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PAPER
Using Genetic Algorithm and Mathematical Programming Model
for Ambulance Location Problem in Emergency Medical Service

Batnasan LUVAANJALBA† and Elaine Yi-Ling WU†a), Nonmembers

SUMMARY Emergency Medical Services (EMS) play a crucial role in
healthcare systems, managing pre-hospital or out-of-hospital emergencies
from the onset of an emergency call to the patient’s arrival at a healthcare
facility. The design of an efficient ambulance location model is pivotal in
enhancing survival rates, controlling morbidity, and preventing disability.
Key factors in the classical models typically include travel time, demand
zones, and the number of stations. While urban EMS systems have received
extensive examination due to their centralized populations, rural areas pose
distinct challenges. These include lower population density and longer
response distances, contributing to a higher fatality rate due to sparse pop-
ulation distribution, limited EMS stations, and extended travel times. To
address these challenges, we introduce a novel mathematical model that
aims to optimize coverage and equity. A distinctive feature of our model is
the integration of equity within the objective function, coupled with a focus
on practical response time that includes the period required for personal
protective equipment procedures, ensuring the model’s applicability and
realism in emergency response scenarios. We tackle the proposed prob-
lem using a tailored genetic algorithm and propose a greedy algorithm for
solution construction. The implementation of our tailored Genetic Algo-
rithm promises efficient and effective EMS solutions, potentially enhancing
emergency care and health outcomes in rural communities.
key words: emergency medical service, ambulance location problem,
genetic algorithm, optimization, mathematical programming

1. Introduction

This topic of Emergency Medical Services (EMS) has been
intensively studied since the 1970s. Taiwan, from around
1995, modern concepts of the EMS were imported and
supported by legislation [1]. Emergency Medical Services
(EMS) is considered a critical component of the health sys-
tem. It is responsible for the pre-hospital, which start from
the arrival of an emergency call to the reach of the patient’s
destination. The goal of EMS is to enhance survival rate,
control morbidity, and prevent disability by providing rapid
assessment, timely provision of appropriate interventions,
prompt transportation to the nearest suitable health facil-
ity [2]. Consequently, the researchers are dedicated to ac-
curately forecasting demands, rigorously measuring perfor-
mance, strategically selecting ambulance station locations,
and effectively allocating ambulance resources [3].

In the pursuit of enhancing survival rates in both urban
and rural contexts, our research aligns with the operational
research perspective in selecting optimal ambulance loca-
tions. A recent review classified the decision problems re-
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lated to operational EMS management into ambulance loca-
tion problems and dispatching problems [4]. This deliberate
approach ensures a holistic understanding and effective reso-
lution of challenges within EMS management, contributing
to the overarching goal of improving emergency medical care
in diverse settings.

Numerous studies have achieved remarkable advances
in urban areas, such as Taipei, Taiwan, Vienna, Austria, Nii-
gata, Japan, Chicago, America, Porto, Portugal, Shanghai,
China, and Trondheim and Malvik, Norway [5]–[11]. Mean-
while, only a few studies have worked on ambulance location
problems in rural areas, such as Leon, Spain, Hanover, Ger-
many, and South Dakota, America [12]–[14]. In terms of the
objective of the ambulance location problem, it is generally
maximizing the coverage of the prespecified zones. Re-
cently, it has been suggested that equity be incorporated into
the model by minimizing the number of uncovered zones or
the average response time for uncovered calls [4], [15]–[17].

The ambulance location problem aims to determine the
number of ambulances in potential sites while considering
constraints, such as the types of vehicles, the ambulance
fleet size, the response time, and the workload of medical
personnel. Meanwhile, the ambulance dispatching problem
aims to decide which vehicle to assign to an emergency call.
EMS thus raises issues concerning how to simultaneously
maximize the coverage and minimize the response time of
uncovered zones. Also, the protection of EMS personnel
from occupationally acquired infections due to the pandemic
should be noted. Medical care providers are mandated to
use appropriate personal protective equipment (PPE) before
responding to an emergency call [18].

