Design

2.1 Challenges and Solutions

We build an eBPF-based replication coordinator in PSLBs

to replicate key-value data in a centralized manner with high

performance, linearizability, and deploy-friendliness. How-

ever, there are several technical challenges to realize the idea.

First, we should handle multiple pending writes for the

same key simultaneously. If pending write requests stay in

the PSLB too much for write coordination, subsequent writes

for the same item cannot be processed in time because a slot

for write coordination is already occupied. This is especially

important for software-based centralized replication because

the PSLB requires more time to process a packet compared

to the switch hardware. Therefore, we separate the dirty set

and the write coordination table, where one tracks the key

of pending writes and the other performs write coordination

based on the request ID instead of the item key. This is

because a slot in the dirty set indicates the binary state of

an item, which multiple write requests for the same item can

share, whereas a slot in the write coordination table should

be used by a single request exclusively.

Second, to propagate write requests, we should clone a

write request multiple times, but the current eBPF does not

provide cloning functionality in the XDP layer. To address

this, we leverage BPF_CLONE_REDIRECT, the cloning func-

tion of the TC layer. To bridge between XDP and TC, we

let write packets visit the userspace application that simply

forwards the packet upon receiving it. Since typical produc-

tion workloads like YCSB are read-intensive (e.g., 95:5 for

read:write [12]), this does not harm performance much. Ad-

ditionally, since we only call the packet send function once

in the userspace, CPU resources are still saved compared to

the traditional approach of calling the send function multiple

times for write propagation.

Third, we should minimize memory footprints because

eBPF only supports static memory allocation. It means that

���������	
����������
�

����� �����	��
������������	���

�������������

��������
��������
�

��������

�����	�� 

������ ����	��

 �! 	�����!���

"���������������

Fig. 2 Dalio packet format. The Dalio message is an L4 payload that does

not harm existing network stack functionality.

we may waste memory unnecessarily if memory utilization

is low. To address this, our approach allocates small mem-

ory space for the dirty set and the write coordination table.

Instead, we use multiple hash functions to address hash col-

lisions efficiently. If a collision occurs, Dalio searches for

another vacant slot using other hash functions.

Figure 1 shows the high-level architecture of Dalio.

Read requests and write replies only visit the XDP layer.

Therefore, they can be processed quickly without the net-

working stack overhead. Write requests visit userspace to

utilize the TC layer, but its overhead is small since the ap-

plication forwards the packets immediately upon receiving

them. The TC layer clones the request multiple times for

write propagation without the intervention of the userspace

application.

2.2 Packet Format

To perform centralized replication, we need some metadata,

which should be included in the packet header. Figure 2

illustrates the packet format of Dalio. We use a custom L7

protocol message (i.e., a payload of L4 protocols) consisting

of the following fields.

• OP: the operation type, which can be READ, WRITE,

R-REPLY, W-REPLY, R-REJECT, and W-REJECT.

• SEQ: a monotonically-increasing sequence number for

request IDs. The PSLB increases this field by one for

every write request to distinguish each write request.

• CNT: the number of packet cloning that a request expe-

rienced. This field is used to propagate write requests

to multiple replicas in the TC layer.

2.3 Dalio Modules in XDP and TC Layers

The XDP and TC layers are the core parts of Dalio that han-

dle incoming/outgoing packets. The XDP layer consists of

the sequence number, the dirty set, and the write coordina-

tion table modules. eBPF supports eBPF maps, which are

generic storage of different data types. We use eBPF maps

to construct the modules because we should maintain and

utilize item states across multiple packets. All three modules

use BPF_MAP_TYPE_ARRAY, and their roles are as follows.

Sequence number. This module includes a variable for

sequencing writes and a lock for concurrent requests. This

sequence number acts as a request ID for write coordination.



LETTER

3

Dirty set. This module is needed to track the list of

inconsistent item keys where write operations are ongoing

and not committed yet. With this, read requests for the in-

consistent item can be forwarded to a consistent replica. The

module contains metadata, such as the item key, the sequence

number of the write request, the lock, and the IP and MAC

addresses of the latest known consistent replica. Each slot in

the module is indexed by the hash of item keys.

Write coordination table. The module counts the num-

ber of received write replies and commits the write if all

replies are aggregated. Each slot in this module performs

write coordination for a single write request. Therefore, a

slot is indexed by the sequence number (i.e., request ID).

The module includes metadata like the item key, the lock,

the number of aggregated write replies, and the client’s infor-

mation (i.e., IP and MAC addresses and the L4 port number).

Write propagation. For the TC layer, we have only one

module, the write propagation module. The module repli-

cates the outgoing write request packets as many as the

number of replicas to propagate write requests.

