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SUMMARY  Aiming at the problem that large-scale traffic data lack 

labels and take too long for feature extraction in network intrusion 

detection, an unsupervised intrusion detection method ACOPOD based 

on Adam asymmetric autoencoder and COPOD (Copula-Based Outlier 

Detection) algorithm is proposed. This method uses the Adam asym-

metric autoencoder with a reduced structure to extract features from the 

network data and reduce the data dimension. Then, based on the Copula 

function, the joint probability distribution of all features is represented 

by the edge probability of each feature, and then the outliers are detect-

ed. Experiments on the published NSL-KDD dataset with six other 

traditional unsupervised anomaly detection methods show that ACO-

POD achieves higher precision and has obvious advantages in running 

speed. Experiments on the real civil aviation air traffic management 

network dataset further prove that the method can effectively detect 

intrusion behavior in the real network environment, and the results are 

interpretable and helpful for attack source tracing. 

key words: intrusion detection, feature extraction, network traffic, 

asymmetric auto-encoder, Copula function. 

1. Introduction 

A growing variety of network devices and applications 

are being developed in the quickly evolving information 

society to satisfy people’s demands in both their personal 

and professional lives. People’s social activities are get-

ting increasingly intertwined with the online world, and 

internet connection has become an essential component 

of modern life. Although the internet is convenient, it has 

also given bad people opportunities to make money from 

cybercrimes. Attacks on company databases and the dark 

web selling of stolen personal information are common-

place incidents. The 2010 discovery of the Stuxnet virus, 

which was designed to target vital infrastructure, serves 

as more evidence that the hazards associated with 

cyberattacks are already widespread. 

As a preventive defensive method, intrusion detec-

tion has steadily grown in importance as a tool for main-

taining network security [1]. Intrusion Detection System 

(IDS) is a real-time monitoring system installed in a 

network with the purpose of identifying intrusion activity 

and taking appropriate action by examining data pro-

duced by the network. The amount of network data that 

IDS must examine is expanding quickly due to factors 

including fast network transmission, the expansion of the 

Internet of Things (IoT), and the use of technologies like 

cloud computing. Many distinct protocols are used in 

network traffic transmission, and these protocols’ field 

values are frequently categorical variables. The high-

dimensionality and non-linearity of network traffic char-

acteristics result from this. The detection efficiency is 

low and the time and computational expenses are quite 

expensive when directly detecting this high-dimensional 

data. 

Numerous research studies have blended deep 

learning feature extraction approaches with traditional 

machine learning to overcome the aforementioned con-

cerns. To reduce the dimensionality of the data, they em-

ploy deep neural networks to extract important character-

istics from data distributions. The objective of this strat-

egy is to improve the Intrusion Detection System (IDS) 

operating speed and the quality of input features. The 

accuracy of IDS directly depends on the quality of its 

input features. The more effectively the input features 

represent the overall distribution of the data, the more 

accurately IDS can differentiate normal behavior from 

intrusion behavior using these features. In contrast to 

traditional feature selection, feature extraction produces 

new features that are more condensed than the originals. 

Deep learning’s strong hierarchical feature learning abil-

ity can better match traditional machine learning ap-

proaches, particularly when it comes to capturing nonlin-

ear information [2]. The original data are more signifi-

cantly represented by the learned characteristics, which 

facilitate data display and categorization. 

Traditional machine learning techniques are still in 

high demand in the intrusion detection space. Based on 

clustering, the K-Means method [3] separates the data 

into k clusters, with the distance between each cluster’s 

centroid and each data point within the cluster determin-

ing its score. Outliers are defined as data points that are 

distant from the centroid. The k closest neighbors of a 

data point are the focus of the K-Nearest Neighbor 

(KNN) method [4]. The data point is categorized as an 

outlier if the bulk of these neighbors have already been 

labeled as outliers. The density-based Local Outlier Fac-
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tor (LOF) algorithm [5] aims to discover local outliers. It 

calculates the LOF value by comparing the local reacha-

bility density (LRD) of the present data point and its 

neighbors. Points with higher LOF values are considered 

as anomalies. However, in contrast to LOF, the density-

based Connectivity-based Outlier Factor (COF) method 

[6] computes the density of data points differently. This 

is because COF computes connection distances using 

minimal spanning trees while accounting for the rela-

tionships between data points. A statistical method called 

the Histogram-based Outlier Score (HBOS) algorithm 

[7] creates histograms for each independent attribute in a 

given dataset. The product of the reverse height in each 

feature’s column yields the anomalous score for each 

data point. The data are mapped to a high-dimensional 

space using the Angle-Based Outlier Detection (ABOD) 

method [8], which then calculates the anomaly score 

based on the angle discrepancies between the data points 

and other points. To categorize data points, the One-

Class Support Vector Machine (OCSVM) [9] uses the 

data to learn a decision boundary. Data points are created 

as nodes in isolation trees using the Isolation Forest (IF) 

method [10], which assumes that anomalies are uncom-

mon occurrences with feature values that deviate notice-

ably from anticipated data points. Furthermore, intrusion 

detection has made use of the Single-Objective Genera-

tive Adversarial Active Learning (SO_GAAL) method 

[11], which is based on generative adversarial networks. 

There are various methods for feature extraction us-

ing deep learning, including Auto-Encoder(AE) ap-

proaches [12]-[15], enhanced Auto-Encoder approach-

es[16]-[19], Long Short-Term Memory (LSTM) net-

works [20], Stacked Non-symmetric Deep Autoencoder 

(SNDAE) [21]-[22], and more. Wang et al. [12] proposed 

Auto-Encoder (AE) to do dimensionality reduction and 

feature extraction on the original data. They used an im-

proved K-means technique to further categorize the pro-

duced data. Xiao et al. [13] decreased the dimensionality 

of the data by using Principal Component Analysis 

(PCA) and AE. The reduced data were then format-ted 

into pictures. They trained a Convolutional Neural Net-

work (CNN) to deliver the optimal attributes using the 

transformed pictures. Liu et al. [14] first employed AE 

with two consecutive hidden layers to extract features. 

After that, they selected features using Random Forest 

(RF) and Support Vector Machines (SVM). Kunang et al. 

[15] used AE for feature extraction and SVM as the clas-

sifier. 