The EMS process is composed of eight stages, includ-
ing getting emergency calls, dispatching available ambu-
lance and trained personnel, enrouting from to the scene,
arriving at the scene, contacting the patient, departure from
the scene, appropriate destination, and returning to the re-
sponding unit as an available vehicle [14]. EMS thus raises
issues concerning how to provide emergency medical care
to all who need it within a short time. Kobusingye et al. [2]
point out the key issues are surveillance and identification
of acute events; trained personnel and equipment of on-site
management; safe transportation, transportation equipment,
and referral system; personnel, equipment, and services of
health facility care. Later, Tucker [19] also presents the chal-
lenges of EMS, such as timely EMS response, the availability
of functional emergency vehicles with functional preemption
systems, and the adequate ratio of transport units to respond
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to citizens.
During the pandemic, it is essential to acknowledge the

significance of safeguarding EMS personnel from infections
acquired while on duty. Medical care providers must uti-
lize suitable personal protective equipment (PPE) prior to
attending to an emergency call [18]. The majority of these
concerns pertain to metropolitan regions. However, the char-
acteristics of urban areas include reduced transportation time
and a concentrated population, which distinguishes them sig-
nificantly from rural areas in terms of EMS operations. In
rural areas, on the other hand, the characteristics of rural
areas are a sparsely distributed population, a limited number
of EMS stations, long travel distances, geographic barriers,
lack of professional or trained personnel, aging or inadequate
equipment, and absence of specialized EMS facilities [14],
[20]. Additionally, the fatality rate is 2.6 times higher than
in urban areas [20]. Therefore, determining and studying
ambulance location problems in rural areas could be helpful
to patients. The challenges in rural and wilderness EMS are
time loss in response and transport, critical incident detec-
tion and reporting, EMS dispatching and arrival, provision of
medical care, recruitment, training, and retention of trained
EMS personnel [21].

In this work, we aim to tailor a genetic algorithm (GA) to
optimize the proposed ambulance location problem, consid-
ering coverage, equity, practical concerns about COVID-19,
and the situation in a rural area. Specifically, the objective
function intends to maximize the number of demand zones to
be covered and simultaneously minimize the travel time for
uncovered demand zones. Also, to protect EMS personnel
from COVID-19, the required time of putting on personal
protective equipment is added into chute time if the demand
is suspected. Furthermore, two types of EMS vehicles are
widely used in Taiwan: basic life support (BLS) and ad-
vanced life support (ALS). This research aims to formulate
an ambulance location problem for rural emergency medical
services, taking into account not only coverage but also eq-
uity considerations. The model incorporates various types
of ambulances and the chute time required for medical staff
preparation to enhance practicality. This study introduces
a tailored genetic algorithm for optimizing the challenging
problem. The effectiveness and efficiency of the proposed
algorithm will be verified by a set of experiments.

This study is organized as follows. The literature related
to the problem under study is briefly reviewed in Sect. 2.
The mathematical problem formulation and description are
presented in Sect. 3. A tailored genetic algorithm to tackle
the studied problem is proposed in Sect. 4, while Sect. 5 is
devoted to the computational experiments. Lastly, Sect. 6
presents the conclusions reached.

2. Optimization of Ambulance Location

The ambulance location problem has received much atten-
tion since the 1970s [4] and [16]. This problem was first
formulated by Toregas, Swain, ReVelle, and Bergman [22],
named location set covering problem (LSCP), and the objec-

tive is to minimize the total number of ambulance locations
such that all demand zones are adequately covered. However,
in some practical contexts, it takes a significant number of
vehicles to cover the demands thoroughly. Moreover, being
a pivotal role in the chain of survival, it seeks to increase the
usage of given ambulances. Therefore, the maximal cover-
ing location problem (MCLP) was formulated by Church and
ReVelle [23], and the objective is to maximize the number of
people covered within the desired service distance under the
constraints of a given vehicle fleet.

This model was extended by Schilling et al. [24] with
two types of vehicles named primary and special equipment,
which is similar to the idea of contemporary types of am-
bulance named basic life support (BLS) and advanced life
support (ALS) [25]. These seminal mathematical models of
ambulance location problems are classified into three main
categories by Bélanger et al. [4] in chronological order, cor-
responding to single coverage deterministic models, mul-
tiple coverage deterministic models, and probabilistic and
stochastic models. Single coverage deterministic models
have led to a proliferation of research on ambulance location
problems with relatively simple formulations. These models
shared an assumption that ambulances are always available
for emergency requests. Unfortunately, this assumption may
not be robust enough in real life. For instance, two consec-
utive calls from the same demand zones cannot be covered
with the same ambulance in a short time. Therefore, multiple
coverage deterministic models are provided to be conducive
to robustness by doubly covering the demands zones. Daskin
and Stern [26] proposed that the hierarchy objective set cov-
ering problem (HOSC) was the first research to consider
multiple coverages. The HOSC provides multiple coverage
by minimizing the number of ambulances for singly covering
and maximizing the number of additional ambulances avail-
able to an emergency call within a prespecified time. This
very first research gave rise to the following variants that
tend to escalate the multiple coverage by considering the
demand of each additional ambulance [27], by covering de-
mand zones twice within a given number of ambulances [28],
or by integrating double coverage and two different coverage
radiuses [29].

