
DOI:10.1587/transinf.2024EDP7011

Publicized:2024/04/12

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Investigating and Enhancing the Neural Distinguisher for
Differential Cryptanalysis

Gao WANG†, Gaoli WANG† ,††a), and Siwei SUN†††, Nonmembers

SUMMARY
At Crypto 2019, Gohr first adopted the neural distinguisher for differ-

ential cryptanalysis, and since then, this work received increasing attention.
However, most of the existing work focuses on improving and applying the
neural distinguisher, the studies delving into the intrinsic principles of neu-
ral distinguishers are finite. At Eurocrypt 2021, Benamira et al. conducted
a study on Gohr’s neural distinguisher. But for the neural distinguishers
proposed later, such as the 𝑟-round neural distinguishers trained with 𝑘 ci-
phertext pairs or ciphertext differences, denoted as 𝑁𝐷𝑐𝑝

𝑘 𝑟
(Gohr’s neural

distinguisher is the special 𝑁𝐷𝑐𝑝

𝑘 𝑟
with 𝑘 = 1) and 𝑁𝐷𝑐𝑑

𝑘 𝑟
, such research

is lacking. In this work, we devote ourselves to study the intrinsic principles
and relationship between 𝑁𝐷𝑐𝑑

𝑘 𝑟
and 𝑁𝐷𝑐𝑝

𝑘 𝑟
.

Firstly, we explore the working principle of 𝑁𝐷𝑐𝑑
1 𝑟

through a series
of experiments and find that it strongly relies on the probability distribu-
tion of ciphertext differences. Its operational mechanism bears a strong
resemblance to that of 𝑁𝐷𝑐𝑝

1 𝑟
given by Benamira et al.. Therefore, we

further compare them from the perspective of differential cryptanalysis and
sample features, demonstrating the superior performance of 𝑁𝐷𝑐𝑝

1 𝑟
can be

attributed to the relationships between certain ciphertext bits, especially the
significant bits. We then extend our investigation to 𝑁𝐷𝑐𝑝

𝑘 𝑟
, and show that

its ability to recognize samples heavily relies on the average differential
probability of 𝑘 ciphertext pairs and some relationships in the ciphertext
itself, but the reliance between 𝑘 ciphertext pairs is very weak.

Finally, in light of the findings of our research, we introduce a strat-
egy to enhance the accuracy of the neural distinguisher by using a fixed
difference to generate the negative samples instead of the random one.
Through the implementation of this approach, we manage to improve the
accuracy of the neural distinguishers by approximately 2% to 8% for 7-round
Speck32/64 and 9-round Simon32/64.
key words: Differential Cryptanalysis, Neural Distinguisher, Deep Learn-
ing, Interpretability, Block Ciphers

1. Introduction

Lightweight block ciphers, serving as the fundamental com-
ponents of cryptographic systems, play a pivotal role in safe-
guarding data confidentiality within resource-constrained
devices. Its security has a direct bearing on the safety of
our data, underscoring the importance of conducting com-
prehensive evaluations of the cipher’s robustness and relia-
bility. As the field of Machine Learning continues to advance
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and find broader applications, an expanding cohort of cryp-
tographers has begun to investigate its utility in a range of
cryptanalysis techniques. These methods include differential
cryptanalysis [1], linear cryptanalysis [2], integral cryptanal-
ysis [3], and Side-Channel cryptanalysis [4], and others. In
this paper, we focus on machine learning-based differential
cryptanalysis.

At Crypto 2019, Gohr [1] first proposed the concept of
neural differential distinguishers and successfully applied it
to the reduced-round Speck32/64. Compared to the r-round
pure differential distinguishers 𝐷𝑟 , the neural differential
distinguishers can achieve higher accuracy. However, the
reasons behind the superior performance of the neural dis-
tinguisher remain unclear. To address this knowledge gap,
Benamira et al. [5] explored its underlying principles from
both cryptanalysis and machine learning perspectives at Eu-
rocrypt 2021, as detailed in Section 2.5.

In machine learning-based differential cryptanalysis,
the success rate of key recovery, as well as the data com-
plexity, is related to the distinguisher’s accuracy. Therefore,
improving accuracy of the neural distinguisher is an impor-
tant task. A common strategy to improve the accuracy of
neural networks across various machine learning tasks is to
provide more features, such as [6,7]. The optimization work
in [5] also aims to provide additional features to the neural
network. Inspired by this, Chen et al. [8] used 𝑘 cipher-
text pairs to develop a superior 𝑟-round neural distinguisher,
denoted as 𝑁𝐷𝑐𝑝

𝑘 𝑟
. In fact, Gohr’s neural distinguisher is

a special case of Chen’s neural distinguisher with 𝑘 = 1,
i.e., 𝑁𝐷𝑐𝑝1 𝑟 . In contrast to using multiple ciphertext pairs,
Hou et al. [9] employed 𝑘 ciphertext differences to construct
the 𝑟-round neural distinguisher 𝑁𝐷𝑐𝑑

𝑘 𝑟
. Additionally, some

studies, such as [10, 11], attempted to incorporate informa-
tion from previous rounds to enhance the accuracy of neural
distinguishers. However, none of these works investigated
the factors for enhancing the accuracy of the neural distin-
guisher.

Moreover, as outlined in [5], it is unfair to directly com-
pare 𝐷𝑟 and 𝑁𝐷𝑐𝑝1 𝑟 due to their different training methods,
where 𝑁𝐷𝑐𝑝1 𝑟 is trained with the ciphertext pairs, while 𝐷𝑟
only relies on their differential probability. Although Be-
namira et al. constructed 𝑁𝐷𝑐𝑑1 𝑟 with ciphertext differences
and compared its accuracy with 𝑁𝐷𝑐𝑝1 𝑟 , they did not conduct
a more in-depth investigation, such as the working mecha-
nism of 𝑁𝐷𝑐𝑑1 𝑟 , the relationships between 𝐷𝑟 and 𝑁𝐷𝑐𝑑1 𝑟 or
between 𝑁𝐷𝑐𝑑1 𝑟 and 𝑁𝐷𝑐𝑝1 𝑟 . The research on the underlying
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principles of 𝑁𝐷𝑐𝑑
𝑘 𝑟

and 𝑁𝐷𝑐𝑝
𝑘 𝑟

is also notably absent.
Our Contributions. In this paper, we aim to ana-

lyze the principles and interrelationships of the neural dis-
tinguishers 𝑁𝐷𝑐𝑑

𝑘 𝑟
and 𝑁𝐷𝑐𝑝

𝑘 𝑟
and explore the methods to

enhance the accuracy of the neural distinguisher. We begin
our exploration by investigating the operational mechanisms
of 𝑁𝐷𝑐𝑑1 𝑟 in accordance with the methodologies outlined
in [5]. The findings are summarized as follows:

• Choosing the input difference of the optimal 𝑟-round
differential path can not improve the accuracy of 𝑁𝐷𝑐𝑑1 𝑟 ,
similar to its impact on 𝑁𝐷𝑐𝑝1 𝑟 .

• 𝑁𝐷𝑐𝑑1 𝑟 is proficient in identifying the (truncated) differ-
ences that exhibit a high bit bias or differential proba-
bility within the penultimate or antepenultimate rounds,
like 𝑁𝐷𝑐𝑝1 𝑟 .

• 𝑁𝐷𝑐𝑑1 𝑟 has a threshold interval 𝜏, and it can effectively
recognize the differences with a probability exceeding
the upper limit of 𝜏, but struggles to discern differences
with a probability below the lower limit of 𝜏. For the
differences whose probabilities fall within 𝜏, 𝑁𝐷𝑐𝑑1 𝑟 can
only recognize a part of them. This characteristic ex-
plains why 𝑁𝐷𝑐𝑑1 𝑟 can recognize (truncated) differences
that have a high bit bias or probability in the last two
rounds.
Subsequently, we delve deeper into the correlation be-

tween 𝑁𝐷𝑐𝑑1 𝑟 and 𝑁𝐷𝑐𝑝1 𝑟 . We uncover that 𝑁𝐷𝑐𝑝1 𝑟 also has a
𝜏, and its 𝜏 is very similar, if not identical, to that of 𝑁𝐷𝑐𝑝1 𝑟 .
Moreover, by confusing the bit relations in the ciphertext
pairs, we demonstrate that the 𝑁𝐷𝑐𝑝1 𝑟 has the capacity to
discern certain relationships among the ciphertext bits, es-
pecially the significant bits. This ability is the key to 𝑁𝐷𝑐𝑝1 𝑟
achieving superior accuracy over 𝑁𝐷𝑐𝑑1 𝑟 .

After that, we further broaden these experiments to
𝑁𝐷

𝑐𝑝

𝑘 𝑟
and demonstrate that the average differential prob-

ability of 𝑘 ciphertext pairs plays a crucial role in enabling
𝑁𝐷

𝑐𝑝

𝑘 𝑟
to accurately identify the samples. In contrast, the

correlation between ciphertext pairs is very tenuous. Even
when a ciphertext pair within a sample is intentionally con-
fused, the 𝑁𝐷𝑐𝑝

𝑘 𝑟
can still distinguish the sample with the

same accuracy as 𝑁𝐷𝑐𝑝(𝑘−1) 𝑟 . Additionally, the significant
bits and importance rankings of the ciphertext bits for both
𝑁𝐷

𝑐𝑝

𝑘 𝑟
and 𝑁𝐷𝑐𝑝1 𝑟 are the same.

Finally, according to our research, we propose a scheme
to enhance the accuracy of neural distinguisher by employing
a fixed difference to generate the negative samples instead
of the random one. This strategy efficiently improves the
accuracy of the neural distinguisher for 7-round Speck32/64
and 9-round Simon32/64, as shown in Table 6, which clearly
demonstrates the effectiveness of our new method.