Furthermore, the use of improved Auto-Encoder 

(AE) for feature extraction has been extensively studied. 

Song Yong et al. [16] employed an enhanced Sparse Au-

to-Encoder to extract features in an intelligent and adapt-

able manner. Yan et al. [17] used Stacked Sparse Auto-

Encoder (SSAE) to extract high-level feature representa-

tions of invasion activities. These low-dimensional 

sparse characteristics were used to construct several 

foundation classifiers. Yao et al. [18] used algorithms 

like KNN for anomaly detection and the Variational Au-

toencoder (VAE) to extract useful features for unsuper-

vised anomaly detection applications. Meghan et al. [19] 

used support vector machines (SVM) for classification 

and sparse auto-encoder (SAE) to extract high-level fea-

ture representations. Furthermore, Wang et al. [20] pro-

posed two deep feature extraction strategies based on 

Long Short-Term Memory (LSTM) networks to extract 

significant features from the data. 

Shone et al.’s [21] Stacked Non-symmetric Deep 

Auto-encoder (SNDAE) is a notable approach in current 

research on feature extraction using deep learning. 

SNDAE combines the efficiency of Auto-Encoder (AE) 

with the benefits of layered learning seen in Stacked Au-

to-Encoder (SAE). SNDAE has higher unsupervised 

layered feature learning capabilities as compared to sim-

ple AE. SNDAE, unlike SAE, delivers significant data 

representations without the need for layer wise greedy 

training approaches. It also provides faster training times 

and more efficient feature extraction. Wang et al. [22] 

initially employed Generative Adversarial Networks 

(GAN) to oversample the dataset. Subsequently, they 

established a RF for intrusion detection using features 

extracted by SNDAE. 

Nonetheless, there are still gaps in the existing study. 

Firstly, the current techniques that use deep neural net-

works for feature extraction still need a lengthy training 

period, even after several optimizations. Secondly, the 

curse of dimensionality refers to the fast rise in the 

runtime of traditional unsupervised anomaly detection 

algorithms when working with high-dimensional data. 

To address the aforementioned issues, we presents 

the Adam Non-symmetric Auto-Encoder (ANAE) for 

feature extraction and suggests a modification to the 

Stacked Non-symmetric Deep Auto-Encoder (SNDAE) 

based on the Adam optimization approach [23]. During 

training, this algorithm facilitates a faster convergence of 

the loss score to the ideal value and boasts a more 

streamlined network structure. This reduces the training 

time of the algorithm, and the extracted ideal features 

contribute to enhancing the model’s detection accuracy. 

COPOD obtained the highest ROC-AUC score among 

mainstream unsupervised anomaly detection algorithms 

[24]. Therefore, this paper decided to integrate ANAE 

feature extraction technique with the COPOD algorithm 

based on the probability copula function. Through this 

integration, an effective fusion of feature extraction 

technique and unsupervised intrusion detection technique 

was achieved, thus enabling efficient unsupervised intru-

sion detection. Its effectiveness is validated on the pub-

licly available NSL-KDD dataset and then applied to a 

real civil aviation air traffic management network envi-

ronment. 
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2. Preliminaries 

2.1 Auto-encoder 

An unsupervised feature learning technique based on 

neural networks called Auto-Encoder (AE) [25] aims to 

produce output data x that closely resemble the input data

x̂ . It is frequently applied to feature extraction and data 

dimensionality reduction. Three layers make up a basic 

AE: an input layer, an output layer, and a hidden layer. 

Fig. 1 shows an illustration of AE. 

Data from high-dimensional to low-dimensional 

hidden layers are first encoded by AE using encoder

( )f x . The low-dimensional data are then rebuilt by de-

coder ( )d x from the hidden layer, yielding the recon-

structed data x̂ . These data are then compared to the in-

put x to determine the reconstruction loss ( )( )( ),L x d f x . 

Ultimately, backpropagation is used to update the net-

work. In order to enable the decoder to more precisely 

rebuild using these newly acquired features, AE aims to 

learn features that more substantially represent the data 

distribution during the encoding phase, when data are 

decreased in dimensionality. 

Input layer

x

Hidden layer

Output Layer

x̂c

Encoder Decoder

 
Fig. 1  Auto-encoder 

Input layer

x

Hidden layer1

Output layer

x̂1c

Encoder Encoder

Hidden layer2

2c

Hidden layer3

3c

Decoder Decoder

 
Fig. 2  Stacked Auto-encoder 

A Deep Auto-Encoder (DAE) is composed of many 

layers of encoding and decoding. Hinton and colleagues’ 

work [26] has shown that employing DAE for feature 

extraction produces lower-dimensional data with en-

hanced discriminative powers, making it possible to dif-

ferentiate previously indivisible data. The Stacked Auto-

Encoder (SAE) is a common kind of DAE [27]. The lay-

er-wise greedy training technique is used by SAE, in 

which all previous layers’ parameters are while a particu-

lar layer is being trained. This technique is performed 

iteratively to the next layer until the entire network is 

trained, once each layer’s training is finished. Fig. 2 is an 

illustration of a basic SAE. 

Fig. 2 depicts a 5-layer neural network consisting of 

two symmetrical encoding and decoding stages. The cen-

tral layer, referred to as the hidden layer 2 or the encod-

ing layer, contains data known as encodings (Code). 

These encodings represent data that have undergone di-

mension reduction and is more discriminative, making 

them suitable for classification and visualization. The 

features to be extracted are the encodings located in the 

central hidden layer. 

2.2 Copula and COPOD 

The Copula function is a probabilistic statistical function 

used to effectively model the dependencies between mul-

tiple random variables. For any d-dimensional random 

variables with a joint distribution ( )1, , dF x x and mar-

ginal distributions 1, , dF F , there exists a Copula func-

tion ( ) ( ) ( )( )1 1 , , d dF x C F x F x= . Using the Copula 

function, the joint distribution of a multivariate random 

variable can be represented as a function of each of its 

marginal distributions. 

COPOD (Copula-Based Outlier Detection) algo-

rithm is a probability-based anomaly detection method. It 

generates an empirical Copula function by calculating 

the Empirical Cumulative Distribution Functions 

(ECDF) of the data and estimates the approximate tail 

probability for each point using this empirical Copula 

function. For each sample point ix , the goal of COPOD 

is to calculate the probability of observing a point as ex-

treme as ix . 

