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D2PT: Density to Point Transformer with Knowledge Distillation for
Crowd Counting and Localization

Fan LI†, Enze YANG†a), Chao LI†, Nonmembers, Shuoyan LIU†, Member, and Haodong WANG†, Nonmember

SUMMARY Crowd counting is a crucial task in computer vision, which
poses a significant challenge yet holds vast potential for practical applica-
tions in public safety and transportation. Traditional crowd counting ap-
proaches typically rely on a single framework to predict density maps or
head point distributions. However, the straightforward architectures of-
ten fall short in cases of over-counting or omission, particularly in diverse
crowded scenes. To address these limitations, we introduce the Density
to Point Transformer (D2PT), an innovative approach for effective crowd
counting and localization. Specifically, D2PT employs a Transformer-based
teacher-student framework that integrates the insights of density-based and
head-point-based methods. Furthermore, we introduce feature-aligned
knowledge distillation, formulating a collaborative training approach that
enhances the performance of both density estimation and point map pre-
diction. Optimized with multiple loss functions, D2PT achieves state-of-
the-art performance across five crowd counting datasets, demonstrating its
robustness and effectiveness for intricate crowd counting and localization
challenges.
key words: Crowd Counting, Head Point Localization, Vision Transformer,
Knowledge Distillation

1. Introduction

Crowd counting is a fundamental yet intricate task in com-
puter vision, with significant applications in public safety
and intelligent transportation systems. Research in this field
has evolved into two primary methodologies: density-based
and point-based approaches.

Density-based methods are widely adopted due to their
ability to generate heatmaps that provides a quantitative as-
sessment of crowd compositions [1]. Recent studies have
focused on the visual features of highly congested scenes
[2] and spatial context correlation utilizing pyramidal Con-
volutional Neural Networks (CNNs) [3]. However, these
methods still confront challenges such as overestimation in
densely populated areas and underestimation in less crowded
regions.

Instead of density distributions, point-based methods
directly predict head-point coordinates in crowd scenes [4].
As an intuitive approach, P2PNet [5] presents an end-to-
end CNN for counting and locating individuals in crowded
scenes. However, the drawback of point-based methods lies
in the initialization stage, where the randomly generated pro-
posals should encompass the ground truth targets. The opti-
mization process is more challenging due to the classification
of numerous ambiguous point proposals.

In recent years, the architecture of Vision Transformer
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(ViT) has demonstrated outstanding performance across var-
ious computer vision tasks. ViT-based crowd counting meth-
ods have surpassed traditional CNN architectures on multi-
ple benchmarks due to their superior capacity to capture
long-range dependencies and complex visual features [6].
Unfortunately, these methods typically replace the backbone
network with ViT while employing a single loss function
such as Mean Square Error (MSE), thereby overlooking the
potential for feature fusion and collaborative training.

To address these limitations, we propose a Density
to Point Transformer (D2PT) with Knowledge Distillation
for crowd counting and localization. Our method innova-
tively integrates density estimation and point prediction with
knowledge distillation, facilitating consistent alignment of
the hidden features within the teacher-student network. Un-
like the conventional paradigm where the student network
sequentially learns from the output logits of the teacher net-
work [7], this study presents a feature-aligned knowledge
distillation method that leverages the advantages of both
density-based and point-based approaches. This distilla-
tion paradigm has been proven to deliver exceptional per-
formance, particularly when integrated with the ViT back-
bone [8]. Optimized with multiple loss functions, our D2PT
achieves cutting-edge results on multiple crowd counting
datasets, underscoring its potential as a formidable solution
for complex crowd counting and localization tasks. The
main contributions of this paper are summarized as follows:

• In this paper, we introduce a novel Density to Point
Transformer (D2PT) that effectively integrates insights
of density estimation and point localization. The com-
prehensive approach aims to address the challenges of
overestimation and underestimation of crowd counting
in practical scenarios.

• We adopt a feature-aligned knowledge distillation for
teacher-student framework with the ViT backbone,
which formulates a collaborative training approach that
enhances the performance of both density estimation
and point map prediction.

• We introduce multiple loss functions, including clas-
sification loss, localization loss, and disparity loss that
measures the difference between the teacher and student
networks. Evaluations across various public datasets
reveal the state-of-the-art performance of D2PT among
advanced crowd counting baselines.
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Fig. 1: The overall framework of the proposed D2PT. Note that the ’sg’ behind the ’Density Head’ indicates stop gradient,
where the parameters of teacher decoder are only updated by EMA from student decoder.