The double standard model (DMS) presented by Gen-
dreau et al. [29] seeks to maximize the demand zones covered
twice within a large radius while ensuring a proportion of the
demand zones are covered once within a small radius. Re-
searchers in many countries have widely adopted this model.
Doerner et al. [30] applied the DSM in Austria and intro-
duced a penalty term to prevent some ambulances from cov-
ering only a small demand. Laporte et al. [31] employed a
dynamic version of DSM to cope with the ambulance lo-
cation problem in Canada, Austria, and Belgium. They
presented a busy fraction for each ambulance to indicate the
probability of being unavailable. Liu et al. [25] introduced
two types of ambulance and severity to the DSM to address
the ambulance location problem in America, while Su et
al. [32] refined the DSM with a different objective function
in China. They aimed to minimize both the expected cost of
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delayed services and the operation cost of EMS under a limit
on ambulance workload. Liu et al. [33] enhanced their previ-
ous work in America to a more efficient demand-responsive
system by considering the availability of ambulance and ser-
vice reliability requirements from competing demand zones.

Dibene et al. [34] reported a robust version of the DSM
applied in Mexico. They classified the demand into scenar-
ios and involved the following information for optimization,
including potential base location, call demand and priority,
demand scenarios, demand points, and average travel time.
In all this research, practical concerns and empirical data are
used to conduct computational experiments for ambulance
location problems around the world. Alongside the progress
on models for ambulance location problems, numerous stud-
ies have been dedicated to providing a more comprehensive
perspective. Basar et al. [15] reported several constraints,
including coverage, server capacity, the priority of different
types of servers, the maximum number of servers at each lo-
cation, maximum distance, and upper bound on the number
of assigned servers. Aringhieri et al. [16] suggested incor-
porating equity and uncertainty, while Bélanger et al. [4]
recommended including real-time information, medical out-
come, and equity. They also point out the need for the
development of a more efficient solving method. Later, Tas-
sone and Choudhury [17] summarized the techniques and
models for ambulance location problems and emphasized
the importance of achieving a unique and powerful method.

The solution techniques from an operational research
perspective can be divided into optimal, heuristic, meta-
heuristic, and simulation [15]. Optimal methods are pro-
posed to obtain exact solutions with brand-and-bound algo-
rithms or optimizers such as CPLEX, Gurobi, Fico Xpress,
and MOSEK [17]. Some researchers utilized these methods
to tackle the variants of ambulance location problems [34],
while others employed heuristics to obtain approximate so-
lutions [32]. Meanwhile, more works have been reported
on using metaheuristics to retrieve approximate solutions.
Among those researchers, tabu search (TS) [12], [15], [29],
[30] ant colony optimization (ACO) [30], genetic algorithm
(GA) [35], particle swarm optimization (PSO) [36], and vari-
able neighborhood search (VNS) [30] have received consid-
erable attention. Lastly, some studies in the literature at-
tack the ambulance location problem with simulation meth-
ods [37].

While Numerous studies have applied their ambulance
location models using real data from urban areas [5]–[11],
ambulance location problems in rural areas pose different
challenges from those in urban areas. Recent research [38]
explored the challenges in rural areas: longer transportation
distances, patient transfer delays, limited resources, fickle
weather and seasonal factors, and scarcity of skilled and
trained emergency service providers. Few studies have
worked on the ambulance location problems in rural ar-
eas. Through this literature review, we observe that the
researchers studying rural area ambulance location problems
are relatively insufficient. Moreover, most of these studies
are dedicated to urban areas due to the complex geographical

network, heavy traffic, dense population, and speedy road.
However, rural areas have scarce resources, long travel dis-
tances, and sparsely distributed services that are crucial but
rarely addressed. This raises the need to better investigate
the ambulance location problem in rural areas and propose
an efficient method to obtain effective solutions.