Assuming sample point ix follows a certain d-

dimensional distribution function XF . COPOD calculates 

the sample probability ( ) ( )X i iF x P X x=  and

( ) ( )1 X i iF x P X x− =  . If ix is an outlier, it won’t ap-

pear frequently, and the probability of observing a point 

as extreme as ix will be very low. Therefore, if ( )X iF x or

( )1 X iF x− is particularly small, it indicates that the point 

rarely appears, meaning it is an outlier. COPOD refers to

( )X iF x as the left tail probability of ix and ( )1 X iF x− as 

the right tail probability of ix . If either of these quantities 

is very small, it means that the point has a very small tail 

probability. 

3. ACOPOD anomaly detection algorithm 

We provide a novel model framework that combines 

traditional machine learning anomaly detection methods 

with the effective unsupervised feature extraction meth-

odology, ANAE. The core idea is that neural networks 
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capture the most significant distribution of data during 

the dimensionality reduction process, which improves 

the difference between various sample types and makes 

the data in their hidden layers more distinctive. Therefore, 

conducting intrusion detection on the data from the hid-

den layers becomes more effective. 

COPOD achieved the highest score among existing 

unsupervised anomaly detection algorithms [24]. Addi-

tionally, we compared six unsupervised detection algo-

rithms, including COPOD, on an intrusion detection da-

taset, and found COPOD achieving the most ideal score. 

Therefore, we determine to combine the ANAE feature 

extraction technique with the COPOD algorithm based 

on the probability copula function. We name this model 

ACOPOD (ANAE and Copula-Based Outlier Detection), 

and its overall framework is depicted in Fig. 3. 

We start by pre-processing the network traffic data, 

digitizing it using one-hot encoding, and then standardiz-

ing the data to conform to a standard normal distribution. 

The pre-processed data are divided into a training dataset 

and a test dataset. The training dataset is used to train 

ANAE, employing Minibatch batch training and back-

propagation to obtain the optimal weights for ANAE. 

Subsequently, the trained ANAE is used to extract fea-

tures from the test set’s data, extracting it in one go for 

the entire test dataset, and this extraction is performed 

twice. Finally, COPOD is employed to classify the data 

after feature extraction, thereby detecting intrusion be-

havior. 

Network Traffic

Data Preprocessing

Digitization

Standardization

Training Dataset

Model Training

Batch Training

Backward 

Propagation

Test Dataset

Feature Extraction

Secondary 

Extraction

Overall Extraction

ANAE

Low Dimensional 

Features

Intrusion Detection

COPOD 

Algorithm

Intrusion Behavior

Computational 

Experience Copula

 
Fig. 3  ACOPOD Model Framework 

3.1 Adam-Based Nonsymmetric Autoencoder 

When using the Deep Auto-encoder (DAE) [27] for fea-

ture extraction, the focus is mainly on the encoder, while 

the decoder is primarily utilized during training to recon-

struct the hidden layer data for computing the reconstruc-

tion loss. Once the network is trained, only the encoding 

operation is executed for feature extraction. In this con-

text, the performance of the encoder is more critical for 

feature extraction than the decoder. Furthermore, the 

objective of training a neural network is to learn the 

maximum knowledge with the fewest neurons, and a 

streamlined neural network structure can save training 

time. Therefore, this paper proposes an Adam-based 

Nonsymmetric Autoencoder (ANAE) that emphasizes 

the encoder. 

Input Layer

x

Hidden Layer1

Output Layer

x̂

Encoder Decoder

Hidden Layer2

Encoder

1h
2h

 
Fig. 4  Adam-based nonsymmetric Autoencoder(ANAE) 

Fig. 4 shows an illustration of ANAE. It uses two 

hidden layers to perform encoding tasks. In contrast to 

symmetric autoencoders, which rebuild data layer by 

layer through decoding, ANAE computes the reconstruc-

tion loss by performing decoding operations on the hid-

den layer data just once. This is because the asymmetry 

in the number of encoding and decoding layers allows 

the neural network to extract optimum features as long as 

the loss function converges to an ideal value during train-

ing. After comparison, it was found that two hidden lay-

ers are sufficient to meet the requirement for extracting 

significant features, and increasing the number of layers 

would lead to an increase in feature extraction time. 

The Adam optimization algorithm was used during 

network training. The Adam optimization algorithm [23] 

is currently a popular neural network optimization meth-

od that combines the advantages of the Adaptive Gradi-

ent Algorithm (AdaGrad) and Root Mean Square Propa-

gation (RMSProp). Compared to other optimization al-

gorithms, it converges faster, requires relatively lower 

memory, and can adapt to large-scale datasets. 

ANAE uses equation (1) to gradually map the input 

vector
dx R to the hidden layer id

ih R , where i refers 

to the i-th layer of the network, and d represents the vec-

tor’s dimension. 

 ( )1i i i ih W h b −=  +  (1) 

In this context, whereW and b represent weight and 
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bias, the Sigmoid function ( )
( )

1

1 t
t

e


−
=

+
 is used as 

the activation function. During training, it is sufficient to 

use equation (2) to reconstruct the hidden layer data and 

generate the output x̂ : 

 ( )ˆ
lastx h bW  = +  (2) 

Where W  and b are the parameters of the decod-

ing layer, and lasth is the encoding generated by the last 

encoding layer. Equation (3) represents the loss function, 

and the purpose of training is to minimize the loss scores 

for m samples. 

 ( )
2

1

ˆ( )
m

i i

i

L x x
=

= −  (3) 

The parameter ( ),i iW b = . 

Input

Hidden Layer1

Hidden Layer2

ANAE1

Hidden Layer1

Hidden Layer2

COPOD

ANAE2

x
1h

2h 1h
2h

 
Fig. 5  The network architecture of the ANAE model 

As mentioned earlier, we employ a two-stage fea-

ture extraction to enhance the effectiveness of feature 

learning. Two-stage feature extraction involves stacking 

two ANAEs. After using the first ANAE for feature ex-

traction, the extracted data are passed on to the next 

ANAE for further feature extraction. This is done to cre-

ate a deep learning hierarchical structure for hierarchical 

unsupervised feature learning, aiming to capture the non-

linear and complex relationships between different fea-

tures. The second round of feature extraction optimizes 

the data extracted in the first round, making the extracted 

data more prominent. The ANAE network structure is 

shown in Fig. 5. 