Outline. The structure of this paper unfolds as fol-
lows: Section 2 provides essential background knowledge,
including the block cipher Speck32/64 and Simon32/64, the
pure differential distinguisher 𝐷𝑟 , the neural differential dis-
tinguishers 𝑁𝐷𝑐𝑝

𝑘 𝑟
and 𝑁𝐷

𝑐𝑝

𝑘 𝑟
, and a brief description of

the works in [5]. In Section 3, we delve into the intrinsic
principles of 𝑁𝐷𝑐𝑑1 𝑟 . Following this, Section 4 undertakes

a comparative analysis between 𝑁𝐷𝑐𝑑1 𝑟 and 𝑁𝐷𝑐𝑝1 𝑟 in terms
of cryptanalysis, feature confusion and feature importance.
After that, Section 5 further studies the working mechanism
of 𝑁𝐷𝑐𝑝

𝑘 𝑟
, proposing a strategy to enhance the accuracy of

the 𝑁𝐷𝑐𝑝
𝑘 𝑟

and applying it to 7-round Speck32/64 and 9-
round Simon32/64. Finally, our researches are summarized
in Section 6.

2. Preliminary

2.1 Notations

The notations used in this paper are given in Table 1.
Table 1 Notations.

Notation Description

𝛼 Plaintext difference.

𝛽 Ciphertext difference.

⊕ Bit-wise 𝑋𝑂𝑅 .

⊞ Modular addition 2𝑛

𝐷𝑟 The 𝑟-round pure differential distinguisher.

𝑁𝐷
𝑐𝑝

𝑘 𝑟
The 𝑟-round neural differential distinguisher con-
structed with the 𝑘 ciphertext pairs in [8].

𝑁𝐷𝑐𝑑
𝑘 𝑟

The 𝑟-round neural differential distinguisher con-
structed with the 𝑘 ciphertext differences in [9].

𝑁𝐷
𝑐𝑝′
𝑘 𝑟

The 𝑟-round neural differential distinguisher con-
structed with the 𝑘 ciphertext pairs in Section 5.4.

𝐴𝑐𝑐 The accuracy of the differential distinguisher.

𝑇𝑃𝑅 The true positive rate of the differential distinguisher.

𝑇𝑁𝑅 The true negative rate of the differential distinguisher.

2.2 The Speck32/64 and Simon32/64 Cipher

Simon and Speck [12] are the lightweight block ciphers pro-
posed by the National Security Agency (NSA) in 2013. Both
of them have 10 variants, we focus on the variant with a 32-
bit block size and a 64-bit key size in this paper, known
as Speck32/64 and Simon32/64. The encryption process
of Speck32/64 is executed through 22 rounds, whereas Si-
mon32/64 implements it across 32 rounds. The round func-
tion for Speck32/64 involves modular addition 2𝑛 ⊞, left and
right circular shift (≪ and ≫), bitwise XOR ⊕, whereas
it is bitwise XOR ⊕, bitwise AND ∧ and left circular shift
≪ for Simon32/64. Their encryption processes are given
in Algorithm 1 and Algorithm 2, where 𝐾 𝑖−1 and (𝐿𝑖 , 𝑅𝑖)
represent the round key and intermediate state for the rounds
𝑖.

2.3 Pure Differential Distinguisher

In differential cryptanalysis, cryptographers aim to distin-
guish a block cipher from the random permutation function
by meticulously studying the propagation properties of plain-
text difference. For the traditional differential cryptanalysis,
the cryptographers focus on searching for the differential path
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Algorithm 1 Encryption Algorithm of Speck32/64
Input: (𝐿0, 𝑅0 ) ∈ {0, 1}32

Output: (𝐿22, 𝑅22 ) ∈ {0, 1}32

1: for all 𝑖 ← 0, 22 do
2: 𝐿𝑖 ← ((𝐿𝑖−1 ≫ 7) ⊞ 𝑅𝑖−1 ) ⊕ 𝐾 𝑖−1

3: 𝑅𝑖 = (𝑅𝑖−1 ≪ 2) ⊕ 𝐿𝑖 ;
4: end for
5: return (𝐿22, 𝑅22 )

Algorithm 2 Encryption Algorithm of Simon32/64
Input: (𝐿0, 𝑅0 ) ∈ {0, 1}32

Output: (𝐿32, 𝑅32 ) ∈ {0, 1}32

1: for all 𝑖 ← 0, 32 do
2: 𝐿𝑖 ← ((𝐿𝑖−1 ≪ 1)∧(𝐿𝑖−1 ≪ 8)⊕𝑅𝑖−1⊕(𝐿𝑖−1 ≪ 2) )⊕𝐾 𝑖−1

3: 𝑅𝑖 = 𝐿𝑖−1

4: end for
5: return (𝐿32, 𝑅32 )

(𝛼 → 𝛽) with the best differential probability 𝐷𝑃(𝛼 → 𝛽),
such as [13–15]. For a block cipher 𝐸 : 𝐹𝑛2 → 𝐹𝑛2 ,

𝐷𝑃(𝛼→ 𝛽) = #{𝑥 |𝐸 (𝑥 ⊕ 𝛼) ⊕ 𝐸 (𝑥) = 𝛽}
2𝑛

, (1)

where #{𝑆} represents the number of elements in the set
𝑆. The block cipher follows the differential transformation
𝛼→ 𝛽 with the probability 𝐷𝑃(𝛼→ 𝛽), while it is 2−𝑛 for
the random permutation function. This property allows the
attacker to construct a differential distinguisher based on the
probability of differential transformation (𝛼→ 𝛽).

As opposed to only focusing on a single differential
path, Blondeau et al. [16] introduced a method called mul-
tiple differential cryptanalysis, which considers each differ-
ential path in a differential collection Δ, i.e. 𝛼𝑖 → 𝛽 𝑗 , where
𝛼𝑖 ∈ Δ and 𝛽 𝑗 ∈ Δ. The pure differential distinguisher 𝐷𝑟
is a type of the multiple differential cryptanalysis that takes
care of each ciphertext differences 𝛽 𝑗 ∈ 𝐹𝑛2 of a plaintext
difference 𝛼. For a given differential pair (𝛼, 𝛽 𝑗 ), the 𝐷𝑟
recognizes it according to the Equation (2) provided below.{

Encryption cipher E, 𝑖 𝑓 𝐷𝑃(𝛼→ 𝛽 𝑗 ) > 2−𝑛

Random permutation function, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

2.4 Two Different Types of Neural Distinguishers

At Crypto 2019, Gohr [1] first introduced the neural dis-
tinguisher to recognize ciphertext pairs from random data
based on the fundamental principles of differential cryptanal-
ysis. This breakthrough marked a substantial advancement
in the application of deep learning to differential cryptanaly-
sis. Gohr’s neural distinguisher employs a single ciphertext
pair per sample, each derived by encrypting a plaintext pair
that adheres to a fixed difference 𝛼. Subsequently, to refine
the features available to the neural network, Chen et al. [8]
constructed 𝑟-round neural distinguishers 𝑁𝐷𝑐𝑝

𝑘 𝑟
using 𝑘 ci-

phertext pairs, as opposed to a single pair. It’s worth noting
that Gohr’s neural distinguisher can be seen as a specific in-
stance of Chen’s neural distinguisher with 𝑘 = 1, i.e., 𝑁𝐷𝑐𝑝1 𝑟 .

In addition to using ciphertext pairs, certain cryptana-
lysts have also adopted the 𝑘 ciphertext difference to con-
struct the neural distinguisher 𝑁𝐷𝑐𝑑

𝑘 𝑟
, such as [9, 17]. The

only difference between 𝑁𝐷𝑐𝑝
𝑘 𝑟

and 𝑁𝐷𝑐𝑑
𝑘 𝑟

is their data for-
mats. Hence, we introduce them together here. Their con-
struction process consists of two phases: the sample gener-
ation phase and the training phase. The sample generation
phase involves the creation of data samples for 𝑁𝐷𝑐𝑝

𝑘 𝑟
and

𝑁𝐷𝑐𝑑
𝑘 𝑟

, while the training phase focuses on training the neu-
ral distinguisher using these generated samples. The detailed
process is as follows:

• Sample Generation.
1. Generate 𝑁

𝑘
plaintext sets. Half of them con-

sist of 𝑘 plaintext pairs with difference 𝛼, while
the other half exhibit randomized plaintext dif-
ferences. These two types of plaintext set are
respectively labeled as 1 and 0.

2. Get ciphertext sets by encrypting plaintext sets
using the encryption cipher 𝐸 .

3. For 𝑁𝐷𝑐𝑝
𝑘 𝑟

, its sample consists of the ciphertext
sets and their labels.

4. For 𝑁𝐷𝑐𝑑
𝑘 𝑟

, its sample consists of the set of ci-
phertext differences and their labels.

• Training.
1. Generate 107 training data and 106 validation data,

respectively.
2. Feed the training data and validation data into the

neural network to train the neural distinguishers.
3. If the validation accuracy of the 𝑁𝐷𝑐𝑝

𝑘 𝑟
or 𝑁𝐷𝑐𝑑

𝑘 𝑟

is greater than 0.5, a available neural distinguisher
is acquired, otherwise, it is not.

Neural network architecture. In this paper, our goal is
not to explore the design of neural network for neural distin-
guishers. Therefore, we employ the well-validated residual
network architecture as described in [8]. The input layer
of 𝑁𝐷𝑐𝑝

𝑘 𝑟
is the 𝑘 ciphertext pairs, forming a matrix with

dimensions of 𝑘 × 2𝑛. In contrast, for 𝑁𝐷𝑐𝑑
𝑘 𝑟

, which uses 𝑘
ciphertext differences as a sample, the input is a matrix with
dimensions of 𝑘×𝑛. To prevent the risk of overfitting, we set
the epoch number to 30 and the model depth to 1. All other
parameters remain consistent with those detailed in [8].