3. Problem Statement

To tackle the proposed ambulance location problem, we
adopted the double standard model (DSM) introduced by
Gendreau et al. [27] by adding two service coverage stan-
dards into the proposed model. The two service coverage
standards ensure that a portion of demand zones is covered
by EMS vehicles within the primary standard, and all de-
mand zones must be covered within the secondary standard,
which is a more extended time period than the primary stan-
dard. Moreover, considering the context of COVID-19 and
the situation in Taiwan, three practical limitations have been
considered, including suspected COVID-19 demands, two
types of EMS vehicles, and chute time. A demand call with
COVID-19 must be covered by a vehicle with personal pro-
tective equipment (PPE), and the travel time equals the sum
of chute time and en-route time. Similar to the USA, there
are two types of EMS vehicles in Taiwan: basic life sup-
port (BLS) and advanced life support (ALS). A demand call
of higher severity is covered by an ALS ambulance, while
BLS or ALS ambulances cover lower-severity demands. The
proposed model aims to consider coverage and equity for a
good and similar response to all the demands by maximizing
the number of demand zones to be covered and minimizing
the travel time for uncovered demand zones. Given a set of
possible locations for ambulance stations with two types of
EMS vehicles and a set of demand zones with or without
COVID-19, the proposed model locates ambulance stations
and allocates ambulances to these stations based on the ob-
jectives mentioned above and constraints. The parameters
and their description are presented in Table 1, and the math-
ematical model is explained in the following section. Table 2
summarizes the decision variables and auxiliary variables,
where the decision variables xki j takes value 1 if the demand
zone i is covered by type k ambulance from location j, and 0
otherwise, while the auxiliary variables zki takes 1 represent
the demand zone i is covered by type k ambulance, δki j takes 1
represent the demand zone i is covered by type k ambulance
from location j within primary coverage standard (r1), θki j
takes 1 represent the demand zone i is covered by type k am-
bulance from location j within secondary coverage standard
(r2).
Maximize

F3 = ω1 ∗
F1−F1min

F1max−F1min
+ ω2 ∗

F2−F2min
F2max−F2min

(1)

F2 =
1
R
=

∑n
i=1

∑m
j=1

∑q
k=1 Dk

i

(
1 − xki j

)
∑n

i=1
∑m

j=1
∑q

k=1Dk
i

(
1 − xki j

)
min

(
ti j
) (2)
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Table 1 Notations

Table 2 Decision variables and auxiliary variables

F1 = C =

∑n
i=1

∑m
j=1

∑q
k=1 Dk

i xki j∑n
i=1

∑m
j=1

∑q
k=1 Dk

i

(3)

Subject to

Dk
i = d̄k

i + dk
i ∀i ∈ I,∀k ∈ K (4)(

dk
i − 1

)
− zki M < 0 ∀i ∈ I,∀k ∈ K (5)(

dk
i − 1

)
+
(
1 − zki

)
M ≥ 0 ∀i ∈ I,∀k ∈ K (6)

tki j = ti j + t̄kj + tkj zki ∀i ∈ I,∀ j ∈ L,∀k ∈ K (7)

ykj =
∑n

i=1
xki j ∀ j ∈ L,∀k ∈ K (8)∑m

j=1
ykj ≤pk ∀k ∈ K (9)∑q

k=1
ykj ≤pj ∀ j ∈ L (10)(

tki j − r1
)
xki j + δ

k
i jM ≥ 0 (11)

∀i ∈ I,∀ j ∈ S,∀k ∈ K(
tki j − r1

)
xki j −

(
1 − δki j

)
M < 0 (12)

∀i ∈ I,∀ j ∈ S,∀k ∈ K

αD1
i ≤

∑m

j=1

∑2

k=1
δki j ∀i ∈ I (13)

αD2
i ≤

∑m

j=1
δ2i j ∀i ∈ I (14)(

tki j − r2
)
xki j + θ

k
i jM ≥ 0 (15)

∀i ∈ I,∀ j ∈ L,∀k ∈ K(
tki j − r2

)
xki j −

(
1 − θki j

)
M < 0 (16)

∀i ∈ I,∀ j ∈ L,∀k ∈ K

D1
i ≤

∑m

j=1

∑2

k=1
θki j ∀i ∈ I (17)

D2
i ≤

∑m

j=1
θki j ∀i ∈ I (18)

In the above formulation, we aim to maximize the EMS
coverage and minimize the response time for uncovered de-
mand zones by employing the weighted sum method to con-
vert the multi-objective problem into a single objective func-
tion in Eq. (1) to normalize the different measurement scales.
In order to ensure a balanced consideration of both EMS cov-
erage maximization and response time minimization within
our single aggregated objective function, two weights are
added in Eq. (3), and the weights (w1 and w2) are calibrated
such that their sum equals 1. Specifically, the objective func-
tion F1 within Eq. (3) is designed to maximize the average
EMS coverage across all demand zones, regardless of their
association with suspected COVID-19 cases. Conversely,
Eq. (2) focuses on minimizing the response time for those
demand zones that remain uncovered.