The following provides a brief overview of the exe-

cution process of the Adam optimizer. Firstly, the param-

eter θ is updated using equation (4): 

 

( )
1

ˆ

ˆ

t

t t

t

m

v
  


−= − 

+
 (4) 

Where  represents the learning rate, t keeps 

track of the steps in parameter updates, and  is a very 

small number to prevent division by zero. By compu-

ting the exponentially weighted average of gradients, 

denoted as tm , and the exponentially weighted average 

of squared gradients, denoted as tv , it is possible to 

estimate the local mean of the parameters. Parameter 

updates are influenced by their past values over a cer-

tain time period. 

 1 1 1(1 )t t tm m g −=  + −   (5) 

 
12 2

2(1 )t t tv v g −=  + −   (6) 

In equations (5) and (6),  )1 2, 0,1   are prede-

fined hyperparameters that control the weighting of his-

torical information. tg represents the gradient of parame-

ter θ at time step t , calculated as ( )1t tL  − . 2
tg is the 

element-wise squared gradient. In equation (4), and are 

bias-corrected versions of tm and tv , obtained from equa-

tions (7) and (8). 

 
( )1

ˆ
1

t

t t

m
m


=

−
 (7) 

 
( )2

ˆ
1

t

t t

v
v


=

−
 (8) 

Where 1
t and 2

t represent the t-th power of 1

and 2 , respectively. 

 

Algorithm 1 ACOPOD Anomaly Detection Algorithm 

Input: n  data samples rX , each with r  dimensions, af-

ter data preprocessing. 

Output: Anomaly score ( )O X . 

1：Train the encoder ( )f x : ( )1. ; 1,i i i ih W h b i n −= + =  

2：Train the decoder ( )d x : ( )1 1
ˆ .n i nx W h b + += +  

3：Update the parameters: 
( )

1

ˆ

ˆ

t
t t

t

m

v
  


−= − 

+
 

4：Feature extraction: ( )d rX f X=   

5：FOR each dimension 𝑑 DO  

6：   calculate the left-tail ECDF ( ) ( )
1

1ˆ n

d iF x I X x
n

=   

7：   calculate the right-tail ECDF: ( ) ( )
1

1ˆ n

d iF x I X x
n

= −  −  

8：   calculate the sample skewness db  according to formula 

(10) 

9： END FOR 

10：FOR 1 n，  DO 

11：      calculate the empirical copula observations 

12：      ( ),
ˆ ˆ
d i d iU F x=  

13：      ( ),

ˆˆ
d i d iV F x=  
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14：     IF 0db  ： , ,
ˆ ˆ
d i d iB U=  

15：     else , ,
ˆ ˆ=d i d iB V  

16：      calculate the tail probability of 

17：      ( ),1

ˆlog
d

l j ij
p U

=
= −  

18：      ( ),1

ˆlog
d

r j ij
p V

=
= −  

19：      ( ),1

ˆlog
d

s j ij
p B

=
= −  

20：      anomaly score ( )  max , ,i l r sO x p p p=  

21： END FOR 

22： RETURN ( ) ( ) ( )1 ,
T

dO X O x O x=     

3.2 Anomaly detection combining ANAE and COPOD. 

When using traditional unsupervised anomaly detection 

methods like LOF and ABOD, the runtime of these 

methods increases rapidly as the data dimensionality 

grows. This situation is referred to as the “curse of di-

mensionality”. Network data, which include categorical 

variables such as protocols and operational states, can 

result in high data dimensionality after one-hot encoding. 

Using LOF, ABOD, and similar methods for detection on 

such data can undoubtedly lead to the curse of dimen-

sionality. To address this problem, this paper introduces 

the ACOPOD (ANAE and Copula-Based Outlier Detec-

tion) anomaly detection algorithm. Since the extracted 

features are low-dimensional and significant, with only 

dimensionality changing compared to the original data, 

ANAE could be well compatible with other intrusion 

detection algorithms. This method incorporates the 

ANAE feature extraction technique to reduce the dimen-

sionality of the data through two-stage feature extraction. 

The features extracted by ANAE are more prominent and 

assist the model in distinguishing between normal and 

anomalous samples, thus improving detection accuracy. 

After experimental comparisons, the probability-based 

COPOD method [24] is chosen for anomaly detection on 

the feature-extracted data. 

The input to the ACOPOD algorithm consists of 

preprocessed data, represented as n samples of r-

dimensional data ( )1, 2, ,, , , , 1, ,r i i r iX X X X i n=  =  . 

The output is an anomaly score

( ) ( ) ( )1 ,
T

dO X O x O x =   , where the range of 

anomaly scores is ( )0, . Anomaly scores do not repre-

sent the probability of iX being an anomaly but rather a 

relative measure of its likelihood of being an anomaly 

compared to other points in the dataset. In other words, 

the larger the ( )iO X , the more likely ix is an anomaly. 

ACOPOD first utilizes the input rX to train the ANAE 

network and then employs the trained ANAE network to 

perform feature extraction on these data. 

For the extracted d-dimensional data dX , ACOPOD 

first uses equation (9) to fit the left-tail ECDF for each 

dimension, ( ) ( )1
ˆ ˆ, , dF x F x . Then, it replaces X with

X− and fits the right-tail ECDF for each dimension, 

( ) ( )1

ˆ ˆ
, , dF x F x . 

 ( ) (( ) ( )
1

1ˆ ,
n

i

i

F x P x I X x
n =

= − =   (9) 

Using equation (10), calculate the skewness of the 

sample distribution, denoted as 1, , db b b=   . The pur-

pose is to determine whether the distribution leans to the 

left or to the right, and the algorithm pays more attention 

to the tail end towards which the distribution leans. 

 

3

1

3

2

1

1
( )

1
( )

1

n

i ii

i

n

i ii

x x
nb

x x
n

−

=

−

=

−

=

−
−





 (10) 

Using equation (11), insert each jx into the corre-

sponding ECDF to calculate the empirical Copula obser-

vations for each iX . 

