
DOI:10.1587/transinf.2024EDP7001

Publicized:2024/04/25

This advance publication article will be replaced by
the finalized version after proofreading.

1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

PAPER

Unsupervised Intrusion Detection Based on Asymmetric Auto-

Encoder Feature Extraction
Chunbo Liu†, Liyin Wang††, Zhikai Zhang†††, Chunmiao Xiang†††, Zhaojun Gu†, Zhi Wang††††, and Shuang Wang†a),

Member

SUMMARY Aiming at the problem that large-scale traffic data lack

labels and take too long for feature extraction in network intrusion

detection, an unsupervised intrusion detection method ACOPOD based

on Adam asymmetric autoencoder and COPOD (Copula-Based Outlier

Detection) algorithm is proposed. This method uses the Adam asym-

metric autoencoder with a reduced structure to extract features from the

network data and reduce the data dimension. Then, based on the Copula

function, the joint probability distribution of all features is represented

by the edge probability of each feature, and then the outliers are detect-

ed. Experiments on the published NSL-KDD dataset with six other

traditional unsupervised anomaly detection methods show that ACO-

POD achieves higher precision and has obvious advantages in running

speed. Experiments on the real civil aviation air traffic management

network dataset further prove that the method can effectively detect

intrusion behavior in the real network environment, and the results are

interpretable and helpful for attack source tracing.

key words: intrusion detection, feature extraction, network traffic,

asymmetric auto-encoder, Copula function.

1. Introduction

A growing variety of network devices and applications

are being developed in the quickly evolving information

society to satisfy people’s demands in both their personal

and professional lives. People’s social activities are get-

ting increasingly intertwined with the online world, and

internet connection has become an essential component

of modern life. Although the internet is convenient, it has

also given bad people opportunities to make money from

cybercrimes. Attacks on company databases and the dark

web selling of stolen personal information are common-

place incidents. The 2010 discovery of the Stuxnet virus,

which was designed to target vital infrastructure, serves

as more evidence that the hazards associated with

cyberattacks are already widespread.

As a preventive defensive method, intrusion detec-

tion has steadily grown in importance as a tool for main-

taining network security [1]. Intrusion Detection System

(IDS) is a real-time monitoring system installed in a

network with the purpose of identifying intrusion activity

and taking appropriate action by examining data pro-

duced by the network. The amount of network data that

IDS must examine is expanding quickly due to factors

including fast network transmission, the expansion of the

Internet of Things (IoT), and the use of technologies like

cloud computing. Many distinct protocols are used in

network traffic transmission, and these protocols’ field

values are frequently categorical variables. The high-

dimensionality and non-linearity of network traffic char-

acteristics result from this. The detection efficiency is

low and the time and computational expenses are quite

expensive when directly detecting this high-dimensional

data.

Numerous research studies have blended deep

learning feature extraction approaches with traditional

machine learning to overcome the aforementioned con-

cerns. To reduce the dimensionality of the data, they em-

ploy deep neural networks to extract important character-

istics from data distributions. The objective of this strat-

egy is to improve the Intrusion Detection System (IDS)

operating speed and the quality of input features. The

accuracy of IDS directly depends on the quality of its

input features. The more effectively the input features

represent the overall distribution of the data, the more

accurately IDS can differentiate normal behavior from

intrusion behavior using these features. In contrast to

traditional feature selection, feature extraction produces

new features that are more condensed than the originals.

Deep learning’s strong hierarchical feature learning abil-

ity can better match traditional machine learning ap-

proaches, particularly when it comes to capturing nonlin-

ear information [2]. The original data are more signifi-

cantly represented by the learned characteristics, which

facilitate data display and categorization.

Traditional machine learning techniques are still in

high demand in the intrusion detection space. Based on

clustering, the K-Means method [3] separates the data

into k clusters, with the distance between each cluster’s

centroid and each data point within the cluster determin-

ing its score. Outliers are defined as data points that are

distant from the centroid. The k closest neighbors of a

data point are the focus of the K-Nearest Neighbor

(KNN) method [4]. The data point is categorized as an

outlier if the bulk of these neighbors have already been

labeled as outliers. The density-based Local Outlier Fac-

 † The authors are with Information Security Evaluation

Center, Civil Aviation University of China, China.
 †† The author is with Aeronautical Information Service Cen-

ter, Air Traffic Management Bureau, Civil Aviation Ad-
ministration of China, China.

 ††† The authors are with College of Computer Science and
Technology, Civil Aviation University of China, China.

†††† The author is with College of Cyber Science, Nankai Uni-
versity, China.

a) E-mail: s-wang@cauc.edu.cn (Corresponding author)

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

2

tor (LOF) algorithm [5] aims to discover local outliers. It

calculates the LOF value by comparing the local reacha-

bility density (LRD) of the present data point and its

neighbors. Points with higher LOF values are considered

as anomalies. However, in contrast to LOF, the density-

based Connectivity-based Outlier Factor (COF) method

[6] computes the density of data points differently. This

is because COF computes connection distances using

minimal spanning trees while accounting for the rela-

tionships between data points. A statistical method called

the Histogram-based Outlier Score (HBOS) algorithm

[7] creates histograms for each independent attribute in a

given dataset. The product of the reverse height in each

feature’s column yields the anomalous score for each

data point. The data are mapped to a high-dimensional

space using the Angle-Based Outlier Detection (ABOD)

method [8], which then calculates the anomaly score

based on the angle discrepancies between the data points

and other points. To categorize data points, the One-

Class Support Vector Machine (OCSVM) [9] uses the

data to learn a decision boundary. Data points are created

as nodes in isolation trees using the Isolation Forest (IF)

method [10], which assumes that anomalies are uncom-

mon occurrences with feature values that deviate notice-

ably from anticipated data points. Furthermore, intrusion

detection has made use of the Single-Objective Genera-

tive Adversarial Active Learning (SO_GAAL) method

[11], which is based on generative adversarial networks.

There are various methods for feature extraction us-

ing deep learning, including Auto-Encoder(AE) ap-

proaches [12]-[15], enhanced Auto-Encoder approach-

es[16]-[19], Long Short-Term Memory (LSTM) net-

works [20], Stacked Non-symmetric Deep Autoencoder

(SNDAE) [21]-[22], and more. Wang et al. [12] proposed

Auto-Encoder (AE) to do dimensionality reduction and

feature extraction on the original data. They used an im-

proved K-means technique to further categorize the pro-

duced data. Xiao et al. [13] decreased the dimensionality

of the data by using Principal Component Analysis

(PCA) and AE. The reduced data were then format-ted

into pictures. They trained a Convolutional Neural Net-

work (CNN) to deliver the optimal attributes using the

transformed pictures. Liu et al. [14] first employed AE

with two consecutive hidden layers to extract features.

After that, they selected features using Random Forest

(RF) and Support Vector Machines (SVM). Kunang et al.

[15] used AE for feature extraction and SVM as the clas-

sifier.

Furthermore, the use of improved Auto-Encoder

(AE) for feature extraction has been extensively studied.