Equation (4) indicates the number of demands at zone
i of type k (Dk

i ) equals to the number of demands at zone i
of type k with (dk

i ) and without (d̄k
i ) COVID-19 suspicions.

Equation (5) and (6) denote the auxiliary variable zki reveals
whether there are demands at zone i for type k with COVID-
19 suspected elor not. Equation (7) denotes the response
time of demand zone i from location j by type k equals
to the estimated enroute time, chute time, and chute time
with the personal protective requirement (PPE). But, the
chute time with the PPE will be added only if there are
demands at zone i of type k with COVID-19 suspected.
Equation (8) indicates the total number of demands covered
by location j equals to the number of vehicles in location
j. Equation (9) ensure total number of vehicles of each
type k does not exceed the give fleet size pk . Equation (10)
ensure the total number of vehicles deployed at location j
does not exceed its capacity pj . Equation (11) and (12)
denote the auxiliary variable δki j reveals whether demand
zone i is covered by location j by type k vehicle within
primary coverage standard (r1). Equation (13) and (14)
restrict α percent of the total number of demands of type
1 (k = 1) can be covered within primary coverage standard
(r1) by all types of vehicles (BLS and ALS), while k = 2 can
be covered only by type 2 (ALS). Equation (15) and (16)
denote the auxiliary variable θki j reveals whether demand
zone i is covered by location j by type k vehicle within
secondary coverage standard (r2). Equation (17) and (18)
ensure all demand zone can be covered within secondary
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coverage standard (r2), while demands of type 1 (k = 1) can
be covered by all types of vehicles and type 2 (k = 2) can be
covered by only type 2 vehicles.

4. The Tailored Genetic Algorithm

4.1 Chromosome and Initial Population

According to the comprehensive analysis conducted by Ka-
toch et al. [39] the established encoding schemas in the field
of genetic algorithm encompass binary, octal, hexadecimal,
permutation, value-based, and tree. For the purpose of this
study, binary encoding has been chosen due to its extensive
usage and ease of implementation, in order to address the
stated problem that corresponds to binary encoding.

A chromosome is a collection of binary variables in
which each binary variable indicates whether demand zone
i is covered by type k from location j, as illustrated in Fig. 1.
These chromosomes, denoted as c, are generated in a random
manner, with the length of a chromosome denoted as CL, the
population size denoted as PS and the ith gene chromosome
represented as Gk

i j . If the value of Gk
i j is 1, it signifies

that demand zone i is covered by type k from location j.
Conversely, if the value of Gk

i j is 0, it indicates that demand
zone i is not covered by type k from location j. However,
to avoid infeasible initial solutions, the genes are randomly
assigned a value of 1 when there are demands in zone i,
until the available number of ambulances for both types is
depleted.

In the quest for a superior initial solution, we utilize a
specifically designed greedy algorithm that is customized to
tackle the proposed problem, as elucidated in Table 3. In
order to introduce an element of chance, merely fifty percent
of the population is produced utilizing the aforementioned
greedy algorithm.

Fig. 1 Chromosome encoding used in this study

Table 3 Pseudo-code for greedy algorithm

4.2 Evaluation and Selection

The utilization of the fitness function aims to optimize the
criteria for selecting solutions. The evaluation of more su-
perior physical fitness solutions is performed through the
utilization of Eq. (1). Drawing upon an extensive analysis
carried out by Katoch et al. [39] in the year 2021, various
well-established selection techniques were identified, such
as roulette wheel selection, rank selection, tournament se-
lection, Boltzmann selection, and stochastic universal sam-
pling. The commonly employed method of selecting indi-
viduals for the roulette wheel is susceptible to premature
convergence [40], thus leading to the proposal of incorporat-
ing rank-based selection and elitism selection in this context.
These approaches aim to tackle this issue by assigning ranks
to individuals based on their levels of fitness and guaran-
teeing the preservation of the highest-performing individual
for the next generation. In order to mitigate the risk of pre-
maturely converging the solution to a local optimum and to
ensure the successful propagation of the elite chromosome
to the subsequent generation, we have chosen to implement
rank and elitism selection. The details of the selection op-
erator are illustrated in Table 4. The elitist population is
generated based on the rank of fitness value of each chromo-
some. This elitist population size is denoted as eps, while the
fitness function is denoted as F(c). In all generations, where
the chromosome proves infeasible, it will be eliminated, and
all gene (Gk

i j) will be assigned a value of zero. This signifies
that demand zone i will not receive coverage from ambu-
lance type k originating from location j. Furthermore, the
chromosomes are arranged in descending order and subse-
quently incorporated into the privileged population until it
reaches its maximum capacity.