2.5 Overview of Benamira’s Work

In order to figure out the inner workings of Gohr’s neural
distinguisher, 𝑁𝐷𝑐𝑝1 𝑟 , a comprehensive exploration was con-
ducted by Benamira et al. [5] at Eurocrypt 2021, integrating
perspectives from both cryptanalysis and machine learning.
From a cryptanalysis perspective, they conducted two dis-
tinct explorations. The first exploration used the input dif-
ference 0𝑥2800/0010 of the best 5-round difference path to
train the 𝑁𝐷𝑐𝑝1 𝑟 , in contrast to 0𝑥0040/0000 employed in [1].
However, the accuracy achieved with 0𝑥2800/0010, 75.85%,
is lower than 92.9% acquired with 0𝑥0040/0000. The sec-
ond exploration utilized the differences of the ciphertext pairs
to train 𝑁𝐷𝑐𝑑1 𝑟 . The accuracy of the newly developed 5/6/7-
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round neural distinguishers is 90.6%/75.4%/58.3%, which
is slightly worse than that of 𝑁𝐷𝑐𝑝1 𝑟 .

Then, four experiments (Experiments A, B, C and D)
were conducted to analyze the ciphertext pairs. Experiment
A aimed to assess whether the 𝑁𝐷𝑐𝑝1 5 was more likely to
recognize the 5-round ciphertext difference with a higher
probability as 𝐷𝑟 . However, the results showed otherwise,
contrary to our initial expectation. After Experiment A,
Experiment B investigated the capacity of 𝑁𝐷𝑐𝑝1 5 to effec-
tively identify the 5-round ciphertext pairs characterized by a
strong probability in their 3/4-round differences. The results
of the experiments indicated that 𝑁𝐷𝑐𝑝1 5 can adeptly recog-
nize these pairs with an accuracy of approximately 100%.

In addition, they carried out an examination of the bias
displayed by the 3/4-round differential bits (𝑇𝐷3/4) and noted
a strong dependence of 𝑁𝐷𝑐𝑝1 5 on 𝑇𝐷3/4 in Experiment C.
To verify the capability of 𝑁𝐷𝑐𝑝1 𝑟 in identifying truncated
differences, a 2-round neural distinguisher was trained with
𝑇𝐷3 in Experiment D. The accuracy of this 2-round neural
distinguisher reached 96.57%, affirming its ability in identi-
fying truncated differences.

From a machine learning perspective, their objective
was to investigate the possibility of replacing 𝑁𝐷

𝑐𝑝

1 𝑟 with
a hybrid strategy inspired by both differential cryptanaly-
sis and machine learning. To accomplish this objective, they
delved into three essential components of the neural network:
the convolution layer, the 10-layer residual blocks, and the
MLP block. The initial convolution layer transform the in-
put (𝐶𝑙 , 𝐶𝑟 , 𝐶′𝑙 , 𝐶

′
𝑟 ) into (Δ𝐿,Δ𝑉,𝑉0, 𝑉1), alongside a linear

amalgamation of these elements, where (Δ𝐿,Δ𝑉,𝑉0, 𝑉1) =
(𝐶𝑙 ⊕𝐶′𝑙 , 𝐶𝑙 ⊕𝐶𝑟 ⊕𝐶

′
𝑙
⊕𝐶′𝑟 , 𝐶𝑙 ⊕𝐶𝑟 , 𝐶′𝑙 ⊕𝐶

′
𝑟 ). The 10-layer

residual blocks in the middle was replaced with the Masked
Output Distribution Table (M-ODT). The final MLP block
was substituted with a non-neuronal classifier, the Light Gra-
dient Boosting Machine (LGBM) in [18]. As a result, they
achieved a non-neuronal model with an accuracy only 0.6%
lower than that of the 𝑁𝐷𝑐𝑝15

.
Besides investigating the inner workings of 𝑁𝐷𝑐𝑝1 𝑟 , Be-

namira et al. also introduced a technique to enhance the
accuracy of the neural distinguisher by employing a batch of
ciphertext inputs.

3. The Interpretability of the Neural Distinguisher with
a ciphertext difference (𝑵𝑫𝒄𝒅

1 𝒓 )

Although Benamira et al. utilized the ciphertext differences
to train 𝑁𝐷𝑐𝑑1 𝑟 in [5], they did not delve deeply into its un-
derlying principles. In this section, we aim to complement
this investigation. First, we construct the 𝐷𝑟 and 𝑁𝐷𝑐𝑑1 𝑟 for
Speck32/64, employing the difference 0𝑥0040/0000 as de-
tailed in [1,5]. The accuracy (𝐴𝑐𝑐), true positive rate (𝑇𝑃𝑅),
and true negative rate (𝑇𝑁𝑅) for 𝑟 ∈ 5, 6, 7, are presented
in Table 2. Notably, these metrics demonstrate a remark-
able similarity, with differences not surpassing 0.01. This
observation prompts an intriguing question: Does 𝑁𝐷𝑐𝑑1 𝑟
exploit the same features as 𝐷𝑟 to effectively distinguish the

ciphertext differences?
To address this inquiry, we further investigate the po-

tential of 𝑁𝐷𝑐𝑑1 𝑟 constructed with the input difference of best
𝑟-round differential path following the work in [5]. The re-
sults shown in Table 3 indicate that this approach can only
yield worse results for 𝑁𝐷𝑐𝑑1 𝑟 , same to 𝑁𝐷𝑐𝑝1 𝑟 .

Then Experiment A and Experiment B are conducted
to study the correlation between 𝑁𝐷𝑐𝑑1 𝑟 and 𝑟-round ci-
phertext difference in Section 3.2. The outcomes of these
experiments reveal that 𝑁𝐷𝑐𝑑1 𝑟 exhibits a threshold in-
terval denoted as 𝜏 (as defined in Definition 1). Specifi-
cally, for 𝑁𝐷𝑐𝑑1 𝑟 , 𝑟 ∈ 5, 6, 7, the corresponding 𝜏 values are
[2−35, 2−30], [2−37, 2−32], and [2−41, 2−36], respectively.

In addition to the 𝑟-round ciphertext difference, we also
explore the (𝑟 − 1)-round and (𝑟 − 2)-round (truncated) dif-
ference in Section 3.3 and 3.4. These studies illustrate that
𝑁𝐷𝑐𝑑1 𝑟 can effectively recognize the 𝑟-round ciphertext dif-
ferences that have a high differential probability or bit bias
in the last two rounds, similar to the case of 𝑁𝐷𝑐𝑝1 𝑟 .

Table 2 The 𝐴𝑐𝑐, 𝑇𝑃𝑅 and 𝑇𝑁𝑅 of the 𝐷𝑟 and 𝑁𝐷𝑐𝑑1 𝑟 for
Speck32/64.

𝑇𝑦𝑝𝑒
𝑟 = 5 𝑟 = 6 𝑟 = 7

𝐴𝑐𝑐 𝑇𝑃𝑅 𝑇𝑁𝑅 𝐴𝑐𝑐 𝑇𝑃𝑅 𝑇𝑁𝑅 𝐴𝑐𝑐 𝑇𝑃𝑅 𝑇𝑁𝑅

𝐷𝑟 0.911 0.877 0.947 0.758 0.680 0.837 0.591 0.543 0.640

𝑁𝐷𝑐𝑑
1 𝑟

0.907 0.867 0.946 0.755 0.670 0.836 0.586 0.536 0.635

3.1 Choice of Input Difference

To evaluate whether the 𝑁𝐷𝑐𝑑1 𝑟 can achieve improved accu-
racy with the input difference of the best 𝑟-round differential
path, we initially employ the Mixed Integer Linear Program-
ming (MILP) technique outlined in [14] to search for all the
5/6/7-round differential paths with the highest probability
for Speck32/64. There are two distinct 5/7-round differen-
tial paths with the best probability 2−9 or 2−18, respectively,
and one 6-round differential path with the best probability
2−13. Subsequently, we train the 𝑁𝐷𝑐𝑑1 𝑟 using the input
differences of each differential path. The accuracy of all
these neural distinguishers is lower than that trained with
the 0𝑥0040/0000, as shown in Table 3. Specifically, when
the number of rounds is 7, there is no usable neural distin-
guisher. These results collectively indicate that 𝑁𝐷𝑐𝑑1 𝑟 can
not achieve superior accuracy with the input difference of
the best 𝑟-round differential path, much like the observed
behavior of 𝑁𝐷𝑐𝑝1 𝑟 .

3.2 The 𝑟-round Differences

The pure differential distinguisher 𝐷𝑟 distinguishes the vari-
ous ciphertext differences according to their probability with
Formula (2). Consequently, for 𝐷𝑟 , a higher probability as-
sociated with a ciphertext difference indicates stronger evi-
dence that it originates from the encryption cipher. If 𝑁𝐷𝑐𝑑1 𝑟
distinguishes the ciphertext difference using the same fea-
tures as 𝐷𝑟 , its recognition ability for the different ciphertext
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Table 3 The best 5/6/7−round differential paths and ac-
curacy of 𝑁𝐷𝑐𝑑1 𝑟 constructed with their input difference for
Speck32/64.