Song Yong et al. [16] employed an enhanced Sparse Au-

to-Encoder to extract features in an intelligent and adapt-

able manner. Yan et al. [17] used Stacked Sparse Auto-

Encoder (SSAE) to extract high-level feature representa-

tions of invasion activities. These low-dimensional

sparse characteristics were used to construct several

foundation classifiers. Yao et al. [18] used algorithms

like KNN for anomaly detection and the Variational Au-

toencoder (VAE) to extract useful features for unsuper-

vised anomaly detection applications. Meghan et al. [19]

used support vector machines (SVM) for classification

and sparse auto-encoder (SAE) to extract high-level fea-

ture representations. Furthermore, Wang et al. [20] pro-

posed two deep feature extraction strategies based on

Long Short-Term Memory (LSTM) networks to extract

significant features from the data.

Shone et al.’s [21] Stacked Non-symmetric Deep

Auto-encoder (SNDAE) is a notable approach in current

research on feature extraction using deep learning.

SNDAE combines the efficiency of Auto-Encoder (AE)

with the benefits of layered learning seen in Stacked Au-

to-Encoder (SAE). SNDAE has higher unsupervised

layered feature learning capabilities as compared to sim-

ple AE. SNDAE, unlike SAE, delivers significant data

representations without the need for layer wise greedy

training approaches. It also provides faster training times

and more efficient feature extraction. Wang et al. [22]

initially employed Generative Adversarial Networks

(GAN) to oversample the dataset. Subsequently, they

established a RF for intrusion detection using features

extracted by SNDAE.

Nonetheless, there are still gaps in the existing study.

Firstly, the current techniques that use deep neural net-

works for feature extraction still need a lengthy training

period, even after several optimizations. Secondly, the

curse of dimensionality refers to the fast rise in the

runtime of traditional unsupervised anomaly detection

algorithms when working with high-dimensional data.

To address the aforementioned issues, we presents

the Adam Non-symmetric Auto-Encoder (ANAE) for

feature extraction and suggests a modification to the

Stacked Non-symmetric Deep Auto-Encoder (SNDAE)

based on the Adam optimization approach [23]. During

training, this algorithm facilitates a faster convergence of

the loss score to the ideal value and boasts a more

streamlined network structure. This reduces the training

time of the algorithm, and the extracted ideal features

contribute to enhancing the model’s detection accuracy.

COPOD obtained the highest ROC-AUC score among

mainstream unsupervised anomaly detection algorithms

[24]. Therefore, this paper decided to integrate ANAE

feature extraction technique with the COPOD algorithm

based on the probability copula function. Through this

integration, an effective fusion of feature extraction

technique and unsupervised intrusion detection technique

was achieved, thus enabling efficient unsupervised intru-

sion detection. Its effectiveness is validated on the pub-

licly available NSL-KDD dataset and then applied to a

real civil aviation air traffic management network envi-

ronment.

IEICE TRANS. ELEC 错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。TRON., VOL.XX-X, NO.X XXXX XXX

3

2. Preliminaries

2.1 Auto-encoder

An unsupervised feature learning technique based on

neural networks called Auto-Encoder (AE) [25] aims to

produce output data x that closely resemble the input data

x̂ . It is frequently applied to feature extraction and data

dimensionality reduction. Three layers make up a basic

AE: an input layer, an output layer, and a hidden layer.

Fig. 1 shows an illustration of AE.

Data from high-dimensional to low-dimensional

hidden layers are first encoded by AE using encoder

()f x . The low-dimensional data are then rebuilt by de-

coder ()d x from the hidden layer, yielding the recon-

structed data x̂ . These data are then compared to the in-

put x to determine the reconstruction loss ()()(),L x d f x .

Ultimately, backpropagation is used to update the net-

work. In order to enable the decoder to more precisely

rebuild using these newly acquired features, AE aims to

learn features that more substantially represent the data

distribution during the encoding phase, when data are

decreased in dimensionality.

Input layer

x

Hidden layer

Output Layer

x̂c

Encoder Decoder

Fig. 1 Auto-encoder

Input layer

x

Hidden layer1

Output layer

x̂1c

Encoder Encoder

Hidden layer2

2c

Hidden layer3

3c

Decoder Decoder

Fig. 2 Stacked Auto-encoder

A Deep Auto-Encoder (DAE) is composed of many

layers of encoding and decoding. Hinton and colleagues’

work [26] has shown that employing DAE for feature

extraction produces lower-dimensional data with en-

hanced discriminative powers, making it possible to dif-

ferentiate previously indivisible data. The Stacked Auto-

Encoder (SAE) is a common kind of DAE [27]. The lay-

er-wise greedy training technique is used by SAE, in

which all previous layers’ parameters are while a particu-

lar layer is being trained. This technique is performed

iteratively to the next layer until the entire network is

trained, once each layer’s training is finished. Fig. 2 is an

illustration of a basic SAE.

Fig. 2 depicts a 5-layer neural network consisting of

two symmetrical encoding and decoding stages. The cen-

tral layer, referred to as the hidden layer 2 or the encod-

ing layer, contains data known as encodings (Code).

These encodings represent data that have undergone di-

mension reduction and is more discriminative, making

them suitable for classification and visualization. The

features to be extracted are the encodings located in the

central hidden layer.

2.2 Copula and COPOD

The Copula function is a probabilistic statistical function

used to effectively model the dependencies between mul-

tiple random variables. For any d-dimensional random

variables with a joint distribution ()1, , dF x x and mar-

ginal distributions 1, , dF F , there exists a Copula func-

tion () () ()()1 1 , , d dF x C F x F x= . Using the Copula

function, the joint distribution of a multivariate random

variable can be represented as a function of each of its

marginal distributions.

COPOD (Copula-Based Outlier Detection) algo-

rithm is a probability-based anomaly detection method. It

generates an empirical Copula function by calculating

the Empirical Cumulative Distribution Functions

(ECDF) of the data and estimates the approximate tail

probability for each point using this empirical Copula

function. For each sample point ix , the goal of COPOD

is to calculate the probability of observing a point as ex-

treme as ix .

Assuming sample point ix follows a certain d-

dimensional distribution function XF . COPOD calculates

the sample probability () ()X i iF x P X x=  and

() ()1 X i iF x P X x− =  . If ix is an outlier, it won’t ap-

pear frequently, and the probability of observing a point

as extreme as ix will be very low. Therefore, if ()X iF x or

()1 X iF x− is particularly small, it indicates that the point

rarely appears, meaning it is an outlier. COPOD refers to

()X iF x as the left tail probability of ix and ()1 X iF x− as

the right tail probability of ix . If either of these quantities

is very small, it means that the point has a very small tail

probability.

3. ACOPOD anomaly detection algorithm

We provide a novel model framework that combines

traditional machine learning anomaly detection methods

with the effective unsupervised feature extraction meth-

odology, ANAE. The core idea is that neural networks

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

4

capture the most significant distribution of data during

the dimensionality reduction process, which improves

the difference between various sample types and makes

the data in their hidden layers more distinctive. Therefore,

conducting intrusion detection on the data from the hid-

den layers becomes more effective.

COPOD achieved the highest score among existing

unsupervised anomaly detection algorithms [24]. Addi-

tionally, we compared six unsupervised detection algo-

rithms, including COPOD, on an intrusion detection da-

taset, and found COPOD achieving the most ideal score.

Therefore, we determine to combine the ANAE feature

extraction technique with the COPOD algorithm based

on the probability copula function. We name this model

ACOPOD (ANAE and Copula-Based Outlier Detection),

and its overall framework is depicted in Fig. 3.