4.3 Crossover and Mutation

Among the abundance of established crossover operator,
such as single point, two-point, and uniform crossovers, the
k-point crossover operator distinguishes itself due to its effi-
cacy in our investigation. The integration of binary encod-
ing into our genetic algorithm framework seamlessly aligns
with the characteristics of the k-point crossover operator. By

Table 4 Pseudo-code for selection operator
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strategically selecting multiple crossover points along the bi-
nary strings, this operator not only facilitates the exchange of
genetic information but also aids in the exploration of diverse
solutions within the problem space. Importantly, the adop-
tion of the k-point crossover operator fulfills the dual pur-
pose of harnessing the advantages of binary encoding while
mitigating the risk of infeasible solutions. This nuanced
approach ensures the generation of offspring that complies
with the constraints of the optimization problem, thus con-
tributing to the effectiveness of our proposed methodology.

The preservation of genetic diversity in successive pop-
ulations is of utmost importance for the effectiveness of ge-
netic algorithms. In the midst of the various mutation oper-
ators available, such as displacement, simple inversion, and
scramble mutation, our study strategically opts for the uti-
lization of the inversion operator. This decision is justified
by its compatibility with binary encoding and the inherent
simplicity of its implementation. Binary encoding, being
a fundamental choice within our genetic algorithm frame-
work, seamlessly aligns with the characteristics of the inver-
sion mutation operator. By selectively inverting segments of
binary strings, this operator not only maintains genetic diver-
sity but also facilitates the exploration of new and innovative
solutions within the solution space. The deliberate selection
of the inversion operator underscores our dedication to an
efficient and streamlined implementation, which ultimately
ensures the algorithm’s robust performance in optimizing
complex problems.

The specificities of the crossover operator are delineated
in Table 5. The k-points crossover operator commences by
establishing the size of k, indicated as ks. Subsequently,
the genetic material from parent 1 and parent 2 is replicated
to generate offspring 1 and offspring 2, denoted as p1_Gk

i j ,
p2_Gk

i j , o1_Gk
i j , and o2_Gk

i j , respectively. Following this, a
random selection is made from the total number of demand
zones n, the total number of locations m, and the total number
of types q. The genes of offspring is then substituted with
that of parent 2, and conversely, the genes of offspring 2 is
substituted with that of parent 1.

Table 5 Pseudo-code for crossover operator

5. Results and Discussion

5.1 Experimental Setting

This study encompasses a comprehensive investigation of
seven distinct parameter configurations (Group 1-7), in
which each combination consists of three specific settings,
details can be seen from Table 6. The primary goal is to
systematically examine the impact of these variations in pa-
rameters on the performance of the evolutionary algorithm.

The experimental instance for this study is divided into
three distinct categories, namely small, medium, and large,
which represent different levels of complexity suitable for
optimization using genetic algorithms. For different instance
sizes, the weights are set to 0.5 for w1 and w2. It is imperative
to note that in our numerical experiments, we have assigned

Table 6 Comprehensive matrix of experimental settings and hyperpa-
rameter combinations
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Fig. 2 The average processing time of settings for small instances

equal importance to both considered objectives to ensure a
balanced influence on the combined objective function used
in the optimization process. In the case of small instances,
the number of demand locations (n) is varied among values
of 10, 20, 30, 40, and 50, while the number of candidate
locations (m) is fixed at 5 and the number of vehicle types
(q) is set at 2. In the medium instance, the range of demand
locations (n) extends from 100 to 500 with increments of
100 (i.e., 100, 200, 300, 400, 500). The number of candidate
locations (m) is established at 10, while the number of vehicle
types (q) remains constant at 2. In the case of the large
dataset, the range of demand locations (n) also spans from
100 to 500 with increments of 100 (i.e., 100, 200, 300,
400, 500). However, the number of candidate locations
(m) is increased to 30, while the number of vehicle types
(q) remains constant at 2. This systematic categorization
enables a comprehensive examination of the optimization
performance of the genetic algorithm across different data
scales, providing valuable insights for the optimization of
complex problems through genetic algorithms.