2.4 Packet Processing

Read requests and replies. Upon receiving a read request,

the PSLB checks whether the requested key is in the dirty

set. If it does, for linearizability, the PSLB forwards the

request to the latest known replica tracked in the dirty set.

Otherwise, the request is forwarded to a random replica.

Before forwarding the request, the PSLB copies the stored

sequence number in the dirty set to the SEQ field in the packet

header. This prevents the request from reading the stale data

by comparing the carried sequence number and the stored

sequence number in the replica (i.e., item version). Read

replies do not visit the PSLB, and go directly to the client.

Write requests. When the PSLB receives a write re-

quest, it tries to lock the sequence number module for atomic

increase operation. For locking, we use bpf_spin_lock. If

lock is granted, the PSLB increases the sequence number

variable by one and assigns the value to the SEQ field in the

packet header. After that, the lock is released. The PSLB now

finds a vacant slot in the dirty set using the key hash of the re-

quested item. As we described, the PSLB uses multiple hash

functions to handle hash collisions. If found, the PSLB locks

the dirty set slot and checks that the slot is empty or occu-

pied by the same key. When any condition is met, the PSLB

puts the item key and the sequence number to the slot. If the

PSLB fails to find a matched slot, the request is returned to

the client after updating the OP field to W_REJECT. The client

can retransmit the request by receiving the rejected request.

Next, the PSLB tries to lock the slot in the write coor-

dination table after unlocking the dirty set slot. If granted,

the PSLB updates the slot with the item key and the client’s

information (i.e., IP address, MAC address, and L4 port

number). To propagate the request, the PSLB lets the packet

visit userspace using XDP_PASS. The userspace application

forwards the packet to the NIC again without modifying

the header. The hook at the TC layer captures the packet

and clones packets as many as the number of replicas using

BPF_CLONE_REDIRECT, which creates a copy of the current

packet. Each cloning increases the CNT field by one. After

propagating the write (i.e., reaching CNT to the number of

replicas), the PSLB finishes handling the write request.

Write replies. The PSLB checks the dirty set to see

whether the key is included. If included and the value of SEQ

field in the packet header is larger than or equal to the stored

sequence number, the PSLB updates the IP address in the slot

with its source IP address. After that, the PSLB increases the

counter variable of the slot in the write coordination table by

one. All operations to the dirty set and the write coordination

table are done atomically using the bpf_spin_lock. If the

slot counter is equal to the number of replicas, it means that

every replica has updated the write request. Therefore, the

PSLB forwards the reply to the client to commit the write.

Before forwarding the reply, the slots in the dirty set and

the write coordination table are cleared. Otherwise, since we

need more replies to commit the write request, the PSLB

drops the reply after increasing the slot counter by one.

3. Performance Evaluation

3.1 Methodology

Testbed setup. We build a testbed consisting of 8 commod-

ity servers and a programmable ToR switch for performance

evaluation. The servers use an Intel i5-12600K @ 3.7 Ghz,

32 GB of DDR5 memory, and a Nvidia ConnectX-5 100GbE

NIC. The servers run Ubuntu 22.04 LTS with Linux kernel

6.5.0. Between the 8 servers, 4 servers act as clients that gen-

erate requests. 3 servers are storage servers with replicated

data under the same replication group. The other server acts

as the PSLB.

Applications and compared schemes. We implement

a Dalio prototype on the PSLB using eBPF APIs supported

by Linux kernel 6.5.0. For comparisons, we implement the

PSLB using a legacy UDP socket (i.e., the vanilla Linux) and

NetLR [6] on an Intel Tofino switch using Intel Tofino SDE

9.7.0. We also implement open-loop client and server appli-

cations in C with Intel DPDK to maximize the performance

of clients and servers. Our key-value stores are based on

TommyDS [13], a high-performance data structure library.

Workload. We basically use a read-heavy YCSB work-

load with 5% of writes [12] and 1M items whose keys and

values are 16 bytes and 128 bytes [14]. Since NetLR supports

a key size up to 4 bytes, it uses a 4-byte hash for each item

key in the switch data plane. We consider both uniform and

skewed workloads.

3.2 Results

Throughput with various workloads. We measure the

maximum throughput of each scheme with diverse work-

loads. Figure 3 shows the throughput with different skewness.

We can see that Dalio outperforms the vanilla Linux by up

to 2.05×. This is because the vanilla Linux causes excessive



4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Uniform Zipf-0.9 Zipf-0.95 Zipf-0.99
0

1

2
T

h
ro

u
g
h
p
u
t 
(M

R
P

S
)

Vanilla NetLR Dalio

Fig. 3 Throughput with various workloads. Dalio beats the vanilla Linux

significantly and shows comparable performance to NetLR.

kernel networking stack overhead, whereas Dalio avoids the

overhead by handling requests using eBPF. The throughput

slightly decreases as the workload becomes more skewed.

