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PAPER
TIG: A Multitask Temporal Interval Guided Framework for Key
Frame Detection

Shijie WANG†∗, Xuejiao HU†∗, Sheng LIU†, Ming LI†, Yang LI†a), Nonmembers, and Sidan DU†b), Member

SUMMARY Detecting key frames in videos has garnered substantial
attention in recent years, it is a point-level task and has deep research value
and application prospect in daily life. For instances, video surveillance sys-
tem, video cover generation and highlight moment flashback all demands
the technique of key frame detection. However, the task is beset by chal-
lenges such as the sparsity of key frame instances, imbalances between
target frames and background frames, and the absence of post-processing
method. In response to these problems, we introduce a novel and effective
Temporal Interval Guided (TIG) framework to precisely localize specific
frames. The framework is incorporated with a proposed Point-Level-Soft
non-maximum suppression (PLS-NMS) post-processing algorithm which
is suitable for point-level task, facilitated by the well-designed confidence
score decay function. Furthermore, we propose a TIG-loss, exhibiting sen-
sitivity to temporal interval from target frame, to optimize the two-stage
framework. The proposed method can be broadly applied to key frame
detection in video understanding, including action start detection and static
video summarization. Extensive experimentation validates the efficacy of
our approach on action start detection benchmark datasets: THUMOS’14
and Activitynet v1.3, and we have reached state-of-the-art performance.
Competitive results are also demonstrated on SumMe and TVSum datasets
for deep learning based static video summarization.
key words: key frame detection, action start detection, action recognition,
video summarization, video understanding

1. Introduction

Nowadays, as the amount of video data is increasing on
streaming media, detecting key frames becomes a challeng-
ing task attracting broad attention in multimedia applica-
tion. For instances, abnormal events are more obvious when
checking video surveillance system; viewers can quickly
jump to the clips they are interested in when watching videos
according to predicted key frames; highlight moments will
be quickly generated after a sport match. Hence, the task
holds practical application value, and there exist several
downstream tasks that can be practically derived from it.
However, as the key frames are sparse compared with the
whole video frames, it is difficult to precisely understand the
semantic feature for the model. In this work, we propose a
novel key frame detection framework.

Key frame detection aims to precisely extract specific
frames for further application in realms like video under-
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standing and video analysis. To demonstrate the effective-
ness of our framework, we focus on two downstream tasks:
action start detection and static video summarization. As
illustrated in Fig. 1 (a), action start detection is a point-level
task towards detecting the start frames of an action instance
in a video along with their category. Ljung et al. [1] have en-
deavored in this direction, albeit with limited success. Static
video summarization extract several key frames represent-
ing important content of the raw video, as demonstrated in
Fig. 1 (b). However, static video summarization is treated
as clustering problem by many previous works [2], [3] and
there is a lack of deep learning method. For this reason,
we apply our framework on the static task and provide the
competitive results.

Numerous challenges persist in the execution of this
task. (1) Label data is very unbalanced. As for the task
of action start detection, action start frames are quite few
throughout the entire videos, there may be just less than ten
frames of action start out of thousands of frames. A num-
ber of previous works have made efforts to overcome such
difficulties. Shou et al. [4] adopt Generative Adversarial
Network (GAN) to generate hard negative samples around
the start point, but it may let the model make ambiguous
judgments during inference stage. Gao et al. [5] use rein-
forcement learning techniques to predict the start probability
at each time, but the long-term reward produces very lit-
tle effect. (2) Background frames are far more than target
frames, so that it is difficult for model to learn the feature
of target frames. For feature learning, most previous works
have considered recurrent neural network (RNN) and vari-
ants, Gate Recurrent Unit (GRU) [6] and Long Short Term
Memory (LSTM) [7] that pay more attention to temporal fea-
ture. With Transformer [8] emerging, many works [9], [10]
utilize it as backbone. However, Joungbin et al. [11] demon-
strates that RNN is more adequate for action related task than
Transformer. Inspired by them, we utilize LSTM with con-
volution projection layers as backbone. (3) There is a lack
of post-processing methods to refine predicted candidates
for point-level task. Works of video summarization utilize
knapsack algorithm to deal with different time span of shots,
but it fail to meet the requirement of selecting frames. We
propose a point-level non-maximum suppression algorithm
based on Soft-NMS [12]. The confidence score decay func-
tion is related to temporal interval instead of Intersection of
Union (IoU).