5.2 Experimental Results

In this study, the tailored genetic algorithm was executed 100
times for each instance, spanning small, medium, and large
scenarios. Additionally, for the small instances, the CPLEX
optimization tool was employed to acquire the optimal solu-
tion. The inclusion of CPLEX results in these cases serves to
validate that our genetic algorithm obtains optimal solutions,
ensuring the efficacy and accuracy of our genetic algorithm
in smaller-scale scenarios. The average processing times
across 21 settings for small, medium, and large instances
are detailed in Figs. 2, 4, and 6, respectively. Concurrently,
Figs. 3 and 5 present the fitness values for medium and large
instances. Owing to the consistent nature of all settings, the
fitness values for small instances are omitted from the pre-
sentation. Furthermore, to validate the statical significance
of the differences between the two settings, we conducted a
T-test and the findings are displayed in Table 7.

For small instances, the graphical representation in
Fig. 2 clearly illustrates that the average processing times
of groups 1 and 2 markedly differ from those of the re-

Fig. 3 The fitness of settings for medium instances

Fig. 4 The average processing time of settings for medium instances

Fig. 5 The fitness of settings for large instances

Fig. 6 The average processing time of settings for large instances
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maining groups. Consider instance n = 50 as an example,
where the average processing times for settings 1-6 (s1-s6)
are 0.64, 2.53, 4.99, 0.62, 1.05, and 2.08 seconds, respec-
tively. In contrast, the processing times for settings 7-21
are consistently less than 1 second, averaging around 0.64
seconds. It is evident from Table 6 that the average process-
ing times of groups 1 and 2 exhibit statistically significant
differences. This outcome aligns with the variations among
settings, specifically regarding the number of generations
and population size. Notably, the average processing times
for settings 13-21 are comparatively small, with setting 20
achieving the optimal solution in the shortest time. The
distinctions between settings 19, 20, and 21 are particularly
noteworthy. Consequently, in small instances, setting 20
emerges as the most appropriate configuration.

Figure 3 presents the fitness values for various settings
applied to medium instances. Observing the figure, mini-
mal differences in objective values are apparent. However, a
detailed examination of the fitness values in Table 6 for the
medium dataset reveals noteworthy distinctions within group
2 between settings 4 and 6, showcasing average objective val-
ues of 0.346 and 0.348 across five datasets. Group 5 exhibits
significant differences with Settings 13 and 15, displaying
average objective values of 0.347 and 0.345, respectively.
Group 7 demonstrates significant variations among Settings
19, 20, and 21, with average objective values of 0.346, 0.342,
and 0.343, respectively.

Figure 4 illustrates marked disparities in processing
times. A closer examination of Table 6’s test results high-
lights significant differences in processing times for Settings
1, 2, and 3 in the medium instance, recording average pro-
cessing times of 0.646, 2.65, and 5.10 seconds, respectively.
In Group 2, Settings 4, 5, and 6 display significant differ-
ences, recording average processing times of 0.65 seconds,
1.07 seconds, and 2.09 seconds, respectively. Similarly,
Group 5 showcases significant differences with Settings 13,
14, and 15, presenting average processing times of 0.72,
0.64, and 0.63 seconds, respectively. Within Group 6, Set-
tings 19, 20, and 21 also demonstrate significant differences,
reflecting average processing times of 0.650, 0.57, and 0.58
seconds, respectively. Considering both processing times
and objective values, it is evident that Setting 6 achieves
the optimal objective value within an acceptable processing
time. If prioritizing a shorter processing time, setting 13
represents the subsequent best parameter combination.

In Fig. 5, it is evident that there is minimal difference in
the objective values. However, upon examining the fitness
values for the large instance in Table 6, significant differences
emerge in Group 2 between Settings 4 and 5, which signifi-
cantly differ from Setting 6, with average objective values of
0.346, 0.346, and 0.349, respectively. Within Group 6, Set-
tings 16 and 17 exhibit noteworthy differences from Setting
18, with average objective values of 0.345, 0.345, and 0.348,
respectively. In Group 7, Setting 19 displays significant dif-
ferences from Settings 20 and 21, with average objective
values of 0.346, 0.343, and 0.342, respectively.