The performance of Dalio is still comparable to NetLR even

with Zipf-0.99 thanks to the eBPF-based request processing.

Impact of write ratios. We now measure the maximum

throughput by varying the write ratio with the uniform work-

load. Figure 4 plots the throughput of the three solutions

as the write ratio increases. We can see that the throughput

decreases as the write ratio grows. This is not surprising be-

cause, unlike the read operation, the write operation involves

all replicas, as each replica should maintain the latest data of

the item. Regardless of write ratios, Dalio is better than the

vanilla Linux. Dalio generally outperforms NetLR slightly.

This is because NetLR allows the overwrite of the subse-

quent write request to the slot where the earlier write request

holds when there are concurrent writes for the same item

key. This leads to the loss and retransmission of overwritten

write requests. Dalio does not experience this collision since

we separate the write coordination table and the dirty set.

4. Conclusion

This paper proposed Dalio, a software-based centralized

replication system to achieve high performance and lineariz-

ability without specialized hardware. We built a replication

coordinator in PSLBs using eBPF, an emerging kernel-native

technique. We addressed several technical challenges to re-

alize the idea. Experimental results demonstrated that Dalio

provides higher throughput than the vanilla Linux by up to

2.05× and is comparable to the state-of-the-art hardware-

based solution.

Acknowledgement

This work was supported by the Sungshin Women’s Univer-

sity Research Grant of 2024.

References

[1] P. Hunt, M. Konar, F.P. Junqueira, and B. Reed, “Zookeeper: Wait-

free coordination for internet-scale systems,” Proc. of USENIX ATC,

0 20 40 60 80 100

Write Ratio (%)

0

0.5

1

1.5

2

T
h
ro

u
g
h
p
u
t 
(M

R
P

S
)

Vanilla

NetLR

Dalio

Fig. 4 Impact of write ratios. The gap between NetLR and Dalio is due

to the collision between the write requests for the same key in the dirty set

of NetLR.

USA, p.11, 2010.

[2] A. Katsarakis, V. Gavrielatos, M.S. Katebzadeh, A. Joshi, A. Drago-

jevic, B. Grot, and V. Nagarajan, “Hermes: A fast, fault-tolerant

and linearizable replication protocol,” Proc. of ACM ASPLOS, New

York, NY, USA, p.201–217, 2020.

[3] P.A. Alsberg and J.D. Day, “A principle for resilient sharing

of distributed resources,” Proc. of ICSE, Washington, DC, USA,

p.562–570, IEEE Computer Society Press, 1976.

[4] R.V. Renesse and F.B. Schneider, “Chain replication for support-

ing high throughput and availability,” Proc. of USENIX OSDI, San

Francisco, CA, pp.91–104, Dec. 2004.

[5] J. Terrace and M.J. Freedman, “Object storage on craq: High-

throughput chain replication for read-mostly workloads,” Proc. of

USENIX ATC, p.11, 2009.

[6] G. Kim and W. Lee, “In-network leaderless replication for distributed

data stores,” Proc. VLDB Endow., vol.15, no.7, pp.1337–1349, Mar.

2022.

[7] “Tofino switch.” https://github.com/barefootnetworks/

Open-Tofino, Last accessed date: 26/06/2024, 2023.

[8] Z. Cao, S. Dong, S. Vemuri, and D.H. Du, “Characterizing, modeling,

and benchmarking rocksdb key-value workloads at facebook,” Proc.

of USENIX FAST, Santa Clara, CA, Feb. 2020.

[9] “ebpf.” https://ebpf.io/, Last accessed date: 26/06/2024, 2024.

[10] M. Primorac, K. Argyraki, and E. Bugnion, “When to hedge in

interactive services,” Proc. of USENIX NSDI, pp.373–387, April

2021.

[11] Y. Zhou, X. Xiang, M. Kiley, S. Dharanipragada, and M. Yu, “DINT:

Fast In-Kernel distributed transactions with eBPF,” Proc. of USENIX

NSDI, Santa Clara, CA, pp.401–417, USENIX Association, April

2024.

[12] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” Proc. of ACM

SoCC, New York, NY, USA, p.143–154, Association for Computing

Machinery, 2010.

[13] “Tommyds c library.” https://www.tommyds.it/, Last accessed

date: 26/06/2024, 2018.

[14] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and

I. Stoica, “Netcache: Balancing key-value stores with fast in-network

caching,” Proc. of ACM SOSP, pp.121–136, 2017.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