( ) ( ) ( )( )1, , 1 1, ,
ˆ ˆ ˆ ˆ, , , ,i d i i d d iU U F X F X=  (11) 

This results in left-tail empirical Copula observa-

tions ( ),
ˆ ˆ

d i d iU F x= and right-tail empirical Copula ob-

servations ( ),

ˆˆ
d i d iV F x= . Then, calculate the skewness-

corrected empirical Copula observations. If 0db  ,

, ,
ˆ ˆ

d i d iB U= ,otherwise, , ,
ˆ ˆ

d i d iB V= . 

Finally, using the empirical Copula observations, 

calculate the tail probability of iX . The negative loga-

rithm of the generated probabilities from the left-tail em-

pirical Copula, right-tail empirical Copula, and skew-

ness-corrected empirical Copula is computed, and the 

maximum value is used as the anomaly score. The small-

er the tail probability, the larger its negative logarithm. A 

point is considered an anomaly if it has a low left-tail 

probability, a low right-tail probability, or a low skew-

ness-corrected tail probability. 

4. Experiments and Results Analysis 

Six traditional anomaly detection algorithms were select-

ed for comparative experiments, and the experiments 

were conducted using the open-source Python toolbox 

Pyod [28]. The experimental setup included an Intel(R) 

Xeon(R) Silver 4210R CPU @ 2.40GHz with a 20-core 

processor and 128GB of RAM. Precision and the area 

under the receiver operating characteristic curve (ROC-
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AUC) were chosen as evaluation metrics. The experi-

mental datasets included the publicly available NSL-

KDD dataset [10] and the RCAN (Real Civil Aviation 

Network) dataset generated from a real civil aviation 

network environment. 

4.1 Evaluation metrics 

Using precision based on the confusion matrix and ROC-

AUC as evaluation metrics. The definition of the confu-

sion matrix is provided in Table 1. 

Table 1  Confusion matrix definition 

Sample Class 
Prediction 

Normal Attack 

Reference 
Normal TN FP 

Attack FN TP 

Precision is the proportion of correctly predicted 

samples as attacks out of all samples predicted as attacks. 

A high precision implies that the model produces fewer 

false alarms. 

 
TP

Precision
TP FP

=
+

 (12) 

The ROC curve has the false positive rate (FPR) on 

the horizontal axis and the true positive rate (TPR) on the 

vertical axis. The closer the ROC curve is to the top-left 

corner, the more accurate the model is. The ROC-AUC 

value, which is the area under the ROC curve, effectively 

reflects the detection accuracy of unsupervised algo-

rithms at different thresholds. It is a strong indicator of 

the algorithm’s stability, with a maximum value of 1. A 

higher score indicates better algorithm accuracy. 

4.2 NSL-KDD dataset 

The NSL-KDD dataset consists of network traffic data. 

Network traffic data comprise data packets organized in 

time intervals and are one of the most widely used data 

sources for Intrusion Detection Systems (IDS) [10]. This 

dataset is a benchmark dataset released by the Canadian 

Institute for Cybersecurity. Many research studies have 

validated their findings on this dataset, which is highly 

authoritative, making experimental results on this dataset 

more convincing. 

The NSL-KDD [27] dataset addresses issues such 

as data redundancy in the original KDD dataset, making 

it an optimized version. There are a total of 125,973 

training records and 22,543 testing records. The dataset 

includes four types of attacks: Denial of Service (DoS), 

Probe, User to Root (U2R), and Remote to Local (R2L). 

DoS and Probe attacks involve short-duration attacks or 

scanning multiple hosts, establishing numerous connec-

tions. In contrast, R2L and U2R attacks are embedded in 

the data part of packets and typically only involve a sin-

gle connection. Data statistics are presented in Table 2. 

Table 2  Statistics of the NSL-KDD dataset 

Data categories Training dataset Test dataset 

DoS 45927 7460 

Probe 11656 2421 

R2L 995 2885 

U2R 52 67 

Normal 67343 9711 

Total 125973 22543 

4.3 RCAN dataset 

The intrusion detection field currently faces challenges 

of insufficient high-quality data, and most intrusion de-

tection methods are primarily validated on public simu-

lated datasets, with their detection capabilities in real 

network environments yet to be verified. To address this, 

we extracted data from a real civil aviation air traffic 

management network spanning a month, and after pro-

cessing, created the RCAN dataset. The original data 

comprise a total file size of 206GB, with 80GB dedicated 

to Netflow data, and the remainder recording messages 

related to POP3, SMTP, and DNS protocols. The Net-

flow data consist of 450,000 records on the first day, and 

the daily count reaches millions for the subsequent days, 

exceeding 3 million records on the second, third, and 

fourth days. 

Netflow data are based on sessions, which represent 

the interaction process between two terminal applications 

[29]. Netflow data do not store raw traffic data, but in-

stead records fields from the packet headers of each ses-

sion, such as packet count and session duration. A ses-

sion is typically defined by a five-tuple (client IP, client 

port, server IP, server port, and protocol). There are two 

advantages to using sessions for detection: (1) sessions 

are suitable for detecting attacks between specific IP 

addresses, such as tunneling and Trojan horse attacks; (2) 

sessions contain detailed communication between at-

tackers and victims, which aids in locating the source of 

the attack. 

The data are stored in JSON format as key-value 

pairs, with each initial data message having a double-

layered nested structure. The outer layer contains fields 

such as file name, file type, ID, and other information 

about the data. The inner layer values record the statisti-

cal information of a single session, with a total of 68 

fields. These fields provide detailed information about 

the session’s status, service type, packet count, etc., 

which is advantageous for the model to learn the features 

of sessions and distinguish between different types of 

sessions. 

4.4 Data Preprocessing 

Using One-Hot Encoding for the digitization of categori-
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cal features allows for a more reasonable calculation of 

distances between features. StandardScaler is employed 

to process the data, ensuring it conforms to a standard 

normal distribution with a mean of 0 and a standard de-

viation of 1. Compared to normalization, standardization 

better preserves the distances between samples. The 

transformation function is given by equation (12), where

 denotes the mean of all sample data, and represents 

the standard deviation of all sample data. 

 
x

x




 −
=  (13) 

The NSL-KDD dataset has 41 features, of which 

“protocol_type”, “service”, “flag” and “label” are cate-

gorization variables. There are 3 categories for “proto-

col_type”, 70 categories for “service” and 11 categories 

for “flag”. After performing one-hot encoding on these 

categorical variables, the data dimensionality increases 

from the original 41 dimensions to 122 dimensions. The 

dataset has been pre-divided into training and testing sets. 

