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SUMMARY  Emergency Medical Services (EMS) play a crucial role in 
healthcare systems, managing pre-hospital or out-of-hospital emergencies 
from the onset of an emergency call to the patient's arrival at a healthcare 
facility. The design of an efficient ambulance location model is pivotal in 
enhancing survival rates, controlling morbidity, and preventing disability. 
Key factors in the classical models typically include travel time, demand 
zones, and the number of stations. While urban EMS systems have received 
extensive examination due to their centralized populations, rural areas pose 
distinct challenges. These include lower population density and longer 
response distances, contributing to a higher fatality rate due to sparse 
population distribution, limited EMS stations, and extended travel times. To 
address these challenges, we introduce a novel mathematical model that 
aims to optimize coverage and equity. A distinctive feature of our model is 
the integration of equity within the objective function, coupled with a focus 
on practical response time that includes the period required for personal 
protective equipment procedures, ensuring the model's applicability and 
realism in emergency response scenarios. We tackle the proposed problem 
using a tailored genetic algorithm and propose a greedy algorithm for 
solution construction. The implementation of our tailored Genetic 
Algorithm promises efficient and effective EMS solutions, potentially 
enhancing emergency care and health outcomes in rural communities. 
key words: Emergency medical service, Ambulance location problem, 
Genetic algorithm, Optimization, Mathematical programming. 

1. Introduction 

This topic of Emergency Medical Services (EMS) has been 
intensively studied since the 1970s. Taiwan, from around 
1995, modern concepts of the EMS were imported and 
supported by legislation [1]. Emergency Medical Services 
(EMS) is considered a critical component of the health 
system. It is responsible for the pre-hospital, which start 
from the arrival of an emergency call to the reach of the 
patient's destination. The goal of EMS is to enhance survival 
rate, control morbidity, and prevent disability by providing 
rapid assessment, timely provision of appropriate 
interventions, prompt transportation to the nearest suitable 
health facility [2]. Consequently, the researchers are 
dedicated to accurately forecasting demands, rigorously 
measuring performance, strategically selecting ambulance 
station locations, and effectively allocating ambulance 
resources [3]. 

In the pursuit of enhancing survival rates in both urban 
and rural contexts, our research aligns with the operational 
research perspective in selecting optimal ambulance 
locations. A recent review classified the decision problems 
related to operational EMS management into ambulance 
location problems and dispatching problems [4]. This 
deliberate approach ensures a holistic understanding and 
effective resolution of challenges within EMS management, 

contributing to the overarching goal of improving 
emergency medical care in diverse settings.  

Numerous studies have achieved remarkable advances 
in urban areas, such as Taipei, Taiwan, Vienna, Austria, 
Niigata, Japan, Chicago, America, Porto, Portugal, Shanghai, 
China, and Trondheim and Malvik, Norway [5-11]. 
Meanwhile, only a few studies have worked on ambulance 
location problems in rural areas, such as Leon, Spain, 
Hanover, Germany, and South Dakota, America [12-14]. In 
terms of the objective of the ambulance location problem, it 
is generally maximizing the coverage of the prespecified 
zones. Recently, it has been suggested that equity be 
incorporated into the model by minimizing the number of 
uncovered zones or the average response time for uncovered 
calls [4,15-17]. 

The ambulance location problem aims to determine the 
number of ambulances in potential sites while considering 
constraints, such as the types of vehicles, the ambulance 
fleet size, the response time, and the workload of medical 
personnel. Meanwhile, the ambulance dispatching problem 
aims to decide which vehicle to assign to an emergency call. 
EMS thus raises issues concerning how to simultaneously 
maximize the coverage and minimize the response time of 
uncovered zones. Also, the protection of EMS personnel 
from occupationally acquired infections due to the pandemic 
should be noted. Medical care providers are mandated to use 
appropriate personal protective equipment (PPE) before 
responding to an emergency call [18]. 

The EMS process is composed of eight stages, 
including getting emergency calls, dispatching available 
ambulance and trained personnel, enrouting from to the 
scene, arriving at the scene, contacting the patient, departure 
from the scene, appropriate destination, and returning to the 
responding unit as an available vehicle [14]. EMS thus raises 
issues concerning how to provide emergency medical care 
to all who need it within a short time. Kobusingye et al. [2] 
point out the key issues are surveillance and identification 
of acute events; trained personnel and equipment of on-site 
management; safe transportation, transportation equipment, 
and referral system; personnel, equipment, and services of 
health facility care. Later, Tucker [19] also presents the 
challenges of EMS, such as timely EMS response, the 
availability of functional emergency vehicles with 
functional preemption systems, and the adequate ratio of 
transport units to respond to citizens. 

During the pandemic, it is essential to acknowledge the 
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significance of safeguarding EMS personnel from infections 
acquired while on duty. Medical care providers must utilize 
suitable personal protective equipment (PPE) prior to 
attending to an emergency call [18]. The majority of these 
concerns pertain to metropolitan regions. However, the 
characteristics of urban areas include reduced transportation 
time and a concentrated population, which distinguishes 
them significantly from rural areas in terms of EMS 
operations. In rural areas, on the other hand, the 
characteristics of rural areas are a sparsely distributed 
population, a limited number of EMS stations, long travel 
distances, geographic barriers, lack of professional or 
trained personnel, aging or inadequate equipment, and 
absence of specialized EMS facilities [14,20]. Additionally, 
the fatality rate is 2.6 times higher than in urban areas [20]. 
Therefore, determining and studying ambulance location 
problems in rural areas could be helpful to patients. The 
challenges in rural and wilderness EMS are time loss in 
response and transport, critical incident detection and 
reporting, EMS dispatching and arrival, provision of 
medical care, recruitment, training, and retention of trained 
EMS personnel [21]. 