We start by pre-processing the network traffic data,

digitizing it using one-hot encoding, and then standardiz-

ing the data to conform to a standard normal distribution.

The pre-processed data are divided into a training dataset

and a test dataset. The training dataset is used to train

ANAE, employing Minibatch batch training and back-

propagation to obtain the optimal weights for ANAE.

Subsequently, the trained ANAE is used to extract fea-

tures from the test set’s data, extracting it in one go for

the entire test dataset, and this extraction is performed

twice. Finally, COPOD is employed to classify the data

after feature extraction, thereby detecting intrusion be-

havior.

Network Traffic

Data Preprocessing

Digitization

Standardization

Training Dataset

Model Training

Batch Training

Backward

Propagation

Test Dataset

Feature Extraction

Secondary

Extraction

Overall Extraction

ANAE

Low Dimensional

Features

Intrusion Detection

COPOD

Algorithm

Intrusion Behavior

Computational

Experience Copula

Fig. 3 ACOPOD Model Framework

3.1 Adam-Based Nonsymmetric Autoencoder

When using the Deep Auto-encoder (DAE) [27] for fea-

ture extraction, the focus is mainly on the encoder, while

the decoder is primarily utilized during training to recon-

struct the hidden layer data for computing the reconstruc-

tion loss. Once the network is trained, only the encoding

operation is executed for feature extraction. In this con-

text, the performance of the encoder is more critical for

feature extraction than the decoder. Furthermore, the

objective of training a neural network is to learn the

maximum knowledge with the fewest neurons, and a

streamlined neural network structure can save training

time. Therefore, this paper proposes an Adam-based

Nonsymmetric Autoencoder (ANAE) that emphasizes

the encoder.

Input Layer

x

Hidden Layer1

Output Layer

x̂

Encoder Decoder

Hidden Layer2

Encoder

1h
2h

Fig. 4 Adam-based nonsymmetric Autoencoder(ANAE)

Fig. 4 shows an illustration of ANAE. It uses two

hidden layers to perform encoding tasks. In contrast to

symmetric autoencoders, which rebuild data layer by

layer through decoding, ANAE computes the reconstruc-

tion loss by performing decoding operations on the hid-

den layer data just once. This is because the asymmetry

in the number of encoding and decoding layers allows

the neural network to extract optimum features as long as

the loss function converges to an ideal value during train-

ing. After comparison, it was found that two hidden lay-

ers are sufficient to meet the requirement for extracting

significant features, and increasing the number of layers

would lead to an increase in feature extraction time.

The Adam optimization algorithm was used during

network training. The Adam optimization algorithm [23]

is currently a popular neural network optimization meth-

od that combines the advantages of the Adaptive Gradi-

ent Algorithm (AdaGrad) and Root Mean Square Propa-

gation (RMSProp). Compared to other optimization al-

gorithms, it converges faster, requires relatively lower

memory, and can adapt to large-scale datasets.

ANAE uses equation (1) to gradually map the input

vector
dx R to the hidden layer id

ih R , where i refers

to the i-th layer of the network, and d represents the vec-

tor’s dimension.

 ()1i i i ih W h b −=  + (1)

In this context, whereW and b represent weight and

IEICE TRANS. ELEC 错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。TRON., VOL.XX-X, NO.X XXXX XXX

5

bias, the Sigmoid function ()
()

1

1 t
t

e


−
=

+
 is used as

the activation function. During training, it is sufficient to

use equation (2) to reconstruct the hidden layer data and

generate the output x̂ :

 ()ˆ
lastx h bW  = + (2)

Where W  and b are the parameters of the decod-

ing layer, and lasth is the encoding generated by the last

encoding layer. Equation (3) represents the loss function,

and the purpose of training is to minimize the loss scores

for m samples.

 ()
2

1

ˆ()
m

i i

i

L x x
=

= − (3)

The parameter (),i iW b = .

Input

Hidden Layer1

Hidden Layer2

ANAE1

Hidden Layer1

Hidden Layer2

COPOD

ANAE2

x
1h

2h 1h
2h

Fig. 5 The network architecture of the ANAE model

As mentioned earlier, we employ a two-stage fea-

ture extraction to enhance the effectiveness of feature

learning. Two-stage feature extraction involves stacking

two ANAEs. After using the first ANAE for feature ex-

traction, the extracted data are passed on to the next

ANAE for further feature extraction. This is done to cre-

ate a deep learning hierarchical structure for hierarchical

unsupervised feature learning, aiming to capture the non-

linear and complex relationships between different fea-

tures. The second round of feature extraction optimizes

the data extracted in the first round, making the extracted

data more prominent. The ANAE network structure is

shown in Fig. 5.

The following provides a brief overview of the exe-

cution process of the Adam optimizer. Firstly, the param-

eter θ is updated using equation (4):

()
1

ˆ

ˆ

t

t t

t

m

v
  


−= − 

+
 (4)

Where  represents the learning rate, t keeps

track of the steps in parameter updates, and  is a very

small number to prevent division by zero. By compu-

ting the exponentially weighted average of gradients,

denoted as tm , and the exponentially weighted average

of squared gradients, denoted as tv , it is possible to

estimate the local mean of the parameters. Parameter

updates are influenced by their past values over a cer-

tain time period.

 1 1 1(1)t t tm m g −=  + −  (5)

12 2

2(1)t t tv v g −=  + −  (6)

In equations (5) and (6), )1 2, 0,1   are prede-

fined hyperparameters that control the weighting of his-

torical information. tg represents the gradient of parame-

ter θ at time step t , calculated as ()1t tL  − . 2
tg is the

element-wise squared gradient. In equation (4), and are

bias-corrected versions of tm and tv , obtained from equa-

tions (7) and (8).

()1

ˆ
1

t

t t

m
m


=

−
 (7)

()2

ˆ
1

t

t t

v
v


=

−
 (8)

Where 1
t and 2

t represent the t-th power of 1

and 2 , respectively.

Algorithm 1 ACOPOD Anomaly Detection Algorithm

Input: n data samples rX , each with r dimensions, af-

ter data preprocessing.

Output: Anomaly score ()O X .

1：Train the encoder ()f x : ()1. ; 1,i i i ih W h b i n −= + =

2：Train the decoder ()d x : ()1 1
ˆ .n i nx W h b + += +

3：Update the parameters:
()

1

ˆ

ˆ

t
t t

t

m

v
  


−= − 

+

4：Feature extraction: ()d rX f X=

5：FOR each dimension 𝑑 DO

6： calculate the left-tail ECDF () ()
1

1ˆ n

d iF x I X x
n

= 

7： calculate the right-tail ECDF: () ()
1

1ˆ n

d iF x I X x
n

= −  −

8： calculate the sample skewness db according to formula

(10)

9： END FOR

10：FOR 1 n， DO

11： calculate the empirical copula observations

12： (),
ˆ ˆ
d i d iU F x=

13： (),

ˆˆ
d i d iV F x=

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

6

14： IF 0db  ： , ,
ˆ ˆ
d i d iB U=

15： else , ,
ˆ ˆ=d i d iB V

16： calculate the tail probability of

17： (),1

ˆlog
d

l j ij
p U

=
= −

18： (),1

ˆlog
d

r j ij
p V

=
= −

19： (),1

ˆlog
d

s j ij
p B

=
= −

20： anomaly score ()  max , ,i l r sO x p p p=

21： END FOR

22： RETURN () () ()1 ,
T

dO X O x O x=   

3.2 Anomaly detection combining ANAE and COPOD.

When using traditional unsupervised anomaly detection

methods like LOF and ABOD, the runtime of these

methods increases rapidly as the data dimensionality

grows. This situation is referred to as the “curse of di-

mensionality”. Network data, which include categorical

variables such as protocols and operational states, can

result in high data dimensionality after one-hot encoding.