Standardization has been applied separately to ensure the 

data conform to a normal distribution. Individual datasets 

have been created for the four types of attacks, meaning 

each attack dataset contains only instances of that specif-

ic attack without the presence of other attacks. 

When analyzing the 68 fields in the JSON file with 

double-layer nesting, four types of fields were identified 

that cannot be directly analyzed by the model. The first 

type of field has values that are all zeros, making these 

features meaningless for array calculations in machine 

learning. These fields include ‘reliability’, 

‘out_conn_type’, ‘l3_protocol’, ‘l7_protocol’, etc. The 

second type of field is inherited directly from other types 

of data during development, such as ‘level’, ‘target’, 

‘sub_attack_type’, ‘attack_type’, etc. These fields are 

inherited from security data, which record data detected 

by probes and data hit by rules. The recorded data are not 

necessarily problematic; it just might be, and some val-

ues are also all zeros. The third type is reserved fields, 

such as ‘index1’, ‘index2’, ‘index3’, etc. Reserved fields 

have no practical meaning. The fourth type is fields that 

record IDs, such as ‘src_ip’, ‘dst_ip’, ‘dev_id’, etc. 

These fields record IP addresses and device IDs and can 

be used for subsequent anomaly traceback analysis. After 

removing the above meaningless fields, 24 fields were 

retained for the experiment, as shown in Table 3. 

Table 3  Reserved fields used for model analysis 

Index Field Type Field Description 

1 ‘record_type’ classification Access type 

2 ‘rule_major_type’ classification The main rule type 

3 ‘rule_minor_type’ classification The secondary rule type 

4 ‘src_type’ classification 
The group to which the 

source belongs 

5 ‘dst_type’ classification 
The group to which the 

destination belongs 

6 ‘src_branch_type’ classification Source branch type 

7 ‘dst_branch_type’ classification Destination branch type 

8 ‘session_state’ classification Session state 

9 ‘net_action’ classification Action 

10 ‘src_port’ numeric value Source port 

11 ‘dst_port’ numeric value Destination port 

12 ‘l4_protocol’ classification 

The Layer 4 protocol 

comes from the RF doc-

ument protocol ID, which 

is the same as the proto-

col number in the IP 

header 

13 ‘rule_id’ classification Rule ID 

14 ‘serv_crc’ classification Application type CRC 

15 ‘src_country_crc’ classification Source country 

16 ‘dst_country_crc’ classification Country of destination 

17 ‘src_province_crc’ classification 
The province to which 

the source belongs 

18 ‘dst_province_crc’ classification 
The province to which 

the destination belongs 

19 ‘request_flow’ numeric value Request traffic size 

20 ‘response_flow’ numeric value Response traffic size 

21 ‘request_pack’ numeric value Request packet size 

22 ‘response_pack’ numeric value Response packet size 

23 ‘session_time’ numeric value Session time 

24 ‘addition_offset’ numeric value Additional offset 

In the retained fields, there are 16 categorical fea-

tures and 8 numerical features. RCAN is a dataset com-

posed of values extracted from these 24 fields. The fields 

retaining information about the source and destination 

countries, as well as the source and destination provinces, 

have practical significance in network security analysis. 

Moreover, their fixed categories ensure that encoding 

them does not lead to the curse of dimensionality. Digi-

talization is performed using one-hot encoding, which, 

compared to label encoding, makes distance calculations 

between samples more reasonable. Among the 24 fea-

tures in RCAN, 16 are categorical, including “session 

status”, “protocol type”, “application type”, etc. The 

“session status” includes 6 different categorical variables, 

“protocol type” includes 3 different categorical variables, 

and “application type” includes 15 different categorical 

variables. After digitizing these categorical features, the 

dimensionality of the RCAN dataset is expanded to 67. 

Finally, standard deviation standardization (Standard-

Scaler) is applied to the data to make it conform to a 

standard normal distribution. 

4.5 Analysis of NSL-KDD dataset results 

In this paper, the LOF algorithm based on the calculation 

of sample distance[5], the ABOD algorithm based on the 

calculation of sample angle [8], the OCSVM algorithm 

based on the calculation boundary [9], the IF algorithm 

[10], the SO_GAAL algorithm based on generative ad-

versarial network [11] and the COPOD algorithm [24] 

are selected as benchmarks, and the ACOPOD algorithm 
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is compared with the public dataset NSL-KDD. These 

six benchmark algorithms are all classic unsupervised 

algorithms, which are often used to implement intrusion 

detection. In particular, the OCSVM algorithm is a very 

popular unsupervised intrusion detection solution. The 

effectiveness of the ACOPOD algorithm is validated by 

comparing it with these benchmarks on the public NSL-

KDD dataset. Precision, ROC-AUC values, and runtime 

are computed for each algorithm on the dataset to assess 

the effectiveness of the ACOPOD algorithm. 

The precision of the seven algorithms on the NSL-

KDD dataset is shown in Table 4. The numbers in paren-

theses represent the ranking of the algorithm’s detection 

accuracy for that attack, with bold font indicating the 

highest ranking. “Total” represents the simultaneous de-

tection of all four attacks in the NSL-KDD dataset. Algo-

rithms such as LOF, ABOD, and OCSVM are imple-

mented using the Pyod tool, which automatically selects 

the optimal parameters based on input data, eliminating 

the need for manually setting algorithm parameters. 

ANAE is used to reduce the data from 122 dimensions to 

50 dimensions, with a learning rate of 0.01, a batch size 

of 64, and 1000 batch training iterations. 