2. Method

2.1 Preliminaries

Density-based methods: The continuous density distribu-
tion of an individual 𝛿(𝑥 − 𝑥𝑖) is transformed with Gaussian
kernel 𝐺 𝛿 (𝑥). The density-based networks are trained to
predict the Gaussian distribution of the crowd, which can be
formulated as: 𝐹 (𝑥) = ∑𝑁

𝑖=1 𝛿(𝑥 − 𝑥𝑖) ∗ 𝐺 𝛿𝑖 (𝑥), 𝜎𝑖 = 𝛽𝑑𝑖

where 𝑑𝑖 indicates the spread parameter of 𝑘 nearest neigh-
bors.
Point-based methods: For point-based approaches, let
𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖) represent the center point of the 𝑖𝑡ℎ of 𝑁
individuals. The collection of individuals can be denoted
as 𝑃 = {𝑝𝑖 |𝑖 ∈ 1, ..., 𝑁}. The point-based models predict
�̂�, �̂� =

{
𝑝 𝑗 , 𝑐 𝑗 | 𝑗 ∈ 1, ..., 𝑀

}
, where 𝑐 𝑗 is the confidence

score of the prediction 𝑝 𝑗 . The network is trained to mini-
mize the the Euclidean distance of 𝑑 (𝑝 𝑗 , 𝑝𝑖) =

𝑝 𝑗 − 𝑝𝑖2.

2.2 Density to Point Transformer

The overall architecture of D2PT is shown in Fig. 1. The
input image is tokenized into 16 × 16 patches, followed by
patch embedding, the image tokens are fed into a shared-
weight Transformer encoder. Subsequently, we employ two
Transformer decoders with the same architecture in a teacher-
student network setup. The teacher network is followed by
a density head to generate Gaussian distribution, while the
student network is connected to a point head that directly
predicts the head-point locations.

The Transformer encoder contains several layers with a
similar architecture. Each layer consists of a Self-Attention
(SA) module and a Feed Forward Network (FFN). Layer
normalization and residual connections are employed for
each layer 𝑙. A Self-Attention module receives the input of
Query (𝑄), Key (𝐾), and Value (𝑉), which can be defined
as:

𝑄 = 𝑍𝑙−1𝑊𝑄, 𝐾 = 𝑍𝑙−1𝑊𝐾 , 𝑉 = 𝑍𝑙−1𝑊𝑉

𝑆𝐴(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝑐
)𝑉

𝑀𝑆𝐴 = [𝑆𝐴1; 𝑆𝐴2; · · · ; 𝑆𝐴𝑛]𝑊𝑝

(1)

where 𝑄, 𝐾 and 𝑉 share the same size of input token Z,
𝑊𝑄,𝑊𝐾 , and 𝑊𝑉 are learnable matrices, and 𝑐 is the chan-
nel dimension of 𝑄 and 𝐾 . In particular, Multi-head Self-
Attention (MSA) is utilized to capture long-range depen-
dencies and spatial relationships among different regions,
modeling the complex visual feature relations. According
to equation (1), 𝑊𝑝 is a re-projection matrix and 𝑛 is the
number of attention heads.

The structure of the teacher and student decoders is
stacked with Slef-Attention (SA) layer, Cross Attention (CA)
layer and FFNs. The CA layer takes two different embed-
dings X and input token Z, formulated as:

𝐶𝐴 = 𝑆𝐴(𝑄 = 𝑋𝑊𝑄, 𝐾 = 𝑍𝑊𝐾 , 𝑉 = 𝑍𝑊𝑉 ) (2)

where the 𝑄 are concatenated by the trainable embeddings
and content query from decoder. The teacher and student
decoders output the decoded features 𝐹𝑑𝑒𝑐.

Following the teacher decoder, we design a lightweight
density projection head inspired by CrowdFormer [9]. It
folds the output embedding 𝐹𝑑𝑒𝑐 into spatial feature maps,
then a 1× 1 convolution with the P-Sigmoid activation func-
tion is applied to fit the Gaussian density map. Note that the
ViT encoder, teacher decoder and density head are previously
trained for 90 epochs on the NWPU [10] dataset.

For point head projector after the student decoder, we
employ two Multi-Layer Perceptrons (MLPs) as the point
regression and classification layers. The first MLP revises
the location of each head point, while the second MLP de-
termines whether the point belongs to an individual.