In this work, we aim to tailor a genetic algorithm (GA) 
to optimize the proposed ambulance location problem, 
considering coverage, equity, practical concerns about 
COVID-19, and the situation in a rural area. Specifically, the 
objective function intends to maximize the number of 
demand zones to be covered and simultaneously minimize 
the travel time for uncovered demand zones. Also, to protect 
EMS personnel from COVID-19, the required time of 
putting on personal protective equipment is added into chute 
time if the demand is suspected. Furthermore, two types of 
EMS vehicles are widely used in Taiwan: basic life support 
(BLS) and advanced life support (ALS). This research aims 
to formulate an ambulance location problem for rural 
emergency medical services, taking into account not only 
coverage but also equity considerations. The model 
incorporates various types of ambulances and the chute time 
required for medical staff preparation to enhance practicality. 
This study introduces a tailored genetic algorithm for 
optimizing the challenging problem. The effectiveness and 
efficiency of the proposed algorithm will be verified by a set 
of experiments.  

This study is organized as follows. The literature 
related to the problem under study is briefly reviewed in 
section 2. The mathematical problem formulation and 
description are presented in section 3. A tailored genetic 
algorithm to tackle the studied problem is proposed in 
section 4, while section 5 is devoted to the computational 
experiments. Lastly, section 6 presents the conclusions 
reached. 

2. Optimization of ambulance location 

The ambulance location problem has received much 
attention since the 1970s [4] and [16]. This problem was first 
formulated by Toregas, Swain, ReVelle, and Bergman [22], 

named location set covering problem (LSCP), and the 
objective is to minimize the total number of ambulance 
locations such that all demand zones are adequately covered. 
However, in some practical contexts, it takes a significant 
number of vehicles to cover the demands thoroughly. 
Moreover, being a pivotal role in the chain of survival, it 
seeks to increase the usage of given ambulances. Therefore, 
the maximal covering location problem (MCLP) was 
formulated by Church and ReVelle [23], and the objective is 
to maximize the number of people covered within the 
desired service distance under the constraints of a given 
vehicle fleet. 

This model was extended by Schilling et al. [24] with 
two types of vehicles named primary and special equipment, 
which is similar to the idea of contemporary types of 
ambulance named basic life support (BLS) and advanced 
life support (ALS) [25]. These seminal mathematical models 
of ambulance location problems are classified into three 
main categories by B´elanger et al. [4] in chronological order, 
corresponding to single coverage deterministic models, 
multiple coverage deterministic models, and probabilistic 
and stochastic models. Single coverage deterministic 
models have led to a proliferation of research on ambulance 
location problems with relatively simple formulations. 
These models shared an assumption that ambulances are 
always available for emergency requests. Unfortunately, this 
assumption may not be robust enough in real life. For 
instance, two consecutive calls from the same demand zones 
cannot be covered with the same ambulance in a short time. 
Therefore, multiple coverage deterministic models are 
provided to be conducive to robustness by doubly covering 
the demands zones. Daskin and Stern [26] proposed that the 
hierarchy objective set covering problem (HOSC) was the 
first research to consider multiple coverages. The HOSC 
provides multiple coverage by minimizing the number of 
ambulances for singly covering and maximizing the number 
of additional ambulances available to an emergency call 
within a prespecified time. This very first research gave rise 
to the following variants that tend to escalate the multiple 
coverage by considering the demand of each additional 
ambulance [27], by covering demand zones twice within a 
given number of ambulances [28], or by integrating double 
coverage and two different coverage radiuses [29].  

The double standard model (DMS) presented by 
Gendreau et al. [29] seeks to maximize the demand zones 
covered twice within a large radius while ensuring a 
proportion of the demand zones are covered once within a 
small radius. Researchers in many countries have widely 
adopted this model. Doerner et al. [30] applied the DSM in 
Austria and introduced a penalty term to prevent some 
ambulances from covering only a small demand. Laporte et 
al. [31] employed a dynamic version of DSM to cope with 
the ambulance location problem in Canada, Austria, and 
Belgium. They presented a busy fraction for each ambulance 
to indicate the probability of being unavailable. Liu et al. 
[25] introduced two types of ambulance and severity to the 
DSM to address the ambulance location problem in America, 
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while Su et al. [32] refined the DSM with a different 
objective function in China. They aimed to minimize both 
the expected cost of delayed services and the operation cost 
of EMS under a limit on ambulance workload. Liu et al. [33] 
enhanced their previous work in America to a more efficient 
demand-responsive system by considering the availability of 
ambulance and service reliability requirements from 
competing demand zones.  