From Table 5, it can be observed that for DoS at-

tacks, the ACOPOD algorithm ranks first in precision, 

achieving a 2.65% improvement over the second-ranked 

ABOD algorithm. For Probe attacks, the ACOPOD algo-

rithm ranks fourth, achieving a precision of 75.18%. For 

R2L and U2R attacks, the ACOPOD algorithm ranks 

second, indicating that the detection results for these two 

types of attacks are suboptimal for all four algorithms, 

likely due to the scarcity of anomalous samples. In the 

detection of the complete NSL-KDD dataset, the ACO-

POD algorithm achieves a precision of 83.19%, ranking 

first and outperforming the second-ranked COPOD algo-

rithm by 4.25%. Overall, the ACOPOD algorithm 

demonstrates favorable precision on the NSL-KDD da-

taset. Precision reflects only the detection results 

achieved by the algorithm at a specific threshold. To 

comprehensively showcase the algorithm’s performance 

at different thresholds, ROC curves for ACOPOD on the 

four types of attacks in the NSL-KDD dataset are plotted. 

From Fig. 6, it can be observed that ACOPOD maintains 

high precision across different thresholds for the detec-

tion of all four attacks, demonstrating strong overall per-

formance. 

Table 4  Precision of seven algorithms on NSL-KDD dataset 

Attack LOF ABOD OCSVM IForest SO_GAAL COPOD ACOPOD 

DoS 0.658(5) 0.790(2) 0.584(6) 0.731(4) 0.357(7) 0.777(3) 0.815(1) 

Probe 0.212(5) 0.178(7) 0.797(3) 0.866(1) 0.323(5) 0.865(2) 0.752(4) 

R2L 0.308(6) 0.444(3) 0.415(4) 0.388(5) 0.181(7) 0.506(1) 0.464(2) 

U2R 0.015(2) 0.015(2) 0 0.119(3) 0 0.493(1) 0.015(2) 

Total 0.596(7) 0.760(4) 0.779(3) 0.724(5) 0.640(6) 0.789(2) 0.832(1) 

Table 5  ROC-AUC values of seven algorithms on NSL-KDD dataset 

Attack LOF ABOD OCSVM IForest SO_GAAL COPOD ACOPOD 

DoS 0.669(5) 0.834(3) 0.623(6) 0.825(4) 0.432(7) 0.882(2) 0.897(1) 

Probe 0.345(7) 0.470(5) 0.967(3) 0.980(2) 0.428(6) 0.983(1) 0.949(4) 

R2L 0.483(6) 0.729(4) 0.615(5) 0.731(3) 0.357(7) 0.771(2) 0.839(1) 

U2R 0.552(6) 0.745(5) 0.78(4) 0.867(2) 0.858(3) 0.958(1) 0.882(2) 

Total 0.529(7) 0.740(5) 0.868(2) 0.744(4) 0.648(6) 0.823(3) 0.894(1) 

Table 6  The running time of the seven algorithms on the NSL-KDD dataset 

Attack LOF ABOD OCSVM IForest SO_GAAL COPOD ACOPOD 

DoS 81 1384 465 37 1594 14 13 

Probe 43 517 231 26 1085 10 10 

R2L 38 469 206 22 928 8 10 

U2R 27 352 158 22 900 7 10 

Total 428 1898 5452 37 1644 26 14 
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To numerically represent the ROC performance of 

ACOPOD and facilitate comparison with benchmark 

algorithms, the ROC-AUC values for the seven algo-

rithms on the NSL-KDD dataset are calculated and pre-

sented in Table 5. 

From Table 4, it can be observed that for DoS at-

tacks, ACOPOD algorithm ranks first in terms of ROC-

AUC value, with an increase of 0.0147 compared to the 

second-ranking algorithm. For Probe attacks, ACOPOD 

algorithm ranks fourth, reaching 0.9486. In the case of 

R2L attacks, ACOPOD algorithm ranks first, with an 

increase of 0.067 compared to the second-ranking algo-

rithm. For U2R attacks, ACOPOD algorithm ranks sec-

ond, reaching 0.8821. In the detection of the entire da-

taset, ACOPOD algorithm ranks first, achieving a ROC-

AUC value of 0.8936, with an increase of 0.0257 com-

pared to the second-ranking OCSVM algorithm. From 

the ROC-AUC values, it is evident that ACOPOD exhib-

its superior performance, particularly in the detection of 

U2R attacks, providing higher precision with different 

threshold settings. Overall, ACOPOD outperforms other 

algorithms in terms of ROC-AUC values. 

Algorithm runtime is an important evaluation metric 

for intrusion detection algorithms, representing the effi-

ciency of the algorithm. An ideal algorithm should ex-

hibit both high precision and low runtime to cope with 

the rapidly growing volume of network data. In this re-

gard, this paper provides a summary of the runtime for 

each algorithm on the NSL-KDD dataset, as shown in 

Table 6. The numerical values in the table are presented 

in seconds. 

From Table 6, it can be observed that, for the aver-

age runtime across the four types of attacks, ACOPOD 

algorithm takes 10.75 seconds, COPOD algorithm takes 

9.75 seconds, IForest algorithm takes 26.75 seconds, 

LOF algorithm takes 206.25 seconds, ABOD algorithm 

takes 798.25 seconds, SO_GAAL algorithm takes 

1126.75 seconds, and OCSVM algorithm takes 2544.75 

seconds, being the most time-consuming. For the detec-

tion of the complete dataset, ACOPOD algorithm has the 

least runtime. Unlike other algorithms that compute the 

initial dimensional sample distances, ACOPOD algo-

rithm first reduces the sample dimensionality and then 

calculates the probability of a sample being an anomaly.  

Reducing the dimensionality of the data can signifi-

cantly decrease the computation time of the algorithm. 

After feature extraction, it can be observed that the total 

computation time of the ACOPOD algorithm (including 

feature extraction time) is shorter than that of not using 

the COPOD algorithm. On this dataset, the ACOPOD 

algorithm reduces the data from 122 dimensions to 55 

dimensions, with 55 dimensions being the optimal value 

determined through comparison. 

The NSL-KDD dataset is a publicly available simu-

lated dataset. Compared to real network environments, it 

has a relatively small data size, only 2GB. Therefore, the 

runtime of other unsupervised algorithms is relatively 

fast. However, the runtime of the ACOPOD algorithm 

differs significantly from other algorithms, and the 

ACOPOD algorithm has higher precision and ROC-AUC 

scores. 