Drawing inspiration from self-supervised knowledge
distillation [8], our approach employs the teacher-student
network structure to integrate robust location features from
both branches. Given that the teacher and student networks
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share an identical architecture, we implement a distinct Ex-
ponential Moving Average (EMA) as a momentum updater
for cross-domain feature learning. The update rule can be
represented as:

𝜃𝑡 ← 𝜆𝜃𝑡 + (1 − 𝜆)𝜃𝑠 (3)

where 𝜆 is a cosine schedule from 0.996 to 1 during training.
𝜃𝑡 and 𝜃𝑠 indicate the weights of the teacher network and the
student network, respectively.

As shown in Fig. 1, during the process of D2PT knowl-
edge distillation, we stop the gradient update of the den-
sity map. The weights of the teacher decoder are updated
solely through EMA of the student network. The diagram
of knowledge distillation formulates the feature alignment
of the underlying embeddings of intermediate layers of the
teacher-student decoders. For the density projection head,
we fix the parameters as it is exclusively responsible for
generating Gaussian density distributions.

2.3 Loss Function

As shown in the right part of Fig. 1, the loss function
for D2PT comprises three components: the classification
loss 𝐿𝑐𝑙𝑠, the localization loss 𝐿𝑙𝑜𝑐 within the student net-
work, and the disparity loss between the teacher and student
networks 𝐿𝑑𝑖 𝑓 𝑓 . Specifically, with the supervision of the
ground truth points, we calculate the Cross Entropy loss 𝐿𝑐𝑙𝑠
for point classification. For point location loss 𝐿𝑙𝑜𝑐 in the
student network, we employ the L1 loss with the KMO-based
Hungarian method according to the rate of point matching.
Further, we introduce the disparity loss 𝐿𝑑𝑖 𝑓 𝑓 to measure the
consistency between the teacher and student networks. The
overall loss function of the proposed D2PT is represented as:

𝐿𝑐𝑙𝑠 = −
∑𝑁
𝑖=1 𝑙𝑜𝑔𝑝𝑠 (𝑖) + 𝜇

∑𝑀
𝑖=𝑁+1 𝑙𝑜𝑔(1 − 𝑝𝑠 (𝑖) )
𝑀

𝐿𝑙𝑜𝑐 =

𝑝𝐾𝑠 (𝑖) − 𝑝𝑠 (𝑖)1

𝐿𝑑𝑖 𝑓 𝑓 =
|𝑃𝑡 − 𝑃𝑠 |

𝑀

𝐿𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐿𝑐𝑙𝑠 + 𝜈𝐿𝑙𝑜𝑐 + 𝜉𝐿𝑑𝑖 𝑓 𝑓

(4)

where the 𝑀 and 𝑁 denote the number of predicted points
and the ground truth points in 𝐿𝑐𝑙𝑠 . 𝑝𝑠 (𝑖) |𝑖 ∈ {1, . . . , 𝑁} rep-
resents the predictions that matched with ground truth points
while 𝑝𝑠 (𝑖) |𝑖 ∈ {𝑁 + 1, . . . , 𝑀} indicates the negative ones.
𝜇 represents the hyper-parameter of the Cross Entropy loss.
In the formulation of 𝐿𝑙𝑜𝑐, 𝑝𝐾𝑠 (𝑖) is the matched subset from
predicted points of the student network 𝑝𝑠 (𝑖) . As for the
disparity loss 𝐿𝑑𝑖 𝑓 𝑓 , 𝑃𝑡 and 𝑃𝑠 indicate the quantitative
prediction of the crowd image, which can be calculated by
integrating the density map and point map of teacher and stu-
dent networks. 𝜈 and 𝜉 are hyper-parameters of the overall
loss function.

3. Experimental Results

We utilize ViT-B/16 as the backbone, the number of Trans-
former encoder and teacher-student decoder layers are both
set to 6. The Adam optimizer is implied with the batch size
of 64 that trained on 4 Tesla V100 GPUs. The learning rate
is set to 2𝑒 − 4 with a cosine decay scheduler.

We evaluate our D2PT and crowd counting baselines on
ShanghaiTech includes Part A (SHT A) and Part B (SHT B)
[1], UCF-QNRF (QNRF) [11], and NWPU-Crowd (NWPU)
[10]. We set the crop size as 128×128 for SHT A, 256×256
for the rest of datasets. Density-based models are validated
with the metric of MAE and MSE, while the point-based
methods are evaluated by average nAP{0.05:0.05:0.50} .

Table 1: Experimental results of Density-basd methods eval-
uated on ShanghaiTech A, UCF-QNRF and NWPU datasets.
The results highlighted in bold denote the best performance.