Dibene et al. [34] reported a robust version of the DSM 
applied in Mexico. They classified the demand into 
scenarios and involved the following information for 
optimization, including potential base location, call demand 
and priority, demand scenarios, demand points, and average 
travel time. In all this research, practical concerns and 
empirical data are used to conduct computational 
experiments for ambulance location problems around the 
world. Alongside the progress on models for ambulance 
location problems, numerous studies have been dedicated to 
providing a more comprehensive perspective. Basar et al. 
[15] reported several constraints, including coverage, server 
capacity, the priority of different types of servers, the 
maximum number of servers at each location, maximum 
distance, and upper bound on the number of assigned servers. 
Aringhieri et al. [16] suggested incorporating equity and 
uncertainty, while B´elanger et al. [4] recommended 
including real-time information, medical outcome, and 
equity. They also point out the need for the development of 
a more efficient solving method. Later, Tassone and 
Choudhury [17] summarized the techniques and models for 
ambulance location problems and emphasized the 
importance of achieving a unique and powerful method. 
The solution techniques from an operational research 
perspective can be divided into optimal, heuristic, 
metaheuristic, and simulation [15]. Optimal methods are 
proposed to obtain exact solutions with brand-and-bound 
algorithms or optimizers such as CPLEX, Gurobi, Fico 
Xpress, and MOSEK [17]. Some researchers utilized these 
methods to tackle the variants of ambulance location 
problems [34], while others employed heuristics to obtain 
approximate solutions [32]. Meanwhile, more works have 
been reported on using metaheuristics to retrieve 
approximate solutions. Among those researchers, tabu 
search (TS) [12], [29], [30], [15] ant colony optimization 
(ACO) [30], genetic algorithm (GA) [35], particle swarm 
optimization (PSO) [36], and variable neighborhood search 
(VNS) [30] have received considerable attention. Lastly, 
some studies in the literature attack the ambulance location 
problem with simulation methods [37]. 

While Numerous studies have applied their ambulance 
location models using real data from urban areas [5-11], 
ambulance location problems in rural areas pose different 
challenges from those in urban areas. Recent research [38] 
explored the challenges in rural areas: longer transportation 
distances, patient transfer delays, limited resources, fickle 
weather and seasonal factors, and scarcity of skilled and 
trained emergency service providers. Few studies have 
worked on the ambulance location problems in rural areas. 

Through this literature review, we observe that the 
researchers studying rural area ambulance location problems 
are relatively insufficient. Moreover, most of these studies 
are dedicated to urban areas due to the complex geographical 
network, heavy traffic, dense population, and speedy road. 
However, rural areas have scarce resources, long travel 
distances, and sparsely distributed services that are crucial 
but rarely addressed. This raises the need to better 
investigate the ambulance location problem in rural areas 
and propose an efficient method to obtain effective solutions. 

3. Problem Statement 

To tackle the proposed ambulance location problem, we 
adopted the double standard model (DSM) introduced by 
Gendreau et al. [27] by adding two service coverage 
standards into the proposed model. The two service 
coverage standards ensure that a portion of demand zones is 
covered by EMS vehicles within the primary standard, and 
all demand zones must be covered within the secondary 
standard, which is a more extended time period than the 
primary standard. Moreover, considering the context of 
COVID-19 and the situation in Taiwan, three practical 
limitations have been considered, including suspected 
COVID-19 demands, two types of EMS vehicles, and chute 
time. A demand call with COVID-19 must be covered by a 
vehicle with personal protective equipment (PPE), and the 
travel time equals the sum of chute time and en-route time. 
Similar to the USA, there are two types of EMS vehicles in 
Taiwan: basic life support (BLS) and advanced life support 
(ALS). A demand call of higher severity is covered by an 
ALS ambulance, while BLS or ALS ambulances cover 
lower-severity demands. The proposed model aims to 
consider coverage and equity for a good and similar 
response to all the demands by maximizing the number of 
demand zones to be covered and minimizing the travel time 
for uncovered demand zones. Given a set of possible 
locations for ambulance stations with two types of EMS 
vehicles and a set of demand zones with or without COVID-
19, the proposed model locates ambulance stations and 
allocates ambulances to these stations based on the 
objectives mentioned above and constraints. The parameters 
and their description are presented in Table 1, and the 
mathematical model is explained in the following section. 
Table 2 summarizes the decision variables and auxiliary 
variables, where the decision variables 𝑥!"#  takes value 1 if 
the demand zone i is covered by type k ambulance from 
location j, and 0 otherwise, while the auxiliary variables 𝑧!# 

takes 1 represent the demand zone i is covered by type k 
ambulance, 𝛿!!

#  takes 1 represent the demand zone i is 
covered by type k ambulance from location j within primary 
coverage standard (r1), 𝜃!"#  takes 1 represent the demand 
zone i is covered by type k ambulance from location j within 
secondary coverage standard (r2). 
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Table 1  Notations 
Parameters Description  

𝐼 Set {𝐼$ , 𝐼% , . . . , 𝐼&}of demand zones (indexed by 𝑖 ) to be 

covered. 
𝐿 Set {𝐿$, 𝐿%, . . . , 𝐿'}of candidate locations (indexed by 𝑗) . 
𝐾 Set {𝐾$, 𝐾%, . . . , 𝐾(}of vehicle types (indexed by 𝑘) . 