𝑟 𝑙𝑜𝑔𝐷𝑃 (𝛼→𝛽) 𝛼 𝛽 𝐴𝑐𝑐

5 −9
0𝑥2800/0010 0𝑥850𝑎/9520 0.750

0𝑥0211/0𝑎04 0𝑥8000/840𝑎 0.561

6 −13 0𝑥0211/0𝑎04 0𝑥850𝑎/9520 0.513

7 −18
0𝑥0𝑎20/4205 0𝑥850𝑎/9520 Fail

0𝑥0𝑎60/4205 0𝑥850𝑎/9520 Fail

differences also aligns with this criterion.
Experiment A. Inspired by this, we analyze the re-

lationship between the score and frequency distribution of
the ciphertext differences. In this context, frequency de-
notes the occurrences of the difference, while the score
corresponds to the output of sigmoid activation function,
𝑆(𝑥) = 1

1+𝑒−𝑥 ∈ [0, 1], at last layer of the neural network.
We use 107 plaintext pairs with the plaintext differ-

ence 𝛼 = 0𝑥0040/0000 to conduct this experiment for the
5-round Speck32/64, and yield 6,373,162 unique ciphertext
differences, including 1,021,347 instances with a frequency
greater than 1, and 5,351,815 instances with a frequency
of 1. Notably, when the frequency of the ciphertext differ-
ence exceeds 1, its score consistently approached 1. This
indicates that 𝑁𝐷𝑐𝑑1 5 can effective recognizes these differ-
ences. Conversely, when the frequency equals 1, the scores
of some differences fall below 0.5, accounting for approxi-
mately 24.5%.

Experiment B. The probability of ciphertext differ-
ences with the frequency 1 approximate 10−7 (about 2−23.25),
while the probability for differences with the frequency
greater than 1 would surpass it. 𝐷𝑟 labels the ciphertext
differences with probability greater than 232 as 1 according
to Formula 2. Does 𝑁𝐷𝑐𝑑1 𝑟 do the same?

For the 1,021,347 ciphertext differences with a fre-
quency greater than 1, it holds true. Consequently, our
attention is directed towards the remaining 5,351,815 ci-
phertext differences with frequency 1. Given the enormity
of studying all these ciphertext differences, we randomly se-
lected 104 differences for analysis. These differences are
categorized into two groups based on whether their scores
surpass 0.5, this is also the criterion employed by 𝑁𝐷𝑐𝑑1 5 for
classifying the ciphertext differences. These differences can
be divided into the following three categories:

1. For differences with a probability greater than 2−29,
𝑁𝐷𝑐𝑑1 5 can fully identify them.

2. For differences with a probability less than 2−35, 𝑁𝐷𝑐𝑑1 5
is unable to identify them.

3. For differences with a the probability in [2−35, 2−29],
𝑁𝐷𝑐𝑑1 5 can only identify a part of them.

Figure 1 provides the results for 200 representative differ-
ences for the 5-round Speck32. Among these 200 differ-
ences, half of them have scores exceeding 0.5, while the
remaining half do not surpass this threshold.

Definition 1: Threshold interval 𝜏: For convenience, we

defined [2−35, 2−29] as the 𝜏 of 𝑁𝐷𝑐𝑑1 5. Similarly, the 𝜏 of
𝐷𝑟 can be expressed as [2−𝑛, 2−𝑛], i.e. 2−𝑛. For example, it
is 2−32 for Speck32/64.

In order to ascertain the generality and universality
of this phenomenon, we extend our experimentation to
𝑁𝐷𝑐𝑑1 6 and 𝑁𝐷𝑐𝑑1 7. A similar pattern is observed for 𝑁𝐷𝑐𝑑1 6
and 𝑁𝐷𝑐𝑑1 7, their threshold intervals are [2−38, 2−32] and
[2−41, 2−36], respectively.

These experiments indicate that the 𝜏 for 𝑁𝐷𝑐𝑑1 𝑟 varies
for different rounds r, and it diminishes as 𝑟 increases, which
is consistent with the fact that an increase in the number
of rounds results in a decrease in differential probability.
However, for 𝐷𝑟 , its bound is consistently fixed to 2−𝑛. In
conclusion, although 𝐷𝑟 and 𝑁𝐷𝑐𝑑1 𝑟 exhibit similar values
for 𝐴𝑐𝑐, 𝑇𝑃𝑅, and 𝑇𝑁𝑅, their inner principles are different.

Fig. 1 The 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 and 𝑆𝑐𝑜𝑟𝑒 of 200
representative differences for 𝑁𝐷𝑐𝑑1 5.

3.3 The (𝑟 − 1)-round or (𝑟 − 2)-round Differences

Experiment C. Following Experiment B in [5], this sec-
tion employs 𝑁𝐷𝑐𝑑1 5 as a representative instance to probe
the capacity of 𝑁𝐷𝑐𝑑1 𝑟 to identify the differences in rounds
(𝑟 − 1) and (𝑟 − 2). The Experiment B in previous section
indicates that 𝑁𝐷𝑐𝑑1 5 can effectively identify all the differ-
ences with a probability exceeding 2−29. Therefore, if the
5-round difference has a high probability in the round 3/4,
there is a significant chance that 𝑁𝐷𝑐𝑑1 5 can identify this
5-round difference, unless the differential probability in the
last two rounds or one round is very low, causing the 5-round
probability fall below 2−29.

To verify this conjecture, we employ 107 plaintext
pairs with the difference 0𝑥0040/0000 to calculate the fre-
quency of all the 3/4-round ciphertext differences, denoted
as 𝐷𝑖 𝑓 𝑓3/4. The number of differences we obtain in 𝐷𝑖 𝑓 𝑓3/4
is 41,515 and 1,705,584, respectively. These differences are
organized in a descending order based on their frequency.
Subsequently, 107 regenerated plaintext pairs are utilized to
extract the 5-round differences whose 3/4-round differences
belong to 𝐷𝑖 𝑓 𝑓3/4. Finally, 𝑁𝐷𝑐𝑑1 5 is applied to evaluate
the remaining 5-round differences, yielding an accuracy of
95.33%/86.94%. The result of 𝑟 = 3 is consistent with
the 𝑇𝑃𝑅 of 𝑁𝐷𝑐𝑑1 5 in Table 2 (0.867). This observation is
consistent with the findings for 𝑁𝐷𝑐𝑝1 5 shown in [5].
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3.4 The (𝑟−1)-round or (𝑟−2)-round Truncated Differences

Experiment D. In addition to focusing solely on the cipher-
text difference, we also examine the bias of the differential
bits following the Experiment C in [5]. To assess the ability
of 𝑁𝐷𝑐𝑑1 𝑟 to identify the specific bits in the (𝑟 − 1)/(𝑟 − 2)-
round differences, we initially derive the differential set 𝐵
(with a score of less than 0.1) and 𝐺 (with a score exceeding
0.9) from the 107 5-round ciphertext pairs. Subsequently, we
count the bit bias of different bits. The 3/4-round truncated
difference 𝑇𝐷3/4 extracted from 𝐵 and 𝐺 is
𝑇𝐷3 : 01 ∗ ∗ ∗ ∗000 ∗ ∗ ∗ ∗ ∗ 01 ∗ ∗ ∗ ∗ ∗ ∗000 ∗ ∗ ∗ ∗ ∗ 01
𝑇𝐷4 : 00 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ,
where ∗ denotes an uncertain binary bit.

Then we regenerate the 106 plaintext pairs to derive the
5-round differences whose 3/4-round differences satisfying
𝑇𝐷3/4. These differences are then evaluated with 𝑁𝐷𝑐𝑑1 5,
resulting in accuracy of 98.4% and 97.1%, respectively. This
demonstrates that 𝑁𝐷𝑐𝑑1 5 possesses the capability to identify
specific bits of the (𝑟 − 1)/(𝑟 − 2)-round differences , in a
manner analogous to that of 𝑁𝐷𝑐𝑝1 5.

Experiment E. In order to assess the ability of neural
distinguishers to detect truncated differences, a 2/3-round
truncated differential neural distinguisher is trained utilizing
𝑇𝐷3. Firstly, 107 plaintext pairs are generated, with half
of the pairs satisfying 𝑇𝐷3 and the other half not. Sub-
sequently, the ciphertext differences obtained by encrypting
these plaintext pairs are employed to train the 2/3-round trun-
cated differential neural distinguishers with the same neural
network architecture and parameters in Section 2.4. The
accuracy of the 2/3-round truncated differential neural dis-
tinguisher is 95.88%/65.67%. This indicates that the neural
distinguishers using ciphertext differences can also effec-
tively identify the truncated differences, similar to the neural
distinguishers employing ciphertext pairs as shown in [5].

4. Comparing the Neural Distinguisher with a Cipher-
text Difference or a Ciphertext Pair

It is evident that 𝑁𝐷𝑐𝑝1 𝑟 and 𝑁𝐷𝑐𝑑1 𝑟 exhibit strikingly similar
behavior from the experiments in the previous section. For
instance, the effects of (𝑟 − 1)-round or (𝑟 − 2)-round (trun-
cated) differences are identical for both of them. Based on
the fact that 𝑁𝐷𝑐𝑑1 𝑟 possesses a 𝜏, we first conduct an inves-
tigation to determine whether 𝑁𝐷𝑐𝑝1 𝑟 has a 𝜏 like 𝑁𝐷𝑐𝑑1 𝑟 in
Experiment A. The results confirm this hypothesis, reveal-
ing that the 𝜏 of 𝑁𝐷𝑐𝑝1 𝑟 is very similar or identical to that of
𝑁𝐷𝑐𝑑1 𝑟 .

The only difference between 𝑁𝐷𝑐𝑝1 𝑟 and 𝑁𝐷𝑐𝑑1 𝑟 is their
sample format: the former is trained with ciphertext pairs,
whereas the latter is trained with their differences. To en-
hance our understanding of their connections and differences
from a sample-based perspective, we conduct Experiment B
and Experiment C. Experiment B is designed to confuse the
feature relationship of ciphertext pairs by imposing random
values, while Experiment C aims to discern the importance

of different bits for both 𝑁𝐷𝑐𝑝1 𝑟 and 𝑁𝐷𝑐𝑑1 𝑟 . The results of
these two experiments reveal that 𝑁𝐷𝑐𝑝1 𝑟 not only captures
the differences between ciphertext pairs, but also identifies
a specific correlation among certain ciphertext bits between
the left and right halves of the ciphertext, especially the sig-
nificant bits.