Methods SHT A QNRF NWPU
MAE MSE MAE MSE MAE MSE

MCNN [1] 110.2 173.2 277.0 426.0 232.5 764.9
CP-CNN [3] 73.6 106.4 199.4 340.4 - -
CSRNet [2] 68.2 115.0 - - 121.3 387.8
SFCN [12] - - 102.0 171.4 105.7 424.1
TransCrowd [6] 66.1 105.1 97.2 168.5 117.7 451.0
CLTR [13] 56.9 95.2 85.8 141.3 74.3 333.8
CrowdFormer [9] 56.9 97.4 78.8 136.1 67.1 301.6
D2PT (HP1) 57.5 97.8 96.0 140.0 77.9 343.8
D2PT (HP2) 56.2 95.0 74.7 127.0 72.1 301.6
D2PT (HP3) 56.0 94.5 73.9 125.4 68.5 282.1
D2PT (HP4) 55.4 93.7 73.4 123.7 64.8 271.6

Note: Hyper-Parameter (HP1-HP4) for D2PT are set as:
HP1: 𝜇=0.1, 𝜈=2, 𝜉=0.05
HP2: 𝜇=0.5, 𝜈=2, 𝜉=0.05
HP3: 𝜇=0.5, 𝜈=2.5, 𝜉=0.05
HP4: 𝜇=0.5, 𝜈=2.5, 𝜉=0.1

Results of Density based Methods Quantitative results
of density-based methods are shown in Tabble 1. In Shang-
haiTech A, D2PT outperforms the advanced CrowdFormer
by 1.5 MAE and 3.7 MSE. For the extremely dense dataset
UCF-QNRF, our method obtains 5.4 MAE and 12.4 MSE
improvement compared with CrowdFormer. The NWPU
dataset presents pronounced variations in inter-scene scale
and density, compared with TransCrowd, the D2PT could
significantly reduce the error rate by 54.9 MAE and 179.4
MSE. The ablations of hyper-parameters of our method are
investigated at the bottom of Table 1, according to the results
of 4 HP setting, the hyper-parameter or weight of 𝐿𝑐𝑙𝑠 (𝜇),
𝐿𝑙𝑜𝑐 (𝜈) and 𝐿𝑑𝑖 𝑓 𝑓 (𝜉) indicate less error rate in the setting
of 0.5, 2.5 and 0.1 respectively.
Results of Point based Methods The evaluation of point
based methods is shown in Table 2. Compared with P2PNet,
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Table 2: Experimental results of Head-Point predcition
methods evaluated on ShanghaiTech A and B, UCF-QNRF,
NWPU and JHU Crowd++ datasets. The results are evalu-
ated by nAP{0.05:0.05:0.50} .

Methods SHT A SHT B QNRF NWPU JHU
CSRNet [2] 49.9 54.1 34.3 44.1 32.2
P2PNet [5] 64.4 76.3 53.1 65.0 58.4
TransCrowd [6] 62.2 72.4 50.7 66.1 57.6
CLTR [13] 65.8 73.9 55.6 67.6 59.2
D2PT 68.2 77.9 58.1 69.8 60.9

Fig. 2: Visualisation results on test set of NWPU dataset.
The pictures arranged in columns are input images, density
maps, ground truth points and point map predictions respec-
tively.

D2PT introduces knowledge distillation by incorporating vi-
sual semantics of teacher and student network, which out-
performs P2PNet by 1.2 to 4.0 nAP. Besides, characterized
by the intricate inter-scene scale and density variations of
NWPU dataset, our D2PT introduces a 2.2 nAP improvement
than CLTR. These results suggest that D2PT is equipped with
the capability to overcome the over-counting and omission
challenges of varied scenarios.
Visualization Results To intuitively validate the perfor-
mance of proposed method, we present part of the visual-
ization results of the NWPU-Crowd dataset. As illustratesd
in Fig. 2, the predicted density map (2nd column) and point
map (4th column) closely resemble the ground truths in terms
of density and point distributions, which demonstrates the
robustness of D2PT in various crowd scenes ranging from
sparse to densely populated.

4. Conclusion

This study presents the D2PT, a pioneering Transformer-
based model for crowd counting and localization. By in-
tegrating the strengths and semantics of both density map-
based and head-point localization techniques with feature-
aligned knowledge distillation, D2PT effectively overcomes
the prevalent limitations of over-counting or omission across
diverse scenarios. Extensive experiments across five crowd
counting datasets demonstrate that D2PT establishes a new
crowd counting benchmark, indicating its robustness and
reliability for critical real-world applications.
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