𝑑!# Demands at zone 𝑖	of type k	with COVID-19 suspected 
�̅�!# Demands at zone 𝑖	of type k without COVID-19 suspected 
𝐷!# Demands at zone 𝑖	of type k 
𝑝# Fleet size of type 𝑘  vehicle ( 𝑘=1, indicated to BLS; 𝑘=2, 

indicated to ALS). 
𝑝" Vehicle capacity of location 𝑗 
𝑡!"#  Response time for demand zone 𝑖 from location 𝑗 by type 𝑘 
𝑡!" Estimated enroute time from demand zone 𝑖 to location 𝑗 
𝑡"̅# Chute time without personal protective requirement from location 

𝑗 by type  𝑘 vehicle 
𝑡"# Chute time with personal protective requirement from location 

𝑗	by type 𝑘 vehicle 
𝑟1 Primary coverage standard 
𝑟2 Secondary coverage standard 
𝛼 portion of demand zones that are covered within primary coverage 

standard 

Table 2  Decision variables and Auxiliary variables 
Variables Description 

𝑥!"#  Decision variable: 𝑥!"#= 1, if demand zone 𝑖 is covered by type 𝑘 
from location 𝑗 ; otherwise 𝑥!"#= 0, for 1≤ 𝑖 ≤ n, 1 ≤ 𝑗 ≤𝑚 and 1 

≤ 𝑘 ≤	𝑞. 
𝑦"# Number of type k vehicle deployed at demand zone 𝑗 
𝑧!# Auxiliary variable:𝑧!#=1, if 𝑑!#≥ 1; otherwise 𝑧!#= 0, for 1≤ 𝑖 ≤ n , 

and 1 ≤ 𝑘 ≤	𝑞 . 
𝛿!!
#  Auxiliary variable:𝛿!!

#=1, if (𝑡!"# 	– 𝑟1) ≥ 0; otherwise 𝛿!!
#  = 0, for 

1≤ 𝑖 ≤ n ,1 ≤ 𝑗 ≤	𝑚 and 1 ≤ 𝑘 ≤		𝑞 . 
𝜃!"#  Auxiliary variable:𝜃!"#=1, if (𝑡!"# 	– 𝑟2) ≥ 0; otherwise 𝜃!"#  = 0, for 

1≤ 𝑖 ≤ n ,1 ≤ 𝑗 ≤	𝑚 and 1 ≤ 𝑘 ≤		𝑞 . 
 
Maximize 
𝐹9 = 𝜔: ∗

;!<;!=>?
;!=@A<	;!=>?

+𝜔B ∗
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Subject to 
𝐷>N =	 �̅�>N + 𝑑>N					∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾  (4) 

(𝑑>N − 1) −	𝑧>N𝑀 < 0					∀𝑖 ∈ 𝐼	, ∀𝑘 ∈ 𝐾  (5) 

(𝑑>N − 1) + (1 − 𝑧>N)𝑀 ≥ 0						∀𝑖 ∈ 𝐼	, ∀𝑘 ∈ 𝐾 (6) 

𝑡>ON =	 𝑡>O +	𝑡O̅N +	𝑡ON𝑧>N					∀𝑖 ∈ 𝐼	, ∀𝑗 ∈ 𝐿, ∀𝑘 ∈ 𝐾 (7) 

𝑦ON = ∑ 𝑥>ON?
>P: 					∀𝑗 ∈ 𝐿, ∀𝑘 ∈ 𝐾  (8) 

∑ 𝑦ON ≤=
OP: 	𝑝N					∀𝑘 ∈ 𝐾   (9) 

∑ 𝑦ON ≤
Q
NP: 𝑝O 					∀𝑗 ∈ 𝐿   (10) 

(𝑡>ON − 𝑟1)𝑥>ON + 𝛿>ON𝑀 ≥ 0			   (11) 

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝑆, ∀𝑘 ∈ 𝐾   

(𝑡>ON − 𝑟1)𝑥>ON − (1 − 𝛿>ON )𝑀 < 0	  (12) 

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝑆, ∀𝑘 ∈ 𝐾     

𝛼𝐷>: ≤	∑ ∑ 𝛿>ONB
NP:

=
OP: 					∀𝑖 ∈ 𝐼   (13) 

𝛼𝐷>B ≤	∑ 𝛿>%
B=

OP: 					∀𝑖 ∈ 𝐼   (14) 

(𝑡>ON − 𝑟2)𝑥>ON + 𝜃>ON𝑀 ≥ 0		   (15) 

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐿, ∀𝑘 ∈ 𝐾  

(𝑡>ON − 𝑟2)𝑥>ON − (1 −	𝜃>ON )𝑀 < 0	  (16)  

∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐿, ∀𝑘 ∈ 𝐾  

𝐷>: ≤ ∑ ∑ 𝜃>ON 	B
NP:

=
OP: 					∀𝑖 ∈ 𝐼   (17) 

𝐷>B ≤	∑ 𝜃>ON=
OP: 					∀𝑖 ∈ 𝐼   (18) 

In the above formulation, we aim to maximize the 
EMS coverage and minimize the response time for 
uncovered demand zones by employing the weighted sum 
method to convert the multi-objective problem into a single 
objective function in Eq. (1) to normalize the different 
measurement scales. In order to ensure a balanced 
consideration of both EMS coverage maximization and 
response time minimization within our single aggregated 
objective function, two weights are added in Eq. (3), and the 
weights (w1 and w2) are calibrated such that their sum equals 
1. Specifically, the objective function F1 within Eq. (3) is 
designed to maximize the average EMS coverage across all 
demand zones, regardless of their association with suspected 
COVID-19 cases. Conversely, Eq. (2) focuses on 
minimizing the response time for those demand zones that 
remain uncovered.  