4.1 A Cryptanalysis Perspective

Experiment A. To determine whether 𝑁𝐷𝑐𝑝1 𝑟 has a threshold
interval 𝜏 similar to 𝑁𝐷𝑐𝑑1 𝑟 , we employ 𝑁𝐷𝑐𝑝1 𝑟 to distinguish
the ciphertext pairs with various differential probability, fol-
lowing the Experiment B in Section 3.2. Here, we con-
sider all differences, regardless of their frequency, since the
neural distinguisher can effectively identify differences with
frequency exceeding 1.

The 𝜏 of 𝑁𝐷𝑐𝑝1 5 is [2−36, 2−30] (according to the Defi-
nition 1), as shown in Figure 2. Notably, this range closely
mirrors that of 𝑁𝐷𝑐𝑑1 5. A similar experiment is also con-
ducted on 𝑁𝐷𝑐𝑝1 6 and 𝑁𝐷𝑐𝑝1 7. Their threshold intervals 𝜏 are
[2−37, 2−32] and [2−41, 2−36], respectively. It aligns with
that of 𝑁𝐷𝑐𝑑1 6 and 𝑁𝐷𝑐𝑑1 7. Based on these findings, we can
confidently conclude that 𝑁𝐷𝑐𝑝1 𝑟 also possesses a threshold
interval 𝜏 that is either identical or very similar to that of
𝑁𝐷𝑐𝑑1 𝑟 .

Fig. 2 The 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 and 𝑆𝑐𝑜𝑟𝑒 of 200
representative ciphertext pairs for 𝑁𝐷𝑐𝑝1 5.

4.2 A Feature Confusion Perspective

Experiment B. To clarify the factors contributing to the
superior accuracy of 𝑁𝐷𝑐𝑝1 𝑟 over 𝑁𝐷𝑐𝑑1 𝑟 , we carry out the
following investigations. Firstly, we train them for rounds 5,
6 and 7. Then we retrain them with the confused ciphertext
pairs in the experiments 𝐸𝑥𝑝. 𝐵−1, 𝐸𝑥𝑝. 𝐵−2 and 𝐸𝑥𝑝. 𝐵−
3. 𝐸𝑥𝑝. 𝐵 − 1 confuses the ciphertext pairs with the same
random values to break the relation between the ciphertext
bits but ensure the ciphertext difference remains constant.
For a ciphertext pair ((𝐶0,𝑙 , 𝐶0,𝑟 ), (𝐶1,𝑙 , 𝐶1,𝑟 )), (𝐶′𝑖,𝑙 , 𝐶

′
𝑖,𝑟
)

is (𝐶𝑖,𝑙 ⊕ 𝑅0, 𝐶𝑖,𝑟 ⊕ 𝑅1), 𝑖 ∈ [0, 1], where 𝑅0 and 𝑅1 are
the different random values. In contrast, 𝐸𝑥𝑝. 𝐵 − 2 and
𝐸𝑥𝑝. 𝐵−3 only confuse the left or right half of the ciphertext,
i.e. 𝐶′

𝑖,𝑙
= 𝐶𝑖,𝑙 ⊕ 𝑅0 or 𝐶′

𝑖,𝑟
= 𝐶𝑖,𝑟 ⊕ 𝑅1, 𝑖 ∈ [0, 1]. The

results of these three experiments are summarized in Table
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4. Notably, the accuracy of the neural distinguishers in
𝐸𝑥𝑝. 𝐵 − 1, 𝐸𝑥𝑝. 𝐵 − 2 and 𝐸𝑥𝑝. 𝐵 − 3 is equal to that
of 𝑁𝐷𝑐𝑑1 𝑟 , indicating that these distinguishers only learn the
ciphertext difference from the confused ciphertext pairs.

Comparing the results of 𝐸𝑥𝑝. 𝐵 − 1 and 𝐸𝑥𝑝. 𝐵 − 2
(𝐸𝑥𝑝. 𝐵 − 3), we observe that 𝑁𝐷𝑐𝑝1 𝑟 fails to extract any
valuable features from (𝐶0,𝑟 , 𝐶1,𝑟 ) or (𝐶0,𝑙 , 𝐶1,𝑙) apart from
their differences. This suggests that the additional features
learned by 𝑁𝐷𝑐𝑝1 𝑟 may be the relationship between the left
and right halves of the ciphertext, possibly due to the Feis-
tel structure of Speck32/64. To delve deeper into this, we
conduct 𝐸𝑥𝑝. 𝐵 − 4, which confuses the left and right
halves of the ciphertext with the same random values, i.e.
(𝐶′
𝑖,𝑙
, 𝐶′
𝑖,𝑟
) = (𝐶𝑖,𝑙 ⊕ 𝑅0, 𝐶𝑖,𝑟 ⊕ 𝑅0), 𝑖 ∈ [0, 1]. The accuracy

of the neural distinguisher in this experiment is equal to that
of 𝑁𝐷𝑐𝑝1 𝑟 , suggesting a certain correlation between the left
and right halves of the ciphertext. In the next section, we
will explore this correlation further by examining the feature
importance of the different ciphertext bits.
Table 4 The accuracy of the 5/6/7-round neural dis-
tinguisher with different data format for Speck32/64.
(𝐶0,𝑙 , 𝐶0,𝑟 ) and (𝐶1,𝑙 , 𝐶1,𝑟 ) denote the first and second ci-
phertext, where𝐶0,𝑙 and𝐶1,𝑙 are the left half of the ciphertext,
while 𝐶0,𝑟 and 𝐶1,𝑟 are the right half. For the 𝑋 , 𝑋 ′ is equal
to 𝑋 XOR a random value 𝑅, such as 𝐶′0,𝑙 = 𝐶0,𝑙 ⊕ 𝑅.

𝐸𝑥𝑝. Samples format
𝐴𝑐𝑐.

𝑟 = 5 𝑟 = 6 𝑟 = 7

𝑁𝐷
𝑐𝑝

1 𝑟
(𝐶0,𝑙 , 𝐶0,𝑟 , 𝐶1,𝑙 , 𝐶1,𝑟 ) 0.926 0.785 0.611

𝑁𝐷𝑐𝑑
1 𝑟

(𝐶0,𝑙 ⊕ 𝐶1,𝑙 , 𝐶0,𝑟 ⊕ 𝐶1,𝑟 ) 0.907 0.755 0.586

𝐵 − 1 (𝐶′0,𝑙 , 𝐶
′
0,𝑟 , 𝐶

′
1,𝑙 , 𝐶

′
1,𝑟 ) 0.907 0.755 0.586

𝐵 − 2 (𝐶′0,𝑙 , 𝐶0,𝑟 , 𝐶
′
1,𝑙 , 𝐶1,𝑟 ) 0.907 0.755 0.586

𝐵 − 3 (𝐶0,𝑙 , 𝐶
′
0,𝑟 , 𝐶1,𝑙 , 𝐶

′
1,𝑟 ) 0.907 0.755 0.586

𝐵 − 4 (𝐶′0,𝑙 , 𝐶
′
0,𝑟 , 𝐶

′
1,𝑙 , 𝐶

′
1,𝑟 ) 0.926 0.785 0.611

The 𝐸𝑥𝑝. 𝐵 − 1 confused the 𝐶𝑖,𝑙 and 𝐶𝑖,𝑟 , 𝑖 ∈ [0, 1], with the
different random values.
The 𝐸𝑥𝑝. 𝐵 − 4 confused the𝐶𝑖,𝑙 and𝐶𝑖,𝑟 , 𝑖 ∈ [0, 1], with the same
random value.

4.3 A Feature Importance Perspective

Experiment C. Permutation Feature Importance [19] (PFI)
is a model-independent method to measure the feature im-
portance based on the extent of model score reduction upon
feature permutation. For 𝑁𝐷𝑐𝑑1 𝑟 , we directly permute its ci-
phertext bits, denoted as 𝑝𝑒𝑟 𝑐𝑑. For 𝑁𝐷𝑐𝑝1 𝑟 , we conduct
three different experiments to observe the patterns it learns:
the initial two experiments only permute the 𝑖−th bit of the
left or right (first or second) ciphertext, denoted as 𝑝𝑒𝑟 𝑐𝑝 𝑙
or 𝑝𝑒𝑟 𝑐𝑝 𝑟 , while the third experiment permute the 𝑖−th
bit of both ciphertexts, denoted as 𝑝𝑒𝑟 𝑐𝑝 𝑙𝑟 . To ensure the
reliability of the experiment and fairly compare the differ-
ent neural distinguishers, we repeat the evaluation 20 times
and consider the weight of the average reduced accuracy
over original accuracy as the final feature importance. The
comprehensive procedure is given in Algorithm 3.

The criteria used to assess the feature importance of
various bits for 𝑁𝐷𝑐𝑑1 𝑟 and 𝑁𝐷𝑐𝑝1 𝑟 are as follows:

1. If the feature importance of the 𝑖−th bit (𝐹𝑖[𝑖]) is greater
than 0 for the experiment 𝑝𝑒𝑟 𝑐𝑑, 𝑁𝐷𝑐𝑑1 𝑟 learns the
features from the 𝑖−th bit ciphertext difference.

2. For the experiment 𝑝𝑒𝑟 𝑐𝑝 𝑙 or 𝑝𝑒𝑟 𝑐𝑝 𝑟 , if 𝐹𝑖[𝑖] > 0,
𝑁𝐷

𝑐𝑝

1 𝑟 learns the features from the 𝑖−th bit ciphertext
difference.