To address aforementioned challenges, we propose an
effective and universal Temporal Interval Guided (TIG)
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Fig. 1 Illustration of downstream tasks of key frame detection. (a) Action
start detection endeavors to identify start point of action instances and output
the action category. (b) Static video summarization extract several key
frames representing important content of the raw video.

framework in this work, it contains two sub-networks: Clas-
sification network and Temporal regression network. The
two-stage framework enhances the ability of simultaneously
performing classification and localization task. Both sub-
networks utilize LSTM with convolution projection layers
as backbone for spatial and temporal feature learning. The
convolution projection layers facilitate the aggregation of
local feature, thereby augmenting the capability of spatial

feature and semantic information learning. In addition, we
propose a TIG-loss for Temporal regression network for con-
centrating on predicting temporal interval, which can let the
network better cope with challenge of temporal localizing.
At last, PLS-NMS is designed to solve problems of candi-
date overlapping and select more precise final results, it is
utilized to further refine the candidates produced by results
of two sub-networks.

In summary, we make following contributions:
(1) We introduce a universal and effective two-stage

Temporal Interval Guided (TIG) framework for key frame
detection. The incorporation of a spatio-temporal feature
learning module coupled with local projection layers sig-
nificantly enhances the capability of semantic information
understanding. It is worth mentioning that a structured TIG-
loss is proposed for optimization during temporal regression
stage.

(2) We propose a novel post-processing strategy PLS-
NMS, which is suitable for point-level detection task. The
strategy can effectively solve the problems of candidate adja-
cent and overlapping, contributing to more precise detection
of the key frames.

(3) Sufficient experiments provide competitive results
on the two downstream tasks of action start detection and
static video summarization, and demonstrate the universal-
ity of our approach for point-level key frame detection task.
Specifically, our approach represents its superiority over pre-
vious state-of-the-art (SOTA) methods on THUMOS’14 and
Activitynet v1.3 datasets for action start detection.

2. Related Work

Temporal Action Detection. TAD is oriented towards
detecting the whole action instances along with their cor-
responding categories in untrimmed videos. The main
framework is divided into two sheets: proposal-based
methods [13]–[15] and proposal-free methods [16], [17].
Proposal-based methods like U-BlockConvCaps [18] builds
a Capsules Boundary Network to avoid some limitations of
the invariance caused by pooling and inability. Proposal-
free methods like Shou et al. [19] propose CDC network
with CDC filter to abstract action semantics, while boosting
prediction of per-frame action and localization of temporal
boundaries. Additionally, Li et al. [20] introduce a coarse-
to-refine framework for weakly-supervised TAD which only
needs action label for supervision.

Online Action Detection. OAD is first present by De
Geest et al [21] and treated as per-frame labeling task. Given
the absence of visibility into information beyond the current
frame during inference, RNN and the variants have been
prominently utilized for the task. Huang et al. [22] propose
a RNN based network to depict the spatial-temporal seman-
tic information of actions; Liu et al. [23] incorporates both
RGB and skeleton information for a multi-modality recur-
rent neural network to get more precise detection results.
The advent of attention mechanisms [8] has given rise to
Transformer-based methodologies for OAD, such as [24],
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[25]. E2E-LOAD [26] proposed an end-to-end Transformer-
based model to address long-term understanding and effi-
cient online reasoning problems.

Online Detection of Action Start. ODAS closely
aligns with our task objectives, aiming to identify the ac-
tion start frame and corresponding action category in an
online manner. The task is first introduced by Shou et al. [4]
and a GAN based model is proposed as baseline concerning
the sparsity of action start label. In consideration of good
performance of recurrent network, Wang et al. [27] both uti-
lize recurrent modeling backbones with short-term looking
back policy to focus on grasping local semantic context in-
formation. Gao et al. [5] propose a two-stage framework
leveraging a policy gradient method to enhance attention for
both classification and localization. DABR [28] establishes
probability density function near action boundaries to re-
duce penalty for frames near ground-truth boundary points.
In addition, there is also work like [1] have tackled the task
in an offline manner. They train the RNN-based model with
a structured loss function and propose a new Mouse Reach
Dataset for dedicated research in this domain.