Using LOF, ABOD, and similar methods for detection on

such data can undoubtedly lead to the curse of dimen-

sionality. To address this problem, this paper introduces

the ACOPOD (ANAE and Copula-Based Outlier Detec-

tion) anomaly detection algorithm. Since the extracted

features are low-dimensional and significant, with only

dimensionality changing compared to the original data,

ANAE could be well compatible with other intrusion

detection algorithms. This method incorporates the

ANAE feature extraction technique to reduce the dimen-

sionality of the data through two-stage feature extraction.

The features extracted by ANAE are more prominent and

assist the model in distinguishing between normal and

anomalous samples, thus improving detection accuracy.

After experimental comparisons, the probability-based

COPOD method [24] is chosen for anomaly detection on

the feature-extracted data.

The input to the ACOPOD algorithm consists of

preprocessed data, represented as n samples of r-

dimensional data ()1, 2, ,, , , , 1, ,r i i r iX X X X i n=  =  .

The output is an anomaly score

() () ()1 ,
T

dO X O x O x =   , where the range of

anomaly scores is ()0, . Anomaly scores do not repre-

sent the probability of iX being an anomaly but rather a

relative measure of its likelihood of being an anomaly

compared to other points in the dataset. In other words,

the larger the ()iO X , the more likely ix is an anomaly.

ACOPOD first utilizes the input rX to train the ANAE

network and then employs the trained ANAE network to

perform feature extraction on these data.

For the extracted d-dimensional data dX , ACOPOD

first uses equation (9) to fit the left-tail ECDF for each

dimension, () ()1
ˆ ˆ, , dF x F x . Then, it replaces X with

X− and fits the right-tail ECDF for each dimension,

() ()1

ˆ ˆ
, , dF x F x .

 () (() ()
1

1ˆ ,
n

i

i

F x P x I X x
n =

= − =  (9)

Using equation (10), calculate the skewness of the

sample distribution, denoted as 1, , db b b=   . The pur-

pose is to determine whether the distribution leans to the

left or to the right, and the algorithm pays more attention

to the tail end towards which the distribution leans.

3

1

3

2

1

1
()

1
()

1

n

i ii

i

n

i ii

x x
nb

x x
n

−

=

−

=

−

=

−
−





 (10)

Using equation (11), insert each jx into the corre-

sponding ECDF to calculate the empirical Copula obser-

vations for each iX .

() () ()()1, , 1 1, ,
ˆ ˆ ˆ ˆ, , , ,i d i i d d iU U F X F X= (11)

This results in left-tail empirical Copula observa-

tions (),
ˆ ˆ

d i d iU F x= and right-tail empirical Copula ob-

servations (),

ˆˆ
d i d iV F x= . Then, calculate the skewness-

corrected empirical Copula observations. If 0db  ,

, ,
ˆ ˆ

d i d iB U= ,otherwise, , ,
ˆ ˆ

d i d iB V= .

Finally, using the empirical Copula observations,

calculate the tail probability of iX . The negative loga-

rithm of the generated probabilities from the left-tail em-

pirical Copula, right-tail empirical Copula, and skew-

ness-corrected empirical Copula is computed, and the

maximum value is used as the anomaly score. The small-

er the tail probability, the larger its negative logarithm. A

point is considered an anomaly if it has a low left-tail

probability, a low right-tail probability, or a low skew-

ness-corrected tail probability.

4. Experiments and Results Analysis

Six traditional anomaly detection algorithms were select-

ed for comparative experiments, and the experiments

were conducted using the open-source Python toolbox

Pyod [28]. The experimental setup included an Intel(R)

Xeon(R) Silver 4210R CPU @ 2.40GHz with a 20-core

processor and 128GB of RAM. Precision and the area

under the receiver operating characteristic curve (ROC-

IEICE TRANS. ELEC 错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。TRON., VOL.XX-X, NO.X XXXX XXX

7

AUC) were chosen as evaluation metrics. The experi-

mental datasets included the publicly available NSL-

KDD dataset [10] and the RCAN (Real Civil Aviation

Network) dataset generated from a real civil aviation

network environment.

4.1 Evaluation metrics

Using precision based on the confusion matrix and ROC-

AUC as evaluation metrics. The definition of the confu-

sion matrix is provided in Table 1.

Table 1 Confusion matrix definition

Sample Class
Prediction

Normal Attack

Reference
Normal TN FP

Attack FN TP

Precision is the proportion of correctly predicted

samples as attacks out of all samples predicted as attacks.

A high precision implies that the model produces fewer

false alarms.

TP

Precision
TP FP

=
+

 (12)

The ROC curve has the false positive rate (FPR) on

the horizontal axis and the true positive rate (TPR) on the

vertical axis. The closer the ROC curve is to the top-left

corner, the more accurate the model is. The ROC-AUC

value, which is the area under the ROC curve, effectively

reflects the detection accuracy of unsupervised algo-

rithms at different thresholds. It is a strong indicator of

the algorithm’s stability, with a maximum value of 1. A

higher score indicates better algorithm accuracy.

4.2 NSL-KDD dataset

The NSL-KDD dataset consists of network traffic data.

Network traffic data comprise data packets organized in

time intervals and are one of the most widely used data

sources for Intrusion Detection Systems (IDS) [10]. This

dataset is a benchmark dataset released by the Canadian

Institute for Cybersecurity. Many research studies have

validated their findings on this dataset, which is highly

authoritative, making experimental results on this dataset

more convincing.

The NSL-KDD [27] dataset addresses issues such

as data redundancy in the original KDD dataset, making

it an optimized version. There are a total of 125,973

training records and 22,543 testing records. The dataset

includes four types of attacks: Denial of Service (DoS),

Probe, User to Root (U2R), and Remote to Local (R2L).

DoS and Probe attacks involve short-duration attacks or

scanning multiple hosts, establishing numerous connec-

tions. In contrast, R2L and U2R attacks are embedded in

the data part of packets and typically only involve a sin-

gle connection. Data statistics are presented in Table 2.

Table 2 Statistics of the NSL-KDD dataset

Data categories Training dataset Test dataset

DoS 45927 7460

Probe 11656 2421

R2L 995 2885

U2R 52 67

Normal 67343 9711

Total 125973 22543

4.3 RCAN dataset

The intrusion detection field currently faces challenges

of insufficient high-quality data, and most intrusion de-

tection methods are primarily validated on public simu-

lated datasets, with their detection capabilities in real

network environments yet to be verified. To address this,

we extracted data from a real civil aviation air traffic

management network spanning a month, and after pro-

cessing, created the RCAN dataset. The original data

comprise a total file size of 206GB, with 80GB dedicated

to Netflow data, and the remainder recording messages

related to POP3, SMTP, and DNS protocols. The Net-

flow data consist of 450,000 records on the first day, and

the daily count reaches millions for the subsequent days,

exceeding 3 million records on the second, third, and

fourth days.