Eq.(4) indicates the number of demands at zone 𝑖 of 
type k (𝐷>N) equals to the number of demands at zone 𝑖 of 
type k with (𝑑>N) and without (�̅�>N) COVID-19 suspicions. 
Eq.(5) and (6) denote the auxiliary variable 𝑧>N	 reveals 
whether there are demands at zone 𝑖  for type k with 
COVID-19 suspected  elor not. Eq.(7) denotes the response 
time of demand zone 𝑖 from location 𝑗 by type 𝑘 equals 
to the estimated enroute time, chute time, and chute time 
with the personal protective requirement (PPE). But, the 
chute time with the PPE will be added only if there are 
demands at zone 𝑖  of type k with COVID-19 suspected. 
Eq.(8) indicates the total number of demands covered by 
location 𝑗 equals to the number of vehicles in location 𝑗. 
Eq.(9) ensure total number of vehicles of each type k does 
not exceed the give fleet size	 𝑝N. Eq.(10) ensure the total 
number of vehicles deployed at location 𝑗 does not exceed 
its capacity 𝑝O  . Eq.(11) and (12) denote the auxiliary 
variable 𝛿>ON  reveals whether demand zone 𝑖 is covered by 
location 𝑗  by type 𝑘  vehicle within primary coverage 
standard (𝑟1). Eq.(13) and (14) restrict 𝛼 percent of the 
total number of demands of type 1 (𝑘 = 1) can be covered 
within primary coverage standard ( 𝑟1 ) by all types of 
vehicles (BLS and ALS), while 𝑘 = 2 can be covered only 
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by type 2 (ALS). Eq.(15) and (16) denote the auxiliary 
variable 𝜃>ON  reveals whether demand zone 𝑖 is covered by 
location j by type 𝑘  vehicle within secondary coverage 
standard (𝑟2). Eq.(17) and (18) ensure all demand zone can 
be covered within secondary coverage standard (𝑟2), while 
demands of type 1 (𝑘 = 1) can be covered by all types of 
vehicles and type 2 (𝑘 = 2) can be covered by only type 2 
vehicles. 

4. The tailored genetic algorithm 

4.1 Chromosome and initial population 

According to the comprehensive analysis conducted by 
Katoch et al. [39] the established encoding schemas in the 
field of genetic algorithm encompass binary, octal, 
hexadecimal, permutation, value-based, and tree. For the 
purpose of this study, binary encoding has been chosen due 
to its extensive usage and ease of implementation, in order 
to address the stated problem that corresponds to binary 
encoding.  

A chromosome is a collection of binary variables in 
which each binary variable indicates whether demand zone 
i is covered by type k from location j, as illustrated in Figure 
1. These chromosomes, denoted as c, are generated in a 
random manner, with the length of a chromosome denoted 
as CL, the population size denoted as PS and the ith gene 
chromosome represented as 𝐺>ON . If the value of 𝐺>ON  is 1, it 
signifies that demand zone i is covered by type k from 
location j. Conversely, if the value of 𝐺>ON  is 0, it indicates 
that demand zone i is not covered by type k from location j. 
However, to avoid infeasible initial solutions, the genes are 
randomly assigned a value of 1 when there are demands in 
zone i, until the available number of ambulances for both 
types is depleted. 
 

 
Fig. 1  Chromosome encoding used in this study 

In the quest for a superior initial solution, we utilize a 
specifically designed greedy algorithm that is customized to 
tackle the proposed problem, as elucidated in Table 3. In 
order to introduce an element of chance, merely fifty percent 
of the population is produced utilizing the aforementioned 
greedy algorithm. 

Table 3  Pseudo-code for Greedy Algorithm 
Greedy Algorithm:  
1:  for k=q: 1 do 

2:      while (𝑝# > 0) 
3:          for i=1: n do 

4:              Sort 𝐷!# in descending order 
5:              for j=1: m do 

6:                 Sort 𝑡!"#  in descending order 
7:                 if 𝑝" > 0 Set 𝐺!"#=1 
8:                 else Set 𝐺!"#=0 
9:              end for 

10:          end for 

11:      end while 

12:  end for 

4.2 Evaluation and selection 

The utilization of the fitness function aims to optimize the 
criteria for selecting solutions. The evaluation of more 
superior physical fitness solutions is performed through the 
utilization of Eq. (1). Drawing upon an extensive analysis 
carried out by Katoch et al. [39] in the year 2021, various 
well-established selection techniques were identified, such 
as roulette wheel selection, rank selection, tournament 
selection, Boltzmann selection, and stochastic universal 
sampling. The commonly employed method of selecting 
individuals for the roulette wheel is susceptible to premature 
convergence [40], thus leading to the proposal of 
incorporating rank-based selection and elitism selection in 
this context. These approaches aim to tackle this issue by 
assigning ranks to individuals based on their levels of fitness 
and guaranteeing the preservation of the highest-performing 
individual for the next generation. In order to mitigate the 
risk of prematurely converging the solution to a local 
optimum and to ensure the successful propagation of the 
elite chromosome to the subsequent generation, we have 
chosen to implement rank and elitism selection. The details 
of the selection operator are illustrated in Table 4. The elitist 
population is generated based on the rank of fitness value 
of each chromosome. This elitist population size is 
denoted as eps, while the fitness function is denoted as 
F(c). In all generations, where the chromosome proves 
infeasible, it will be eliminated, and all gene (𝐺!"# ) will be 
assigned a value of zero. This signifies that demand zone 
i will not receive coverage from ambulance type k 
originating from location j. Furthermore, the 
chromosomes are arranged in descending order and 
subsequently incorporated into the privileged population 
until it reaches its maximum capacity. 