3. If 𝐹𝑖[𝑖] in experiment 𝑝𝑒𝑟 𝑐𝑝 𝑙𝑟 surpasses that in
𝑝𝑒𝑟 𝑐𝑝 𝑙 or 𝑝𝑒𝑟 𝑐𝑝 𝑟 , the 𝑖−th bit ciphertext con-
tributes extra information to 𝑁𝐷𝑐𝑝1 𝑟 beyond just its dif-
ference. We call these bits as 𝑠𝑖𝑔𝑛𝑖 𝑓 𝑖𝑐𝑎𝑛𝑡 𝑏𝑖𝑡𝑠.

4. In the all experiments, the larger the value of 𝐹𝑖[𝑖], the
higher the importance of the 𝑖−th bit.

Algorithm 3 Calculating feature importance of each cipher-
text bit.
1: Input: Neural network 𝑁𝑒𝑡
2: Output: Feature importance 𝐹𝑖 [𝑛], where 𝑛 is the length of the

ciphertext.
3: for 𝑖 ← 0, 𝑛 do
4: 𝐴𝑐𝑐𝑠𝑢𝑚 = 0
5: for 𝑗 ← 0, 20 do
6: Generate the original samples 𝑋 and labels 𝑌 .
7: 𝑋𝑝𝑒𝑟𝑚 ← Randomly permuting the 𝑖−th bit for 𝑋.
8: 𝐴𝑐𝑐𝑠𝑢𝑚 ← 𝐴𝑐𝑐𝑠𝑢𝑚 + 𝑁𝑒𝑡.𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑋,𝑌 ) −
𝑁𝑒𝑡.𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑋𝑝𝑒𝑟𝑚, 𝑌 )

9: end for
10: 𝐹𝑖 [𝑖 ] = 𝐴𝑐𝑐𝑠𝑢𝑚

20
11: end for
12: return 𝐹𝑖

We apply this algorithm to the 5/6/7-round Speck32/64
with 106 samples. As expected, the bit importance of
𝑝𝑒𝑟 𝑐𝑝 𝑙 or 𝑝𝑒𝑟 𝑐𝑝 𝑟 are consistent, since the first and sec-
ond ciphertexts are unordered and exchangeable. Moreover,
the bits learned by 𝑁𝐷𝑐𝑑1 𝑟 and 𝑁𝐷𝑐𝑝1 𝑟 are identical. In most
cases, 𝑁𝐷𝑐𝑝1 𝑟 can acquire more knowledge from the differ-
ent ciphertext bits. However, sometimes 𝑁𝐷𝑐𝑑1 𝑟 relies more
heavily on certain bits than 𝑁𝐷

𝑐𝑝

1 𝑟 , such as the 2nd and
16th bit for rounds 5, as shown in Figure 3. This could
be attributed to the simpler data format, which enables the
neural network to effectively gain more information from the
ciphertext bits.

For 𝑁𝐷𝑐𝑝1 𝑟 , it not only captures the difference of ci-
phertext pairs, but also discerns the relationships among the
ciphertext bits, particularly the significant bits such as the
2nd, 3rd, 18th and 19th bit for 5 rounds. These significant
bits exist in the corresponding left and right parts of the ci-
phertext, such as the 2nd bit and its corresponding 18th bit.
This further validates our findings in the Experiment B of
Section 4.2.

5. Exploring and Enhancing the Neural Distinguisher
with Multiple Ciphertext Pairs

The experiments in Section 4 reveal that 𝑁𝐷𝑐𝑝1 𝑟 predom-
inantly learns the ciphertext differences and some subtle
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Fig. 3 The bit importance of 5-round neural distinguisher.

relationships among certain ciphertext bits, especially the
significant bits. For 𝑁𝐷𝑐𝑝

𝑘 𝑟
, its sample consists of 𝑘 cipher-

text pairs. Consequently, the information that 𝑁𝐷𝑐𝑝
𝑘 𝑟

can
extract from its sample may be the difference of 𝑘 ciphertext
pairs and relationships between the ciphertexts themselves
or ciphertext pairs.

In order to figure out the features that 𝑁𝐷𝑐𝑝
𝑘 𝑟

learned,
we conduct three different experiments (Experiment A, B
and C) to explore its intrinsic principles. Through studying
the differential distributions of multiple ciphertext pairs in
Experiment A, we discover that the average differential prob-
ability of the multiple ciphertext pairs is the paramount crite-
rion for 𝑁𝐷𝑐𝑝

𝑘 𝑟
to distinguish the samples. This is the reason

why 𝑁𝐷𝑐𝑝
𝑘 𝑟

can achieve better accuracy as 𝑘 increases. As
the number of ciphertext pairs in the sample increases, those
anomalous differential probabilities are neutralized, result-
ing in the average differential probabilities of positive and
negative samples stabilizing within the distinct interval.

In addition, there are other features that allow 𝑁𝐷
𝑐𝑝

𝑘 𝑟
to

recognize some samples with abnormal average differential
probabilities, and the most intuitive one is the bit relation-
ship between the ciphertexts or ciphertext pairs. Especially
when the number of rounds is small, this feature is more
obvious. For example, when the number of rounds is 5, the
neural network can learn useful features from the sample
(𝐶′0, 𝐶1, 𝐶

′
2, 𝐶3) in 𝐸𝑥𝑝. 𝐵 − 6. Furthermore, we find that

the features between ciphertext pairs are fragile, this is also
the reason why Gohr et al. can use the combined scores of
multiple ciphertext pairs to achieve competitive results with
𝑁𝐷

𝑐𝑝

𝑘 𝑟
in [20].

Based on the fact that 𝑁𝐷𝑐𝑝
𝑘 𝑟

mainly relies on the av-
erage differential probability of the 𝑘 ciphertext pairs for
sample recognition, we propose a approach to construct the
neural distinguisher with higher accuracy by generating neg-
ative samples using a fixed difference instead of a random
one. With this method, we obtain the neural distinguish-
ers with higher accuracy for both 7-round Speck32/64 and
9-round Simon32/64.

5.1 A Cryptanalysis Perspective

Experiment A. Following Experiment A in Section 4.1, we
first analyze the differential probability distribution of the

samples for 𝑁𝐷𝑐𝑝2 5. In contrast to the previous experiment,
the sample of 𝑁𝐷𝑐𝑝2 5 contains 2 ciphertext pairs instead of
one, prompting us to conduct two sub-experiments to ob-
serve their differential probability. The first sub-experiment
focus on the individual differential probability of the two
ciphertext pairs, while the second sub-experiment consider
their average differential probability.

Fig. 4 The 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of the 100 samples
for the 𝑁𝐷𝑐𝑝2 5.

The differential probability of 100 randomly selected
samples is given in Figure 4, with half of the samples having
a 𝑠𝑐𝑜𝑟𝑒 > 0.5 and the remaining half having 𝑠𝑐𝑜𝑟𝑒 ≤ 0.5. It
is obvious that the majority of samples with a score greater
than 0.5 exhibit a higher differential probability compared to
those with a score ≤ 0.5. However, certain samples deviate
from this distribution. For instance, the differential probabil-
ities of the two ciphertext pairs in the 33rd sample with the
score > 0.5 are 2−33 and 2−37, whereas for the 38th sample
with a score ≤ 0.5, they are 2−32 and 2−33. Furthermore,
the 𝜏 of 𝑁𝐷𝑐𝑝1 5 is [2−35, 2−29], indicating that 𝑁𝐷𝑐𝑝1 5 cannot
identify the ciphertext pairs with a differential probability
less than 2−35. However, 𝑁𝐷𝑐𝑝2 5 can recognize some sam-
ples where one of the two ciphertext pairs has a differential
probability below 2−35. This implies an interaction between
the ciphertext pairs. Therefore, we further investigate their
average differential probability distributions.

The average differential probability of 200 random
samples, divided into two groups based on their scores
(𝑠𝑐𝑜𝑟𝑒 > 0.5 or 𝑠𝑐𝑜𝑟𝑒 ≤ 0.5), for 𝑁𝐷𝑐𝑝2 5 is presented in
Figure 5. It is evident that 2−32 serves as an effective thresh-
old for determining whether the sample score exceeds 0.5 for
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Fig. 5 The average differential probability of the 200 sam-
ples for 𝑁𝐷𝑐𝑝2 5.

Fig. 6 The average differential probability of the 200 sam-
ples for 𝑁𝐷𝑐𝑝4 5.

the majority of samples. To further assess the impact of av-
erage differential probability on 𝑁𝐷𝑐𝑝

𝑘 𝑟
, we also performed

this experiment for 𝑁𝐷𝑐𝑝4 5. Its threshold is approximately
2−30, as shown in Figure 6. Compared to 𝑁𝐷

𝑐𝑝

2 5, 𝑁𝐷𝑐𝑝4 5
can achieve better sample scoring and exhibit a more distinct
boundary. As the number of ciphertext pairs in a sample in-
creases, the average differential probability of these cipher-
text pairs steadily converges towards values within the range
[2−31, 2−22]. This convergence is one of the reasons why
𝑁𝐷

𝑐𝑝

𝑘 𝑟
can achieve higher accuracy as 𝑘 increases. More-

over, the features learned by 𝑁𝐷𝑐𝑝
𝑘 𝑟

encompass not only the
average differential probability of the 𝑘 ciphertext pairs but
also other relations within the ciphertexts. Consequently,
some samples with the abnormal average differential proba-
bility can also be identified. For example, the 40th sample
in Figure 5 and the 69th sample in Figure 6. We further
examine what these relationships are in the following two
sections.