Netflow data are based on sessions, which represent

the interaction process between two terminal applications

[29]. Netflow data do not store raw traffic data, but in-

stead records fields from the packet headers of each ses-

sion, such as packet count and session duration. A ses-

sion is typically defined by a five-tuple (client IP, client

port, server IP, server port, and protocol). There are two

advantages to using sessions for detection: (1) sessions

are suitable for detecting attacks between specific IP

addresses, such as tunneling and Trojan horse attacks; (2)

sessions contain detailed communication between at-

tackers and victims, which aids in locating the source of

the attack.

The data are stored in JSON format as key-value

pairs, with each initial data message having a double-

layered nested structure. The outer layer contains fields

such as file name, file type, ID, and other information

about the data. The inner layer values record the statisti-

cal information of a single session, with a total of 68

fields. These fields provide detailed information about

the session’s status, service type, packet count, etc.,

which is advantageous for the model to learn the features

of sessions and distinguish between different types of

sessions.

4.4 Data Preprocessing

Using One-Hot Encoding for the digitization of categori-

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

8

cal features allows for a more reasonable calculation of

distances between features. StandardScaler is employed

to process the data, ensuring it conforms to a standard

normal distribution with a mean of 0 and a standard de-

viation of 1. Compared to normalization, standardization

better preserves the distances between samples. The

transformation function is given by equation (12), where

 denotes the mean of all sample data, and represents

the standard deviation of all sample data.

x

x




 −
= (13)

The NSL-KDD dataset has 41 features, of which

“protocol_type”, “service”, “flag” and “label” are cate-

gorization variables. There are 3 categories for “proto-

col_type”, 70 categories for “service” and 11 categories

for “flag”. After performing one-hot encoding on these

categorical variables, the data dimensionality increases

from the original 41 dimensions to 122 dimensions. The

dataset has been pre-divided into training and testing sets.

Standardization has been applied separately to ensure the

data conform to a normal distribution. Individual datasets

have been created for the four types of attacks, meaning

each attack dataset contains only instances of that specif-

ic attack without the presence of other attacks.

When analyzing the 68 fields in the JSON file with

double-layer nesting, four types of fields were identified

that cannot be directly analyzed by the model. The first

type of field has values that are all zeros, making these

features meaningless for array calculations in machine

learning. These fields include ‘reliability’,

‘out_conn_type’, ‘l3_protocol’, ‘l7_protocol’, etc. The

second type of field is inherited directly from other types

of data during development, such as ‘level’, ‘target’,

‘sub_attack_type’, ‘attack_type’, etc. These fields are

inherited from security data, which record data detected

by probes and data hit by rules. The recorded data are not

necessarily problematic; it just might be, and some val-

ues are also all zeros. The third type is reserved fields,

such as ‘index1’, ‘index2’, ‘index3’, etc. Reserved fields

have no practical meaning. The fourth type is fields that

record IDs, such as ‘src_ip’, ‘dst_ip’, ‘dev_id’, etc.

These fields record IP addresses and device IDs and can

be used for subsequent anomaly traceback analysis. After

removing the above meaningless fields, 24 fields were

retained for the experiment, as shown in Table 3.

Table 3 Reserved fields used for model analysis

Index Field Type Field Description

1 ‘record_type’ classification Access type

2 ‘rule_major_type’ classification The main rule type

3 ‘rule_minor_type’ classification The secondary rule type

4 ‘src_type’ classification
The group to which the

source belongs

5 ‘dst_type’ classification
The group to which the

destination belongs

6 ‘src_branch_type’ classification Source branch type

7 ‘dst_branch_type’ classification Destination branch type

8 ‘session_state’ classification Session state

9 ‘net_action’ classification Action

10 ‘src_port’ numeric value Source port

11 ‘dst_port’ numeric value Destination port

12 ‘l4_protocol’ classification

The Layer 4 protocol

comes from the RF doc-

ument protocol ID, which

is the same as the proto-

col number in the IP

header

13 ‘rule_id’ classification Rule ID

14 ‘serv_crc’ classification Application type CRC

15 ‘src_country_crc’ classification Source country

16 ‘dst_country_crc’ classification Country of destination

17 ‘src_province_crc’ classification
The province to which

the source belongs

18 ‘dst_province_crc’ classification
The province to which

the destination belongs

19 ‘request_flow’ numeric value Request traffic size

20 ‘response_flow’ numeric value Response traffic size

21 ‘request_pack’ numeric value Request packet size

22 ‘response_pack’ numeric value Response packet size

23 ‘session_time’ numeric value Session time

24 ‘addition_offset’ numeric value Additional offset

In the retained fields, there are 16 categorical fea-

tures and 8 numerical features. RCAN is a dataset com-

posed of values extracted from these 24 fields. The fields

retaining information about the source and destination

countries, as well as the source and destination provinces,

have practical significance in network security analysis.

Moreover, their fixed categories ensure that encoding

them does not lead to the curse of dimensionality. Digi-

talization is performed using one-hot encoding, which,

compared to label encoding, makes distance calculations

between samples more reasonable. Among the 24 fea-

tures in RCAN, 16 are categorical, including “session

status”, “protocol type”, “application type”, etc. The

“session status” includes 6 different categorical variables,

“protocol type” includes 3 different categorical variables,

and “application type” includes 15 different categorical

variables. After digitizing these categorical features, the

dimensionality of the RCAN dataset is expanded to 67.

Finally, standard deviation standardization (Standard-

Scaler) is applied to the data to make it conform to a

standard normal distribution.

4.5 Analysis of NSL-KDD dataset results

In this paper, the LOF algorithm based on the calculation

of sample distance[5], the ABOD algorithm based on the

calculation of sample angle [8], the OCSVM algorithm

based on the calculation boundary [9], the IF algorithm

[10], the SO_GAAL algorithm based on generative ad-

versarial network [11] and the COPOD algorithm [24]

are selected as benchmarks, and the ACOPOD algorithm

IEICE TRANS. ELEC 错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。TRON., VOL.XX-X, NO.X XXXX XXX

9

is compared with the public dataset NSL-KDD. These

six benchmark algorithms are all classic unsupervised

algorithms, which are often used to implement intrusion

detection. In particular, the OCSVM algorithm is a very

popular unsupervised intrusion detection solution. The

effectiveness of the ACOPOD algorithm is validated by

comparing it with these benchmarks on the public NSL-

KDD dataset. Precision, ROC-AUC values, and runtime

are computed for each algorithm on the dataset to assess

the effectiveness of the ACOPOD algorithm.

The precision of the seven algorithms on the NSL-

KDD dataset is shown in Table 4. The numbers in paren-

theses represent the ranking of the algorithm’s detection

accuracy for that attack, with bold font indicating the

highest ranking. “Total” represents the simultaneous de-

tection of all four attacks in the NSL-KDD dataset. Algo-

rithms such as LOF, ABOD, and OCSVM are imple-

mented using the Pyod tool, which automatically selects

the optimal parameters based on input data, eliminating

the need for manually setting algorithm parameters.

ANAE is used to reduce the data from 122 dimensions to

50 dimensions, with a learning rate of 0.01, a batch size

of 64, and 1000 batch training iterations.