Table 4  Pseudo-code for selection operator 
Ranked-Elitist Selection Algorithm  

1.  Set elitist population size (eps) 

2.  for c=1: PS do  

3.      Compute the fitness value F(c) using Eq.(1) 

4.      Check feasibility of each chromosome (c) 

5.      If (infeasible) Set 𝐺!"#=0, F(c)=0 

6.  end for 

7.  Sort F(c) in descending order 

8.  Add the chromosome c into elitist population according to the descending 
order 
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4.2 Crossover and mutation 

Among the abundance of established crossover operator, 
such as single point, two-point, and uniform crossovers, the 
k-point crossover operator distinguishes itself due to its 
efficacy in our investigation. The integration of binary 
encoding into our genetic algorithm framework seamlessly 
aligns with the characteristics of the k-point crossover 
operator. By strategically selecting multiple crossover points 
along the binary strings, this operator not only facilitates the 
exchange of genetic information but also aids in the 
exploration of diverse solutions within the problem space. 
Importantly, the adoption of the k-point crossover operator 
fulfills the dual purpose of harnessing the advantages of 
binary encoding while mitigating the risk of infeasible 
solutions. This nuanced approach ensures the generation of 
offspring that complies with the constraints of the 
optimization problem, thus contributing to the effectiveness 
of our proposed methodology. 

The preservation of genetic diversity in successive 
populations is of utmost importance for the effectiveness of 
genetic algorithms. In the midst of the various mutation 
operators available, such as displacement, simple inversion, 
and scramble mutation, our study strategically opts for the 
utilization of the inversion operator. This decision is justified 
by its compatibility with binary encoding and the inherent 
simplicity of its implementation. Binary encoding, being a 
fundamental choice within our genetic algorithm framework, 
seamlessly aligns with the characteristics of the inversion 
mutation operator. By selectively inverting segments of 
binary strings, this operator not only maintains genetic 
diversity but also facilitates the exploration of new and 
innovative solutions within the solution space. The 
deliberate selection of the inversion operator underscores 
our dedication to an efficient and streamlined 
implementation, which ultimately ensures the algorithm's 
robust performance in optimizing complex problems. 

The specificities of the crossover operator are 
delineated in Table 5. The k-points crossover operator 
commences by establishing the size of k, indicated as ks. 
Subsequently, the genetic material from parent 1 and parent 
2 is replicated to generate offspring 1 and offspring 2, 
denoted as p1_𝐺!"#  , p2_𝐺!"# ,	o1_𝐺!"# , and o2_𝐺!"# , respectively. 
Following this, a random selection is made from the total 
number of demand zones n, the total number of locations m, 
and the total number of types q. The genes of offspring is 
then substituted with that of parent 2, and conversely, the 
genes of offspring 2 is substituted with that of parent 1. 

Table 5  Pseudo-code for crossover operator 
Crossover operator 

1:  Set k-point size ks 

2:  Set c1_𝐺!"#  = p1_𝐺!"#  

3:  Set c2_𝐺!"#  = p2_𝐺!"#  

4:  for ci = 1: ks do 

5:      i = rand number from n 

6:      j = rand number from m 

7:      k = rand number from q 

8:  Set c1_𝐺!"#  = p2_𝐺!"#  

9:  Set c2_𝐺!"#  = p1_𝐺!"#  

10:  end for 

5. Results and Discussion 

5.1 Experimental setting 

This study encompasses a comprehensive investigation of 
seven distinct parameter configurations (Group 1-7), in 
which each combination consists of three specific settings, 
details can be seen from Table 6. The primary goal is to 
systematically examine the impact of these variations in 
parameters on the performance of the evolutionary 
algorithm.  

Table 6  Comprehensive matrix of experimental settings and 
hyperparameter combinations 

No. 
Group 

No. 
Setting  

Manipulated 
Parameters 

Controlled Parameters 

1 1,2,3 Number of 

generations 

100,500,1000 

Population size (30), Selection size 

(30), Elitism size (5), Mutation 

probability (0.2), k-point in 

Selection operator (ks=2), k-point 

in Mutation operator (ks=1) 

2 4,5,6 Population size  

30,50,100 

Number of generation (100), 

Selection size (30), Elitism size (5), 

Mutation probability (0.2), k-point 

in Selection operator (ks=2), k-

point in Mutation operator (ks=1) 

3 7,8,9 Selection size  

10,20,30 

Number of generation (100), 

Population size (30), Elitism size 

(5), Mutation probability (0.2), k-

point in Selection operator (ks=2), 

k-point in Mutation operator (ks=1) 

4 10,11,12 Elitism size 

5,10,15 

Number of generation (100), 

Population size (30), Selection size 

(20), Mutation probability (0.2), k-

point in Selection operator (ks=2), 

k-point in Mutation operator (ks=1) 

5 13,14,15 Mutation 

probability 

0.1,0.2,0.3 

Number of generation (100), 

Population size (30), Selection size 

(20), Elitism size (10), k-point in 

Selection operator (ks=2), k-point 

in Mutation operator (ks=1) 

6 16,17,18 k-point in 

Selection 

operator 

2,3,4 

Number of generation (100), 

Population size (30), Selection size 

(20), Elitism size (10),Mutation 

probability (0.2), k-point in 

Mutation operator (ks=1) 