 
Fig. 6  ROC curves of ACOPOD against four attacks on NSL-KDD 

dataset 

4.6 Analysis of RCAN dataset results 

To further validate the practicality and effectiveness of 

the ACOPOD algorithm, it was applied to the unlabeled 

RCAN dataset, and the detection results were analyzed 

through manual tracing. Approximately 2.3 million rec-

ords from the RCAN dataset were selected for detection, 

and ANAE was used to reduce the data from 67 dimen-

sions to 30 dimensions. The learning rate was set to 0.01, 

batch size to 128, and the number of batch training itera-

tions to 10,000. The ACOPOD algorithm detected about 

230,000 abnormal records. Using Principal Component 

Analysis (PCA), the data were further reduced to three 

dimensions, as shown in Fig. 7, where blue dots repre-

sent normal samples, and red dots represent detected 

abnormal samples. 

 
Fig. 7  3D visualization of anomaly data dataset 

From Fig. 7, it can be observed that the data, after 

feature extraction, is uniformly distributed, and the de-

tected abnormal samples by the algorithm are located at 

the edges of the overall data distribution. These data 

were captured from a real network environment without 
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manual labeling. Validating the source messages for all 

230,000 abnormal records one by one is a highly time-

consuming task. Therefore, to save time, the analysis 

primarily focuses on tracing anomalies at the level of 

abnormal IP addresses. This involves exporting the ab-

normal messages associated with a specific IP to a CSV 

file, followed by verifying whether they indicate a net-

work attack. 

During the data collection process, the intrusion de-

tection system deployed in the network identified some 

real network attack events, such as IP scanning, vulnera-

bility exploitation, and worm incidents. The source data 

of these actual network attack events, organized by IP, 

were extracted to create an anomaly template. During 

validation, the CSV file organized by IP was compared 

against these anomaly templates, and the authenticity of 

abnormal messages was verified by analyzing and com-

paring features such as source port, destination port, and 

IP addresses. Since these data were captured in an intra-

net, the host IPs are internal LAN addresses, ensuring the 

confidentiality of sensitive information. Fig. 8 illustrates 

the top 20 IP addresses with the highest counts of ab-

normal messages detected by the ACOPOD algorithm. 

 
Fig. 8  Abnormal IP address statistics 

 

The following analysis will use several typical IPs 

from Fig. 8 as examples to demonstrate how manual ver-

ification is performed. From Fig. 8, it can be observed 

that the IP with the highest count of abnormal messages 

is “10.12.1.56”. Analyzing its destination ports and des-

tination IPs reveals that this IP exhaustively accesses 

common high-risk ports across multiple IP ranges during 

fixed time intervals (each scanning period is approxi-

mately two minutes). These ports include 445, 161, 137, 

139, among others, which are commonly targeted high-

risk ports for port scanning or network attacks. Hence, it 

can be concluded that this IP is engaged in network 

scanning behavior. For IPs “10.12.1.195” and 

“10.12.1.196”, they establish long-term connections with 

external IPs through port 4000. Port 4000 is an open port 

for certain communication software. Investigation re-

vealed that the majority of the external IPs belong to 

overseas locations. Upon further inquiry, it was con-

firmed that the real network in question does not connect 

to the external network, let alone establish connections 

with foreign IPs. Therefore, it can be deduced that these 

hosts are undergoing a network attack. 

It is worth noting that for the IP “10.12.80.87”, 

analysis revealed that this IP communicated multiple 

times with other hosts using port 8000. Upon inquiry, it 

was found that port 8000 is a commonly used port for a 

social software. However, in this network, the use of 

unnecessary software is not allowed, and there is no con-

nection to the external network. Therefore, the IP does 

exhibit anomalous behavior. However, further verifica-

tion indicated that this behavior did not constitute a net-

work attack. This proves that in a real network environ-

ment, anomalous data detected by unsupervised algo-

rithms may not necessarily be indicative of a network 

attack. It could also be anomalous behavior deviating 

from the norm. In other words, while a network attack is 

always an anomalous behavior, not all anomalous behav-

iors are network attacks. Network attacks are a subset of 

anomalous behavior. 

The network environment utilized in this method is 

a real civil aviation network with 1279 active nodes, 

from which traffic data were collected over a period of 

30 days, totaling 203 gigabytes. This civil aviation net-

work environment is quite common and typical within 

the entire civil aviation system. Therefore, this method is 

equally applicable to other networks within the civil avi-

ation system, as well as to other similarly sized real-

world networks. False positives are inevitable in unsu-

pervised detection. For this real network, there are sever-

al skilled technicians at the same time to mannually han-

dle false positives.  

Thus, ACOPOD is suitable for small and medium-

sized networks with a certain number of skill technicians. 

For large-scale networks, supervised intrusion detection 

systems should be added to handle false positives, so as 

to reduce the workload of manual verification. 

Conclusion 

This paper proposes a novel unsupervised intrusion de-

tection algorithm. Firstly, it utilizes the simplified struc-

ture of the Adam Non-symmetric Auto-Encoder(ANAE) 

to achieve unsupervised feature extraction. This not only 

ensures detection accuracy but also enhances operational 

efficiency. Subsequently, the algorithm employs the 

Probability-based COPOD method to perform anomaly 

detection on the low-dimensional data obtained through 

feature extraction. Experimental results on the NSL-

KDD public dataset demonstrate that the ACOPOD algo-

rithm achieves favorable precision, high ROC-AUC val-

ues, and overall outperforms benchmark algorithms. Ad-

ditionally, the detection runtime on the complete NSL-

KDD dataset is significantly lower than benchmark algo-

rithms. Experimental verification on the real network’s 
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RCAN dataset, through manual validation of the anoma-

lous data detected by ACOPOD, indicates that the meth-

od can effectively detect intrusion behavior in unlabeled 

real network data. Finally, traceback analysis of anoma-

lous IPs demonstrates that network attacks are encom-

passed by anomalous behavior, affirming that a network 

attack is always anomalous behavior, but anomalous 

behavior is not necessarily a network attack. 

There are still some issues to be improved in the fu-

ture. As a retrospective algorithm, unsupervised intrusion 

detection suffers from lower precision compared to su-

pervised algorithms. For instance, approximately 20% of 

DoS attacks are overlooked in the experiments. There-

fore, we will continue to explore methods to enhance the 

precision of unsupervised intrusion detection in the fu-

ture work. Additionally, there are plans to apply the 

ACOPOD algorithm to detect other network attacks. 
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