From Table 5, it can be observed that for DoS at-

tacks, the ACOPOD algorithm ranks first in precision,

achieving a 2.65% improvement over the second-ranked

ABOD algorithm. For Probe attacks, the ACOPOD algo-

rithm ranks fourth, achieving a precision of 75.18%. For

R2L and U2R attacks, the ACOPOD algorithm ranks

second, indicating that the detection results for these two

types of attacks are suboptimal for all four algorithms,

likely due to the scarcity of anomalous samples. In the

detection of the complete NSL-KDD dataset, the ACO-

POD algorithm achieves a precision of 83.19%, ranking

first and outperforming the second-ranked COPOD algo-

rithm by 4.25%. Overall, the ACOPOD algorithm

demonstrates favorable precision on the NSL-KDD da-

taset. Precision reflects only the detection results

achieved by the algorithm at a specific threshold. To

comprehensively showcase the algorithm’s performance

at different thresholds, ROC curves for ACOPOD on the

four types of attacks in the NSL-KDD dataset are plotted.

From Fig. 6, it can be observed that ACOPOD maintains

high precision across different thresholds for the detec-

tion of all four attacks, demonstrating strong overall per-

formance.

Table 4 Precision of seven algorithms on NSL-KDD dataset

Attack LOF ABOD OCSVM IForest SO_GAAL COPOD ACOPOD

DoS 0.658(5) 0.790(2) 0.584(6) 0.731(4) 0.357(7) 0.777(3) 0.815(1)

Probe 0.212(5) 0.178(7) 0.797(3) 0.866(1) 0.323(5) 0.865(2) 0.752(4)

R2L 0.308(6) 0.444(3) 0.415(4) 0.388(5) 0.181(7) 0.506(1) 0.464(2)

U2R 0.015(2) 0.015(2) 0 0.119(3) 0 0.493(1) 0.015(2)

Total 0.596(7) 0.760(4) 0.779(3) 0.724(5) 0.640(6) 0.789(2) 0.832(1)

Table 5 ROC-AUC values of seven algorithms on NSL-KDD dataset

Attack LOF ABOD OCSVM IForest SO_GAAL COPOD ACOPOD

DoS 0.669(5) 0.834(3) 0.623(6) 0.825(4) 0.432(7) 0.882(2) 0.897(1)

Probe 0.345(7) 0.470(5) 0.967(3) 0.980(2) 0.428(6) 0.983(1) 0.949(4)

R2L 0.483(6) 0.729(4) 0.615(5) 0.731(3) 0.357(7) 0.771(2) 0.839(1)

U2R 0.552(6) 0.745(5) 0.78(4) 0.867(2) 0.858(3) 0.958(1) 0.882(2)

Total 0.529(7) 0.740(5) 0.868(2) 0.744(4) 0.648(6) 0.823(3) 0.894(1)

Table 6 The running time of the seven algorithms on the NSL-KDD dataset

Attack LOF ABOD OCSVM IForest SO_GAAL COPOD ACOPOD

DoS 81 1384 465 37 1594 14 13

Probe 43 517 231 26 1085 10 10

R2L 38 469 206 22 928 8 10

U2R 27 352 158 22 900 7 10

Total 428 1898 5452 37 1644 26 14

10

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

To numerically represent the ROC performance of

ACOPOD and facilitate comparison with benchmark

algorithms, the ROC-AUC values for the seven algo-

rithms on the NSL-KDD dataset are calculated and pre-

sented in Table 5.

From Table 4, it can be observed that for DoS at-

tacks, ACOPOD algorithm ranks first in terms of ROC-

AUC value, with an increase of 0.0147 compared to the

second-ranking algorithm. For Probe attacks, ACOPOD

algorithm ranks fourth, reaching 0.9486. In the case of

R2L attacks, ACOPOD algorithm ranks first, with an

increase of 0.067 compared to the second-ranking algo-

rithm. For U2R attacks, ACOPOD algorithm ranks sec-

ond, reaching 0.8821. In the detection of the entire da-

taset, ACOPOD algorithm ranks first, achieving a ROC-

AUC value of 0.8936, with an increase of 0.0257 com-

pared to the second-ranking OCSVM algorithm. From

the ROC-AUC values, it is evident that ACOPOD exhib-

its superior performance, particularly in the detection of

U2R attacks, providing higher precision with different

threshold settings. Overall, ACOPOD outperforms other

algorithms in terms of ROC-AUC values.

Algorithm runtime is an important evaluation metric

for intrusion detection algorithms, representing the effi-

ciency of the algorithm. An ideal algorithm should ex-

hibit both high precision and low runtime to cope with

the rapidly growing volume of network data. In this re-

gard, this paper provides a summary of the runtime for

each algorithm on the NSL-KDD dataset, as shown in

Table 6. The numerical values in the table are presented

in seconds.

From Table 6, it can be observed that, for the aver-

age runtime across the four types of attacks, ACOPOD

algorithm takes 10.75 seconds, COPOD algorithm takes

9.75 seconds, IForest algorithm takes 26.75 seconds,

LOF algorithm takes 206.25 seconds, ABOD algorithm

takes 798.25 seconds, SO_GAAL algorithm takes

1126.75 seconds, and OCSVM algorithm takes 2544.75

seconds, being the most time-consuming. For the detec-

tion of the complete dataset, ACOPOD algorithm has the

least runtime. Unlike other algorithms that compute the

initial dimensional sample distances, ACOPOD algo-

rithm first reduces the sample dimensionality and then

calculates the probability of a sample being an anomaly.

Reducing the dimensionality of the data can signifi-

cantly decrease the computation time of the algorithm.

After feature extraction, it can be observed that the total

computation time of the ACOPOD algorithm (including

feature extraction time) is shorter than that of not using

the COPOD algorithm. On this dataset, the ACOPOD

algorithm reduces the data from 122 dimensions to 55

dimensions, with 55 dimensions being the optimal value

determined through comparison.

The NSL-KDD dataset is a publicly available simu-

lated dataset. Compared to real network environments, it

has a relatively small data size, only 2GB. Therefore, the

runtime of other unsupervised algorithms is relatively

fast. However, the runtime of the ACOPOD algorithm

differs significantly from other algorithms, and the

ACOPOD algorithm has higher precision and ROC-AUC

scores.

Fig. 6 ROC curves of ACOPOD against four attacks on NSL-KDD

dataset

4.6 Analysis of RCAN dataset results

To further validate the practicality and effectiveness of

the ACOPOD algorithm, it was applied to the unlabeled

RCAN dataset, and the detection results were analyzed

through manual tracing. Approximately 2.3 million rec-

ords from the RCAN dataset were selected for detection,

and ANAE was used to reduce the data from 67 dimen-

sions to 30 dimensions. The learning rate was set to 0.01,

batch size to 128, and the number of batch training itera-

tions to 10,000. The ACOPOD algorithm detected about

230,000 abnormal records. Using Principal Component

Analysis (PCA), the data were further reduced to three

dimensions, as shown in Fig. 7, where blue dots repre-

sent normal samples, and red dots represent detected

abnormal samples.