7 19,20,21 k-point in 

Mutation 

operator 

Number of generation (100), 

Population size (30), Selection size 

(20), Elitism size (10),Mutation 



 
7 

No. 
Group 

No. 
Setting  

Manipulated 
Parameters 

Controlled Parameters 

1,4,10 probability (0.2), k-point in 

Selection operator (ks=2) 
The experimental instance for this study is divided into 

three distinct categories, namely small, medium, and large, 
which represent different levels of complexity suitable for 
optimization using genetic algorithms. For different instance 
sizes, the weights are set to 0.5 for w1 and w2. It is imperative 
to note that in our numerical experiments, we have assigned 
equal importance to both considered objectives to ensure a 
balanced influence on the combined objective function used 
in the optimization process. In the case of small instances, 
the number of demand locations (n) is varied among values 
of 10, 20, 30, 40, and 50, while the number of candidate 
locations (m) is fixed at 5 and the number of vehicle types 
(q) is set at 2. In the medium instance, the range of demand 
locations (n) extends from 100 to 500 with increments of 
100 (i.e., 100, 200, 300, 400, 500). The number of candidate 
locations (m) is established at 10, while the number of 
vehicle types (q) remains constant at 2. In the case of the 
large dataset, the range of demand locations (n) also spans 
from 100 to 500 with increments of 100 (i.e., 100, 200, 300, 
400, 500). However, the number of candidate locations (m) 
is increased to 30, while the number of vehicle types (q) 
remains constant at 2. This systematic categorization 
enables a comprehensive examination of the optimization 
performance of the genetic algorithm across different data 
scales, providing valuable insights for the optimization of 
complex problems through genetic algorithms. 

5.2 Experimental Results 

In this study, the tailored genetic algorithm was executed 
100 times for each instance, spanning small, medium, and 
large scenarios. Additionally, for the small instances, the 
CPLEX optimization tool was employed to acquire the 
optimal solution. The inclusion of CPLEX results in these 
cases serves to validate that our genetic algorithm obtains 
optimal solutions, ensuring the efficacy and accuracy of our 
genetic algorithm in smaller-scale scenarios. The average 
processing times across 21 settings for small, medium, and 
large instances are detailed in Figures 2, 4, and 6, 
respectively. Concurrently, Figures 3 and 5 present the 
fitness values for medium and large instances. Owing to the 
consistent nature of all settings, the fitness values for small 
instances are omitted from the presentation. Furthermore, to 
validate the statical significance of the differences between 
the two settings, we conducted a T-test and the findings are 
displayed in Table 7. 

 

Fig. 2  The average processing time of settings for small instances 

For small instances, the graphical representation in 
Figure 2 clearly illustrates that the average processing times 
of groups 1 and 2 markedly differ from those of the 
remaining groups. Consider instance n=50 as an example, 
where the average processing times for settings 1-6 (s1-s6) 
are 0.64, 2.53, 4.99, 0.62, 1.05, and 2.08 seconds, 
respectively. In contrast, the processing times for settings 7-
21 are consistently less than 1 second, averaging around 
0.64 seconds. It is evident from Table 6 that the average 
processing times of groups 1 and 2 exhibit statistically 
significant differences. This outcome aligns with the 
variations among settings, specifically regarding the number 
of generations and population size. Notably, the average 
processing times for settings 13-21 are comparatively small, 
with setting 20 achieving the optimal solution in the shortest 
time. The distinctions between settings 19, 20, and 21 are 
particularly noteworthy. Consequently, in small instances, 
setting 20 emerges as the most appropriate configuration. 

 
Fig. 3  The fitness of settings for medium instances 

Figure 3 presents the fitness values for various settings 
applied to medium instances. Observing the figure, minimal 
differences in objective values are apparent. However, a 
detailed examination of the fitness values in Table 6 for the 
medium dataset reveals noteworthy distinctions within 
group 2 between settings 4 and 6, showcasing average 
objective values of 0.346 and 0.348 across five datasets. 
Group 5 exhibits significant differences with Settings 13 and 
15, displaying average objective values of 0.347 and 0.345, 
respectively. Group 7 demonstrates significant variations 
among Settings 19, 20, and 21, with average objective 
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values of 0.346, 0.342, and 0.343, respectively. 

 
Fig. 4  The average processing time of settings for medium instances 

Figure 4 illustrates marked disparities in processing 
times. A closer examination of Table 6's test results 
highlights significant differences in processing times for 
Settings 1, 2, and 3 in the medium instance, recording 
average processing times of 0.646, 2.65, and 5.10 seconds, 
respectively. In Group 2, Settings 4, 5, and 6 display 
significant differences, recording average processing times 
of 0.65 seconds, 1.07 seconds, and 2.09 seconds, 
respectively. Similarly, Group 5 showcases significant 
differences with Settings 13, 14, and 15, presenting average 
processing times of 0.72, 0.64, and 0.63 seconds, 
respectively. Within Group 6, Settings 19, 20, and 21 also 
demonstrate significant differences, reflecting average 
processing times of 0.650, 0.57, and 0.58 seconds, 
respectively. Considering both processing times and 
objective values, it is evident that Setting 6 achieves the 
optimal objective value within an acceptable processing 
time. If prioritizing a shorter processing time, setting 13 
represents the subsequent best parameter combination. 