5.2 A Feature Confusion Perspective

Experiment B. To investigate the features learned by 𝑁𝐷𝑐𝑝2 𝑟 ,
we conduct a series of experiments outlined in Table 5
to observe the impact of different features on 𝑁𝐷

𝑐𝑝

2 𝑟 . In
𝐸𝑥𝑝. 𝐵 − 1, 𝐸𝑥𝑝. 𝐵 − 2, and 𝐸𝑥𝑝. 𝐵 − 3, we confuse the bit
relationships in the ciphertext pairs while preserving their
differences intact. Specifically, 𝐸𝑥𝑝. 𝐵 − 1 only adds con-
fusion to the first ciphertext pair, whereas 𝐸𝑥𝑝. 𝐵 − 2 and
𝐸𝑥𝑝. 𝐵−3 introduce confusion to both ciphertext pairs. The
main difference between 𝐸𝑥𝑝. 𝐵 − 2 and 𝐸𝑥𝑝. 𝐵 − 3 is the

random value used for confusion. In 𝐸𝑥𝑝. 𝐵 − 2, the two
ciphertext pairs are confused with the same random values,
whereas in 𝐸𝑥𝑝. 𝐵 − 3, different random values are used.
The purpose of 𝐸𝑥𝑝. 𝐵 − 2 and 𝐸𝑥𝑝. 𝐵 − 3 is to ascertain
whether 𝑁𝐷𝑐𝑝2 𝑟 can discern the relationship among the two
ciphertext pairs.
Table 5 The accuracy of the 5/6/7-round 𝑁𝐷𝑐𝑝2 𝑟 with dif-
ferent data format for Speck32/64. (𝐶0, 𝐶1) and (𝐶2, 𝐶3)
denote the two ciphertext pairs and the 𝐶′

𝑖
is equal to 𝐶𝑖

XOR a random value 𝑅, i.e. 𝐶′0 = 𝐶0 ⊕ 𝑅.

𝐸𝑥𝑝. Samples format
𝐴𝑐𝑐.

𝑟 = 5 𝑟 = 6 𝑟 = 7

𝑁𝐷
𝑐𝑝

1 𝑟
(𝐶0, 𝐶1 ) 0.926 0.785 0.611

𝑁𝐷𝑐𝑑
1 𝑟

(𝐶0 ⊕ 𝐶1 ) 0.907 0.755 0.586

𝑁𝐷
𝑐𝑝

2 𝑟
(𝐶0, 𝐶1, 𝐶2, 𝐶3 ) 0.978 0.871 0.647

𝑁𝐷𝑐𝑑
2 𝑟

(𝐶0 ⊕ 𝐶1, 𝐶2 ⊕ 𝐶3 ) 0.968 0.842 0.618

𝐵 − 1 (𝐶′0, 𝐶
′
1, 𝐶2, 𝐶3 ) 0.972 0.858 0.635

𝐵 − 2 (𝐶′0, 𝐶
′
1, 𝐶

′
2, 𝐶

′
3 ) 0.968 0.842 0.618

𝐵 − 3 (𝐶′0, 𝐶
′
1, 𝐶

′
2, 𝐶

′
3 ) 0.968 0.842 0.618

𝐵 − 4 (𝐶′0, 𝐶1, 𝐶2, 𝐶3 ) 0.926 0.785 0.611

𝐵 − 5 (𝐶′0, 𝐶
′
1, 𝐶2, 𝐶3 ) 0.926 0.785 0.611

𝐵 − 6 (𝐶′0, 𝐶1, 𝐶
′
2, 𝐶

′
3 ) 0.912 0.755 0.586

𝐵 − 7 (𝐶′0, 𝐶1, 𝐶
′
2, 𝐶3 ) 0.820 0.501 0.501

The 𝐶′0 and 𝐶′1 are confused with the same random value to keep their
differences invariant.
The two ciphertext pairs are confused with the same random value to
leaves the relations between ciphertext differences unchanged.
The two ciphertext pairs are confused with the different random values
to confuse the relations between ciphertext differences.
The 𝐶′0 and 𝐶′1 are confused with the different random values to com-
pletely destroys the features in the first ciphertext pair.

As expected, the accuracy of 𝐸𝑥𝑝. 𝐵 − 1 surpasses
that of 𝑁𝐷𝑐𝑑2 𝑟 and a little less than that of 𝑁𝐷𝑐𝑝2 𝑟 , since the
first confused ciphertext pair (𝐶′0, 𝐶

′
1) can only contribute

its difference. The accuracy of the neural distinguishers in
𝐸𝑥𝑝. 𝐵− 2 and 𝐸𝑥𝑝. 𝐵− 3 is consistent with that of 𝑁𝐷𝑐𝑑2 𝑟 ,
suggesting that these neural distinguisher only learned the
difference of the ciphertext pairs. When we only confuse
the first ciphertext in 𝐸𝑥𝑝. 𝐵 − 4 or the first ciphertext pair
in 𝐸𝑥𝑝. 𝐵 − 5 with the different random values, the accu-
racy of their neural distinguishers matches to that of 𝑁𝐷𝑐𝑝1 𝑟 ,
indicating the neural distinguisher can not extract valuable
information from the first ciphertext pair. By comparing
𝐸𝑥𝑝. 𝐵 − 4 and 𝐸𝑥𝑝. 𝐵 − 5, it is evident that the neural
distinguisher does not learn useful features from the 𝐶1 in
𝐸𝑥𝑝. 𝐵 − 4.

Furthermore, building upon the findings of 𝐸𝑥𝑝. 𝐵−4,
we proceed to confuse the second ciphertext pair while pre-
serving their difference in 𝐸𝑥𝑝. 𝐵 − 6. As a result, the
accuracy of the neural distinguishers for the rounds 6 and 7
is equal to that of 𝑁𝐷𝑐𝑑1 6 and 𝑁𝐷𝑐𝑑1 7. However, for round
5, its accuracy surpasses that of 𝑁𝐷𝑐𝑑1 5, which indicates that
the neural network acquires some knowledge from the 𝐶1.
This can be attributed to the fact that when the number of
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rounds is 5, the ciphertext contains valuable information that
can be easily learned by the neural network. This is corrob-
orated by 𝐸𝑥𝑝. 𝐵 − 7, when we confuse the first ciphertext
in each ciphertext pair, the neural network can only extract
useful information for 𝑟 = 5. This information may be the
distribution information of the ciphertext itself.

For the 𝐸𝑥𝑝. 𝐵−6, the neural network learn the features
from the ciphertext𝐶1 for 𝑟 = 5. However, in 𝐸𝑥𝑝. 𝐵−4,𝐶1
does not enhance the accuracy of the neural distinguisher.
This discrepancy arises due to the fact that the second cipher-
text pair in 𝐸𝑥𝑝. 𝐵−6 is confused, resulting in the destruction
of its ciphertext features. Conversely, in 𝐸𝑥𝑝. 𝐵−4, the sec-
ond ciphertext pair remains intact, preserving these features.
Consequently, in 𝐸𝑥𝑝. 𝐵 − 6, the ciphertext features pro-
vided by 𝐶1 are duplicated by 𝐶2 and 𝐶3. In contrast, in
𝐸𝑥𝑝. 𝐵 − 6, the second ciphertext pair only provides their
differences, making the ciphertext features provided by 𝐶1
valuable. However, it is important to note that these features
are inherently fragile and only effective for round 5.

5.3 A Feature Importance Perspective

Experiment C. Following Experiment C in Section 4.3, we
conduct 5 different experiments (𝐸𝑥𝑝. 𝑓 𝑖 0 to 𝐸𝑥𝑝. 𝑓 𝑖 4)
to analyze the feature importance of different ciphertext
bits for 𝑁𝐷𝑐𝑝2 𝑟 using Algorithm 3. For a given sample
(𝐶0, 𝐶1, 𝐶2, 𝐶3), the 𝐸𝑥𝑝. 𝑓 𝑖 0 and 𝐸𝑥𝑝. 𝑓 𝑖 1 permute the
𝑖−th bit of the 𝐶0 or (𝐶0, 𝐶1) in the first ciphertext pair, re-
spectively, whereas the 𝐸𝑥𝑝. 𝑓 𝑖 2, 𝐸𝑥𝑝. 𝑓 𝑖 3 and 𝐸𝑥𝑝. 𝑓 𝑖 4
separately permute the 𝑖−th bit of the (𝐶0, 𝐶2), (𝐶0, 𝐶1, 𝐶2)
and (𝐶0, 𝐶1, 𝐶2, 𝐶3).

When we only permute the 𝑖−th bit of the first ciphertext
pair in 𝐸𝑥𝑝. 𝑓 𝑖 0 and 𝐸𝑥𝑝. 𝑓 𝑖 1, the feature importance of
all the ciphertext bits is less than 0.08. However, when we
permute the 𝑖−th bit of both ciphertext pairs in 𝐸𝑥𝑝. 𝑓 𝑖 2,
𝐸𝑥𝑝. 𝑓 𝑖 3 and 𝐸𝑥𝑝. 𝑓 𝑖 4, the feature importance of certain
bits, such as the 2nd and 19th bits, increase significantly. This
further supports the findings from 𝐸𝑥𝑝. 𝐵−4 and 𝐸𝑥𝑝. 𝐵−5
in Table 5 that a correct ciphertext pair in the sample can
enables the neural distinguisher to effective recognition this
sample. For the 𝐸𝑥𝑝. 𝑓 𝑖 2, 𝐸𝑥𝑝. 𝑓 𝑖 3 and 𝐸𝑥𝑝. 𝑓 𝑖 4, their
bit importance can be categorized into three cases:

1. If their feature importance increases sequentially, there
are features between the 𝑖−th bit ciphertext and the other
ciphertext bits, such as the 2nd, 3rd, 4th, 18th, 19th, and
20th bits.

2. If their feature importance remains the same, the 𝑖−th bit
ciphertext only provides their differences. For example,
the 5th, 10th, 21st, 25th, 26th bits.

3. If their feature importance decreases sequentially, there
are relationships among all the 𝑖−th bits ciphertexts in
the sample, such as the 16th, and 17th bit.

In addition, by comparing the results in Figure 3 and Figure 7,
we observe that the bits with high importance for 𝑁𝐷𝑐𝑝1 5 and
𝑁𝐷

𝑐𝑝

2 5 are identical, and their relative importance remains
consistent.