Fig. 7 3D visualization of anomaly data dataset

From Fig. 7, it can be observed that the data, after

feature extraction, is uniformly distributed, and the de-

tected abnormal samples by the algorithm are located at

the edges of the overall data distribution. These data

were captured from a real network environment without

IEICE TRANS. ELEC 错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。TRON., VOL.XX-X, NO.X XXXX XXX

11

manual labeling. Validating the source messages for all

230,000 abnormal records one by one is a highly time-

consuming task. Therefore, to save time, the analysis

primarily focuses on tracing anomalies at the level of

abnormal IP addresses. This involves exporting the ab-

normal messages associated with a specific IP to a CSV

file, followed by verifying whether they indicate a net-

work attack.

During the data collection process, the intrusion de-

tection system deployed in the network identified some

real network attack events, such as IP scanning, vulnera-

bility exploitation, and worm incidents. The source data

of these actual network attack events, organized by IP,

were extracted to create an anomaly template. During

validation, the CSV file organized by IP was compared

against these anomaly templates, and the authenticity of

abnormal messages was verified by analyzing and com-

paring features such as source port, destination port, and

IP addresses. Since these data were captured in an intra-

net, the host IPs are internal LAN addresses, ensuring the

confidentiality of sensitive information. Fig. 8 illustrates

the top 20 IP addresses with the highest counts of ab-

normal messages detected by the ACOPOD algorithm.

Fig. 8 Abnormal IP address statistics

The following analysis will use several typical IPs

from Fig. 8 as examples to demonstrate how manual ver-

ification is performed. From Fig. 8, it can be observed

that the IP with the highest count of abnormal messages

is “10.12.1.56”. Analyzing its destination ports and des-

tination IPs reveals that this IP exhaustively accesses

common high-risk ports across multiple IP ranges during

fixed time intervals (each scanning period is approxi-

mately two minutes). These ports include 445, 161, 137,

139, among others, which are commonly targeted high-

risk ports for port scanning or network attacks. Hence, it

can be concluded that this IP is engaged in network

scanning behavior. For IPs “10.12.1.195” and

“10.12.1.196”, they establish long-term connections with

external IPs through port 4000. Port 4000 is an open port

for certain communication software. Investigation re-

vealed that the majority of the external IPs belong to

overseas locations. Upon further inquiry, it was con-

firmed that the real network in question does not connect

to the external network, let alone establish connections

with foreign IPs. Therefore, it can be deduced that these

hosts are undergoing a network attack.

It is worth noting that for the IP “10.12.80.87”,

analysis revealed that this IP communicated multiple

times with other hosts using port 8000. Upon inquiry, it

was found that port 8000 is a commonly used port for a

social software. However, in this network, the use of

unnecessary software is not allowed, and there is no con-

nection to the external network. Therefore, the IP does

exhibit anomalous behavior. However, further verifica-

tion indicated that this behavior did not constitute a net-

work attack. This proves that in a real network environ-

ment, anomalous data detected by unsupervised algo-

rithms may not necessarily be indicative of a network

attack. It could also be anomalous behavior deviating

from the norm. In other words, while a network attack is

always an anomalous behavior, not all anomalous behav-

iors are network attacks. Network attacks are a subset of

anomalous behavior.

The network environment utilized in this method is

a real civil aviation network with 1279 active nodes,

from which traffic data were collected over a period of

30 days, totaling 203 gigabytes. This civil aviation net-

work environment is quite common and typical within

the entire civil aviation system. Therefore, this method is

equally applicable to other networks within the civil avi-

ation system, as well as to other similarly sized real-

world networks. False positives are inevitable in unsu-

pervised detection. For this real network, there are sever-

al skilled technicians at the same time to mannually han-

dle false positives.

Thus, ACOPOD is suitable for small and medium-

sized networks with a certain number of skill technicians.

For large-scale networks, supervised intrusion detection

systems should be added to handle false positives, so as

to reduce the workload of manual verification.

Conclusion

This paper proposes a novel unsupervised intrusion de-

tection algorithm. Firstly, it utilizes the simplified struc-

ture of the Adam Non-symmetric Auto-Encoder(ANAE)

to achieve unsupervised feature extraction. This not only

ensures detection accuracy but also enhances operational

efficiency. Subsequently, the algorithm employs the

Probability-based COPOD method to perform anomaly

detection on the low-dimensional data obtained through

feature extraction. Experimental results on the NSL-

KDD public dataset demonstrate that the ACOPOD algo-

rithm achieves favorable precision, high ROC-AUC val-

ues, and overall outperforms benchmark algorithms. Ad-

ditionally, the detection runtime on the complete NSL-

KDD dataset is significantly lower than benchmark algo-

rithms. Experimental verification on the real network’s

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

12

RCAN dataset, through manual validation of the anoma-

lous data detected by ACOPOD, indicates that the meth-

od can effectively detect intrusion behavior in unlabeled

real network data. Finally, traceback analysis of anoma-

lous IPs demonstrates that network attacks are encom-

passed by anomalous behavior, affirming that a network

attack is always anomalous behavior, but anomalous

behavior is not necessarily a network attack.

There are still some issues to be improved in the fu-

ture. As a retrospective algorithm, unsupervised intrusion

detection suffers from lower precision compared to su-

pervised algorithms. For instance, approximately 20% of

DoS attacks are overlooked in the experiments. There-

fore, we will continue to explore methods to enhance the

precision of unsupervised intrusion detection in the fu-

ture work. Additionally, there are plans to apply the

ACOPOD algorithm to detect other network attacks.

Acknowledgements

This work was supported by National Science Founda-

tion of China under Grants U2333201; National Key

R&D Program of China under Grant 2021YFF0603902;

and Civil Aviation Safety Capacity Building Foundation

of China under Grants PESA2022093 and PESA2023101.

References

[1] H. Zhang, X. Zhang, Z. Zhang, and W. Li, “Summary of intru-

sion detection models based on deep learning,” Computer En-

gineering and Applications(in Chinese), vol.58, no.06, pp.17-

28, 2022.

[2] S. Hou, A. Saas, L. Chen, and Y. Ye,“Deep4maldroid: A deep

learning framework for android mal-ware detection based on

linux kernel system call graphs,” Proc. Conf. on Web Intelli-

gence Workshops (WIW), pp.104-111, 2016.

[3] E. Schubert, A. Koos, T. Emrich, A. Züfle, K.A. Schmid, and A.

Zimek, “A framework for clustering uncertain data,” Proceed-

ings of the VLDB Endowment, vol.8, no.12, pp.1976-1979,

2015.

[4] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms

for mining outliers from large data sets,” Proc. Conf. on Man-

agement of data, Dallas, Texas, USA, pp.427-438, May. 2000.

[5] M.M. Breunig, H.-P. Kriegel, R.T. Ng, and J. Sander, “LOF:

identifying density-based local outliers,” Proc. Conf. on Man-

agement of data, Dailas, Texas, USA, pp.93-104, May. 2000.

[6] J. Tang, Z. Chen, A.W.-C. Fu, and D.W Cheung, “Enhancing

effectiveness of outlier detections for low density patterns,”

Proc. Conf. on Knowledge Discovery and Data Mining, Berlin,

Heidelberg, pp.535-548, Jan. 2002.

[7] M. Goldstein and A. Dengel, “Histogram-based Outlier Score

(HBOS): A fast Unsupervised Anomaly Detection Algorithm,”

Proc. Conf. KI-2012: Poster and Demo Track, pp.59-63, Sep.

2012.