 
Fig. 5  The fitness of settings for large instances 

In Figure 5, it is evident that there is minimal difference 
in the objective values. However, upon examining the fitness 
values for the large instance in Table 6, significant 
differences emerge in Group 2 between Settings 4 and 5, 
which significantly differ from Setting 6, with average 
objective values of 0.346, 0.346, and 0.349, respectively. 
Within Group 6, Settings 16 and 17 exhibit noteworthy 
differences from Setting 18, with average objective values 
of 0.345, 0.345, and 0.348, respectively. In Group 7, Setting 
19 displays significant differences from Settings 20 and 21, 

with average objective values of 0.346, 0.343, and 0.342, 
respectively. 

 
Fig. 6  The average processing time of settings for large instances 

Figure 6 reveals substantial differences in processing 
times. Further scrutiny of the t-test results in Table 7 
indicates notable distinctions in processing times for Group 
1's Settings 1, 2, and 3 in the large instance, with average 
processing times of 0.66, 2.65, and 5.13 seconds, 
respectively. For Group 2, Settings 4, 5, and 6 exhibit 
significant differences, with average processing times of 
0.65, 1.05, and 2.14 seconds, respectively. In Group 5, 
Settings 13, 14, and 15 display marked differences, with 
average processing times of 0.74, 0.66, and 0.64 seconds, 
respectively. Within Group 6, Settings 16 and 18 exhibit 
noteworthy distinctions, with average processing times of 
0.65 and 0.67 seconds, respectively. Finally, in Group 7, 
Settings 19, 20, and 21 show marked differences, with 
average processing times of 0.65, 0.57, and 0.59 seconds, 
respectively. 

Considering both processing times and objective values, 
it is evident that Setting 6 attains a relatively better objective 
value within an acceptable processing time. Setting 18 
represents the next best parameter combination if a shorter 
processing time is a priority. 

Our experimental results offer nuanced observations on 
the effectiveness of various parameter configurations within 
an optimization framework across different instance sizes. 
For small instances, our analysis reveals significant 
differences in average processing times and objective values, 
focusing on the influential role played by the number of 
generations and population size. Notably, Configuration 20 
emerges as the most prominent choice, achieving optimality 
in the shortest time frame, making it the preferable option 
for smaller instances. Moving on to medium-sized instances 
where marginal disparities in objective values are observed, 
a thorough examination uncovers notable distinctions within 
specific parameter groups. Setting 6 stands out as an 
excellent choice, displaying optimal objective values within 
an acceptable processing time. Importantly, Setting 13 
proves to be the best parameter combination when 
prioritizing a more expedient processing time. Our 
investigation demonstrates substantial variations in 
objective values and processing times across different 
parameter settings when considering large instances. 
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Remaining a robust choice, Configuration 6 consistently 
exhibits a superior objective value within an acceptable 
processing time, positioning it as a formidable candidate for 
larger-scale instances. Moreover, setting 18 emerges as the 
optimal parameter combination when a swift processing 
time takes precedence. In summary, our results highlight the 
critical significance of tailoring parameter configurations 
based on the specific characteristics of the problem instances. 
The consistent performance of setting 6 across diverse 
scenarios positions it as a robust and versatile choice. 

Table 7  T-Test Analysis for settings across varied instance sizes  

6. Conclusions 

In this research endeavor, we have embarked upon an 
exploration of the intricate challenges that arise in the 
optimization of emergency medical services (EMS). 
Additionally, we have presented a novel formulation of a 
mathematical problem specifically tailored to address the 
issue of ambulance location in rural areas. This unique 
problem formulation has been meticulously designed to 
prioritize coverage and equity, ensuring a fair and efficient 
response to all demands. The overarching objective is 
achieved by maximizing the coverage of demand zones 
while simultaneously minimizing the travel time for those 
zones that remain without coverage. In order to address the 
inherent complexity of the formulated problem, we have 
adapted a genetic algorithm (GA) to obtain acceptable 
solutions. This GA represents a key innovation, offering a 
versatile and effective approach to tackling the intricacies of 
optimizing rural EMS. Using a genetic algorithm is aligned 

with the dynamic nature of EMS challenges and the need for 
robust and adaptable solutions in various scenarios. Our 
experimental study, encompassing 21 distinct settings, 
serves as a testament to the efficacy and efficiency of our 
proposed approach. Notably, the comparison with CPLEX 
in small instances underscores the effectiveness of our 
method and demonstrates its competitive performance. 

Furthermore, the efficiency of our approach is evident 
across various scales of instances, as we consistently obtain 
approximate solutions within a concise timeframe—less 
than 1 second. This efficiency is of paramount importance 
in the realm of emergency response, where swift decision-
making plays a critical role in saving lives and mitigating 
adverse outcomes. In conclusion, our research not only 
provides a fresh perspective on the domain of EMS 
optimization but also introduces a tangible and practical 
solution that has been tailored to meet the unique challenges 
of rural areas. The novel mathematical formulation, in 
combination with the efficiency and effectiveness of the 
genetic algorithm, positions our approach as a significant 
advancement in the quest for improved emergency medical 
services. The implications of our findings extend beyond 
theoretical frameworks, as they offer a tangible impact on 
real-world emergency response strategies, particularly in 
rural communities. As we present our work to the scholarly 
community, we are optimistic that our contributions will 
catalyze further advancements in EMS optimization, 
ultimately fostering more resilient and responsive 
emergency healthcare systems. 
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