Based on these observations, it can be inferred that, even

though 𝑁𝐷𝑐𝑝
𝑘 𝑟

employs multiple ciphertext pairs for sample
recognition, its primary reliance lies in the ciphertext pairs
themselves (i.e., ciphertext difference and the relations of
certain ciphertext bits), the relationships between the cipher-
text pairs are extremely fragile. This insight helps clarify
why Gohr et al. were able to achieve comparable or supe-
rior results for 𝑁𝐷𝑐𝑝

𝑘 𝑟
in [20] by combining the accuracy of

𝑁𝐷
𝑐𝑝

1 𝑟 on multiple ciphertext pairs.

Table 6 The neural distinguishers for 7-round Speck32/64
and 9-round Simon32/64.

Cipher Rounds 𝑘 = 1 𝑘 = 2 𝑘 = 4 source

Speck32/64 7

0.611 0.645 0.687 [8]1

0.626 0.667 0.713 𝑂𝑢𝑟𝑠1

− 0.665 0.728 [10]2

0.634 0.691 0.764 𝑂𝑢𝑟𝑠2

Simon32/64 9

0.603 0.645 0.666 [8]1

0.672 0.704 0.741 𝑂𝑢𝑟𝑠1

− 0.724 0.810 [10]2

0.731 0.805 0.886 𝑂𝑢𝑟𝑠2

Train with 107/𝑘 samples, each containing 𝑘 (𝐶0,𝑙 , 𝐶0,𝑟 , 𝐶1,𝑙 , 𝐶1,𝑟 ) .
Train with 107 samples, each containing 𝑘 (𝐶0,𝑙 , 𝐶0,𝑟 , 𝐶1,𝑙 , 𝐶1,𝑟 , 𝑅0⊕
𝑅1 ) .

5.4 Enhancing the Neural Distinguisher

Based on the previous research, it is evident that the 𝑁𝐷𝑐𝑝
𝑘 𝑟

distinguishes the positive samples (the ciphertext pairs ob-
tained by encrypting the plaintext pairs with a specific differ-
ence 𝛼) and negative samples (the ciphertext pairs derived
from encrypting the plaintext pairs with the random differ-
ence) primarily based on their differential distributions. For
the positive samples, their output difference must align with
the differential distribution table of 𝛼. However, for the neg-
ative samples, their output difference is unrestricted due to
the absence of limitations on their plaintext difference. Con-
sequently, there exists a conflict in the differential probability
between certain negative and positive samples. This conflict
is the underlying reason why 𝑁𝐷𝑐𝑝1 𝑟 fails to recognize some
ciphertext pairs with differential probabilities in 𝜏. 𝑁𝐷𝑐𝑝

𝑘 𝑟

improves its accuracy by using the average differential prob-
ability of 𝑘 ciphertext pairs, thereby minimizing the overlap
of differential probabilities between positive and negative
samples. Building on this, and considering the unbounded
nature of negative samples, we could potentially develop a
superior neural distinguisher. This improvement would be
due to the reduction in conflicts and the increased regularity
of the negative ciphertexts.

Inspired by the idea in [21], which utilizes the output
difference of the 𝑡 (≥ 2) input differences for training the neu-
ral distinguisher, we present a scheme to enhance the 𝑁𝐷𝑐𝑝

𝑘 𝑟

by using a fixed difference to generate negative samples in-
stead of a random one, and this new neural distinguisher is
named 𝑁𝐷𝑐𝑝

′

𝑘 𝑟
. Its construction process is very similarly to

that of 𝑁𝐷𝑐𝑝
𝑘 𝑟

, as described in Section 2.4. The necessary
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Fig. 7 The bit importance of 5-round neural distinguisher with 2 ciphertext pairs.

modifications are limited to the data generation process and
the definition of their corresponding labels. 𝑁𝐷𝑐𝑝

′

𝑘 𝑟
requires

two plaintext differences 𝛼0 and 𝛼1 (𝛼0 ≠ 𝛼1) to generate
positive and negative samples respectively, and the label 𝑌 𝑗
of the samples transitions from Equation 2 to Equation 3.

𝑌 𝑗 =

{
1, 𝑖 𝑓 𝑃 𝑗 ,0 ⊕ 𝑃 𝑗 ,1 = 𝛼0, 𝑗 ∈ [0, 𝑘 − 1]
0, 𝑖 𝑓 𝑃 𝑗 ,0 ⊕ 𝑃 𝑗 ,1 = 𝛼1, 𝑗 ∈ [0, 𝑘 − 1]

(3)

To validate the effectiveness of our approach, we ap-
ply it to the 7-round Speck32/64 and 9-round Simon32/64.
It’s worth noting that here we’re only aiming to demonstrate
the superiority of 𝑁𝐷𝑐𝑝

′

𝑘 𝑟
over 𝑁𝐷𝑐𝑝

𝑘 𝑟
, and we’re not com-

mitted to training the neural distinguishers for more rounds.
Since it require a staged approach, such as an 8-round neu-
ral distinguisher for Speck32/64 in [1], which would require
enormous resources. The 𝛼0 remains as 0𝑥0040/0000 and
0𝑥0000/0040 that used in [20], and the 𝛼1 is chosen from the
remaining 31 differences with hamming weight 1 for both
of them. We only consider the differences with hamming
weight 1 here, since they may diffuse more slowly.

We first train 𝑁𝐷
𝑐𝑝

𝑘 𝑟
and 𝑁𝐷

𝑐𝑝′

𝑘 𝑟
, 𝑘 ∈ [1, 2, 4], with

the 107 ciphertext pairs for all the 31 𝛼1 with hamming
weight 1 (𝛼0 ≠ 𝛼1). † Through these experiments, we find
that the accuracy of the majority of 𝑁𝐷𝑐𝑝

′

𝑘 𝑟
is greater than

that of 𝑁𝐷𝑐𝑝
𝑘 𝑟

. For the 7-round Speck32/64, the number of
the 𝑁𝐷𝑐𝑝

′

𝑘 7 , 𝑘 ∈ [1, 2, 4], with the accuracy better than or
equal to that of 𝑁𝐷𝑐𝑝

𝑘 7 is 17, 31 and 27. For the 9-round Si-
mon32/64, it is 28, 23 and 26. The best 𝑁𝐷𝑐𝑝

′

𝑘 𝑟
, 𝑘 ∈ [1, 2, 4],

is trained with the 𝛼1 = 0𝑥0000/8000 for Speck32/64.
For Simon32/64, it is 0𝑥0000/2000, 0𝑥0000/0008 and
0𝑥0000/0200 for 𝑘 ∈ [1, 2, 4]. The best accuracy is given in
Table 6, and the models are provided in our github repository.

Furthermore, we also train the 𝑁𝐷𝑐𝑝
′

𝑘 𝑟
with the new

data format used in [10] to illustrate the applicability of
our scheme to different data formats. For the Simon32/64,
it is (𝐶0,𝑙 , 𝐶0,𝑟 , 𝐶1,𝑙 , 𝐶1,𝑟 , 𝑅0 ⊕ 𝑅1), where 𝑅𝑖 is the right
branches of a state after the encryption of (𝑟−1) rounds, i.e.,
𝑅𝑖 = (𝐶𝑖,𝑟 ≪ 8) ∧ (𝐶𝑖,𝑟 ≪ 1) ⊕ (𝐶𝑖,𝑟 ≪ 2) ⊕ 𝐶𝑖,𝑟 . For
†The accuracy of all neural distinguishers is listed in ℎ𝑡𝑡 𝑝𝑠 :

//𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ𝑒𝑟/𝑁𝐷 𝑖𝑛𝑡𝑒𝑟 𝑝𝑟𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦.

the Speck32/64, it is (𝐶0,𝑙 , 𝐶0,𝑟 , 𝐶1,𝑙 , 𝐶1,𝑟 , 𝑅0, 𝑅1), where
𝑅𝑖 = (𝐶𝑖,𝑙 ⊕𝐶𝑖,𝑟 )≫ 2. As in the original paper, we use 107

samples and let each sample contain 𝑘 instances to train the
neural distinguisher. This more complex samples make our
neural network architecture in Section 2.4 inapplicable, so
we adopted the neural network architecture and parameters
in [10] here. As expected, this more complex data format
yields better accuracy, as shown in Table 6, the correspond-
ing models and evaluation code are available in the github
repository.

In addition, we also compare our results with existing
results in Table 6. To the best of our knowledge, our accuracy
is the best one with the same amount of training data. These
experimental results indicate that using a specific difference
to generate the negative samples, as opposed to random dif-
ferences, is an effective approach for enhancing the accuracy
of the neural distinguisher.

6. Conclusions

In this paper, we first explore the internal mechanisms of the
neural distinguisher constructed using a single ciphertext
difference from four aspects: choice of input difference, 𝑟-
round differences, (𝑟 − 1)-round or (𝑟 − 2)-round difference
and truncated difference. Through our analysis, we identify
significant similarities between this neural distinguisher and
another one trained with a ciphertext pair.

Following this, we conduct a comprehensive compar-
ison of their similarities and differences in the context of
differential cryptanalysis, feature confusion, and feature im-
portance. We highlight that the neural network captures the
distinct correlation between specific bits of the left and right
halves from the ciphertext, especially the significant bits.

After that, our analysis extends to the neural distin-
guisher with multiple ciphertext pairs. Our investigation
indicates that this neural distinguisher recognizes its sam-
ples relying heavily on the average differential probability
of the ciphertext pairs in the samples. In order to miti-
gate the conflicts of differential probability between positive
and negative samples, we adopt a predetermined difference
instead of a random one to generate the negative samples,
thereby achieving higher accuracy for the 7-round Speck32
and 9-round Simon32/64.
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