[8] H.-P. Kriegel, M. Schubert, and A. Zimek, “Angle-based outli-

er detection in high-dimensional data,” Proc. Conf. on

Knowledge Discovery and Data Mining, Las Vegas, Nevada,

USA, pp.444-452, Aug. 2008.

[9] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-

class support vector machines for unsupervised anomaly detec-

tion,” Proc. Conf. on Outlier Detection Description, Chicago,

Illinois pp.8-15, Aug. 2013.

[10] F. Liu, K. Ting, and Z. Zhou, “Isolation forest,” Proc. Conf. on

Data Ming, Pisa, Italy, pp.413-422, Dec. 2008.

[11] Y. Liu, Z. Li, C. Zhou, Y. Jiang, J. Sun, M. Wang, and X. He,

“Generative adversarial active learning for unsupervised outli-

er detection,” IEEE Transactions on Knowledge and Data En-

gineering, vol.32, no.8, pp.1517-1528, 2020.

[12] X. Wang and L. Wang, “Research on intrusion detection based

on feature extraction of autoencoder and the improved k-means

algorithm,” Proc. Conf. on Computational Intelligence and De-

sign, Hangzhou, China, pp.352-356, Dec. 2017.

[13] Y. Xiao, C. Xing, T. Zhang, and Z. Zhao, “An intrusion detec-

tion model based on feature reduction and convolutional neural

networks,” IEEE Access, vol.7, pp.42210-42219, 2019.

[14] J. Liu and S. Chung, “Automatic feature extraction and selec-

tion for machine learning based intrusion detection,” Proc.

Conf. 2019 IEEE SmartWorld, Ubiquitous Intelligence &

Computing, Advanced & Trusted Computing, Scalable Com-

puting & Communications, Cloud & Big Data Computing, In-

ternet of People and Smart City Innovation, Leicester, UK,

pp.1400-1405, Aug. 2019.

[15] Y.N. Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi, Firdaus,

and Jasmir, “Automatic features extraction using autoencoder

in intrusion detection system,” Proc. Conf. on Electrical Engi-

neering and Computer Science, Pangkal, Indonesia, pp.219-

224, Oct. 2018.

[16] Y. Song, B. Hou, and Z. Cai, “Network intrusion detection

method based on deep learning feature extraction,” Journal of

Huazhong University of Science and Technology(Natural Sci-

ence Edition)(in Chinese) , vol.49, no.02, pp.115-120, 2021.

[17] B.H. Yan, G.D. Han, “Effective feature extraction via stacked

sparse autoencoder to improve intrusion detection system,”

IEEE Access, vol.6, pp.41238-41248, 2018.

[18] R. Yao, C. Liu, L. Zhang, and P. Peng, “Unsupervised anomaly

detection using variational auto-encoder based feature extrac-

tion,” Proc. Conf. on Prognostics and Health Management, San

Francisco, CA, USA, pp.1-7, June. 2019.

[19] S.N Mighan and M. Kahani, “Deep learning based latent fea-

ture extraction for intrusion detection,” Proc. Conf. on Electri-

cal Engineering, Mashhad, Iran, pp.1511-1516, May. 2018.

[20] A. Wang, X. Gong, and J. Lu, “Deep feature extraction in in-

trusion detection system,” Proc. Conf. on Smart Cloud

(SmartCloud), Tokyo, Japan, pp.104-109, Dec. 2019.

[21] N. Shone, T.N Ngoc, V.D. Phai, and Q. Shi, “A deep learning

approach to network intrusion detection,” IEEE Transactions

on Emerging Topics in Computational Intelligence, vol.2, no.1,

pp.41-50, Feb. 2018.

[22] S. Wang, H. Chen, L. Ding, H. Sui, and J.L. Ding, “GAN-SR

anomaly detection model based on imbalanced data,” IEICE

TRANSACTIONS on Information and Systems, vol.E106-D,

no.7, pp.1209-1218, 2023.

[23] D.P. Kingma and J. Ba, “Adam: A method for stochastic opti-

mization,” arXiv preprint arXiv:1412.6980, 2014.

[24] Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu, “COPOD:

copula-based outlier detection,” Proc. Conf. on Data Mining,

Sorrento, Italy, pp.1118-1123, Nov. 2020.

[25] J. Lai, X. Wang, Q. Xiang, Y. Song, and W. Quan, “Review on

autoencoder and its application,” Journal on Communications

(in Chinese) vol.42, no.9, pp.218-230, 2021.

[26] G.E. Hinton and R.R. Salakhutdinov, “Reducing the dimen-

sionality of data with neural networks,” science, vol.313,

no.5786, pp.504-507, 2006.

[27] Y.S. Bengio, P. Lamblin, D. Popovici, and H. Larochelle,

“Greedy layer-wise training of deep networks,” Advances in

neural information processing systems 19, pp.153-160, 2006.

[28] Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python toolbox for

scalable outlier detection,” arXiv preprint arXiv:1901.01588,

IEICE TRANS. ELEC 错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。TRON., VOL.XX-X, NO.X XXXX XXX

13

2019.

[29] H. Liu and B. Lang, “Machine learning and deep learning

methods for intrusion detection systems: A survey,” applied

sciences, vol.9, no.20, pp.4396, 2019.

 Chunbo Liu received the B.S. and M.E.

degrees in Computer Science from Nankai

University, China, in 1999 and 2004, respec-

tively. He is an associate professor in the

Information Security Evaluation Center,

Civil Aviation University of China. His

research interests include cyber security and

intelligent detection.

 Liyin Wang received the B.E. degree in

Software Engineering from Tiangong Uni-

versity, China, in 2019, and the M.E. degree

in Computer Technology from Civil Aviation

University of China in 2022. He is an assis-

tant engineer in the Aeronautical Information

Service Center, ATMB, CAAC. His research

interests include intrusion detection and

machine learning.

 Zhikai Zhang received the B.E. degree in

Transportation from Civil Aviation Universi-

ty of China in 2020. He is currently pursuing

the M.E. degree in Computer Science with

Civil Aviation University of China. His

research interests include log anomaly detec-

tion and natural language processing.

 Chunmiao Xiang received the B.E. degree

in Software Engineering from Chengdu

University of Information Technology, Chi-

na, in 2022. She is currently pursuing the

M.E. degree in Computer Science with Civil

Aviation University of China. Her research

interests include log anomaly detection and

intrusion detection.

 Zhaojun Gu received the M.E. degree in

Computer Science from Harbin Institute of

Technology and D.S. degree in Computer

Science from Nankai University, China, in

1996 and 2004, respectively. He is a profes-

sor in the Information Security Evaluation

Center, Civil Aviation University of China.

His research interests include cyber security

and information systems in civil aviation.

 Shuang Wang received the M.E. degree in

Computer Science from Civil Aviation Uni-

versity of China, in 2013. She is an assistant

researcher in the Civil Aviation University of

China. She is currently pursuing the Ph.D.

degree with Civil Aviation University of

China. Her research interests include compu-

tational intelligence and machine learning,

industrial control system information securi-

ty.

 Zhi Wang received the B.E. degree in

Computer Science from Hebei University of

Technology, China, in 2005, and D.S. degree

in Computer Science from Nankai Universi-

ty, China, in 2012. He is an associate profes-

sor in the School of Cyber Science, Nankai

University. His research interests include

malware analysis and binary reverse engi-

neering.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