Figure 6 reveals substantial differences in processing

Table 7 T-test analysis for settings across varied instance sizes

times. Further scrutiny of the t-test results in Table 7 indi-
cates notable distinctions in processing times for Group 1’s
Settings 1, 2, and 3 in the large instance, with average pro-
cessing times of 0.66, 2.65, and 5.13 seconds, respectively.
For Group 2, Settings 4, 5, and 6 exhibit significant differ-
ences, with average processing times of 0.65, 1.05, and 2.14
seconds, respectively. In Group 5, Settings 13, 14, and 15
display marked differences, with average processing times
of 0.74, 0.66, and 0.64 seconds, respectively. Within Group
6, Settings 16 and 18 exhibit noteworthy distinctions, with
average processing times of 0.65 and 0.67 seconds, respec-
tively. Finally, in Group 7, Settings 19, 20, and 21 show
marked differences, with average processing times of 0.65,
0.57, and 0.59 seconds, respectively.

Considering both processing times and objective val-
ues, it is evident that Setting 6 attains a relatively better
objective value within an acceptable processing time. Set-
ting 18 represents the next best parameter combination if a
shorter processing time is a priority.

Our experimental results offer nuanced observations on
the effectiveness of various parameter configurations within
an optimization framework across different instance sizes.
For small instances, our analysis reveals significant dif-
ferences in average processing times and objective values,
focusing on the influential role played by the number of
generations and population size. Notably, Configuration
20 emerges as the most prominent choice, achieving opti-
mality in the shortest time frame, making it the preferable
option for smaller instances. Moving on to medium-sized
instances where marginal disparities in objective values are
observed, a thorough examination uncovers notable distinc-
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tions within specific parameter groups. Setting 6 stands out
as an excellent choice, displaying optimal objective values
within an acceptable processing time. Importantly, Setting
13 proves to be the best parameter combination when prior-
itizing a more expedient processing time. Our investigation
demonstrates substantial variations in objective values and
processing times across different parameter settings when
considering large instances. Remaining a robust choice,
Configuration 6 consistently exhibits a superior objective
value within an acceptable processing time, positioning it as
a formidable candidate for larger-scale instances. Moreover,
setting 18 emerges as the optimal parameter combination
when a swift processing time takes precedence. In summary,
our results highlight the critical significance of tailoring pa-
rameter configurations based on the specific characteristics
of the problem instances. The consistent performance of
setting 6 across diverse scenarios positions it as a robust and
versatile choice.

6. Conclusions

In this research endeavor, we have embarked upon an explo-
ration of the intricate challenges that arise in the optimiza-
tion of emergency medical services (EMS). Additionally, we
have presented a novel formulation of a mathematical prob-
lem specifically tailored to address the issue of ambulance
location in rural areas. This unique problem formulation
has been meticulously designed to prioritize coverage and
equity, ensuring a fair and efficient response to all demands.
The overarching objective is achieved by maximizing the
coverage of demand zones while simultaneously minimizing
the travel time for those zones that remain without coverage.
In order to address the inherent complexity of the formulated
problem, we have adapted a genetic algorithm (GA) to obtain
acceptable solutions. This GA represents a key innovation,
offering a versatile and effective approach to tackling the in-
tricacies of optimizing rural EMS. Using a genetic algorithm
is aligned with the dynamic nature of EMS challenges and
the need for robust and adaptable solutions in various sce-
narios. Our experimental study, encompassing 21 distinct
settings, serves as a testament to the efficacy and efficiency
of our proposed approach. Notably, the comparison with
CPLEX in small instances underscores the effectiveness of
our method and demonstrates its competitive performance.

Furthermore, the efficiency of our approach is evident
across various scales of instances, as we consistently obtain
approximate solutions within a concise timeframe—less than
1 second. This efficiency is of paramount importance in the
realm of emergency response, where swift decision-making
plays a critical role in saving lives and mitigating adverse
outcomes. In conclusion, our research not only provides
a fresh perspective on the domain of EMS optimization but
also introduces a tangible and practical solution that has been
tailored to meet the unique challenges of rural areas. The
novel mathematical formulation, in combination with the ef-
ficiency and effectiveness of the genetic algorithm, positions
our approach as a significant advancement in the quest for

improved emergency medical services. The implications of
our findings extend beyond theoretical frameworks, as they
offer a tangible impact on real-world emergency response
strategies, particularly in rural communities. As we present
our work to the scholarly community, we are optimistic that
our contributions will catalyze further advancements in EMS
optimization, ultimately fostering more resilient and respon-
sive emergency healthcare systems.
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