Video Summarization. Video summarization aims to
generate a concise summary of original video for viewers to
fast browse and better understand it. There are two main ap-
proaches for video summarization: dynamic and static. Dy-
namic video summarization focus on detecting video shots of
high importance. Supervised methods like PGL-SUM [29]
utilize attention mechanism by combining global and lo-
cal multi-head attention to address the limitations of RNN
models, MSVA [30] fuse extracted motion features and static
visual feature to better learn representation of video feature.
Unsupervised methods, including [31]–[33], generate sum-
maries without annotated importance score. GL-RPE [33]
utilizes global and local relative position embedding to cap-
ture both local and global interdependencies between video
frames. Static video summarization lay emphasis on frame-
level detection, and utilize conventional methods like clus-
tering algorithm to solve the task. Yasmin et al. [2] utilize
similarity-based agglomerative clustering algorithm to clus-
ter the frames into different groups for further summarizing.
Bhattacharjee et al. [3] propose the Artificial Bee Colony
optimization algorithm to optimize shot length for better ex-
tracting key frames. In addition, there are also works like
A2summ [34] focusing on multimodal summarization which
generating summary with matched text and videos.

3. Method

In this section, we first present the problem definition of key
frame detection, and subsequently elaborate the framework
of our model. Notably, we introduce an effective Tempo-
ral Interval Guided (TIG) loss, which actively contributes to
the model training during the temporal regression stage. Fi-
nally, we propose a post-processing algorithm, PLS-NMS, to
further refine predicted candidates and produce the ultimate
results.

3.1 Problem Definition

The input of our model is a sequence of T video frames
noted as {x1, x2, · · · , xT }, where xt represents the frame of
time t, and the overall duration T varies among videos. In
accordance with standard practice, we adopt a pre-trained
feature extractor to obtain the feature vector Ft from each
video clip at time t. Our objective is to predict whether the
frame at time t belongs to key frame, specifically for action
start detection, signifying whether the frame is an action and
represents the beginning of the action. The output predic-
tion is defined as {y1, y2, · · · , yT }, yt can be expressed as
{ct, dt }, with ct ⊆ {1, · · · ,N} representing action label ob-
tained from the probability distribution across the N action
categories, dt represents the temporal interval between cur-
rent time point and nearest ground-truth action start point.
The unit of measurement for dt is frame. For static video
summarization, output yt is made up of {st, dt }, where st
represents importance score. It is noteworthy that the output
is in a downsampled dimension, the final summary is gen-
erated by selecting frames corresponding to the positions of
predicted key frames after upsampling. Structured output
prediction poses a challenge for the task.

3.2 Framework Demonstration

We propose a novel Temporal Interval Guided (TIG) frame-
work as illustrated in Fig. 2. The framework comprises con-
tains two sub-networks: Classification network and Tem-
poral regression network. Classification network focus on
predicting frame-level classification. Raw video frames are
organized into several clips, and feature extractors are em-
ployed to convert the video clips into 1D RGB and optical
flow feature vectors respectively. Then the features are con-
catenated to form two-stream feature (TS feature). Classi-
fication network take TS feature as input and output prob-
ability distribution serving as confidence score throughout
action labels. The final result is determined by selecting the
label with the highest score. The aggregation of TS feature
and intermediate feature produced by Classification network
is fed into Temporal regression network to fulfill the task of
frame-level regression. The network outputs the temporal
interval from key frame point. Finally, the results from both
two sub-networks are combined to construct final results.

Classification network. On account of notable perfor-
mance of recurrent networks in the domain of video under-
standing, especially in action related fields, we utilize the
variant LSTM to construct Classification network. At each
time step t, it uses previous hidden state ht−1,c , previous cell
ct−1,c and current TS feature ft as input to update hidden
state ht ,c and cell ct ,c . The output of LSTM is intermediate
feature fI ,c . The formulation of is expressed as follows:

ht ,c, ct ,c, fI ,c = LST M(ht−1,c, ct−1,c, ft ) (1)

Drawing inspiration from [10], we utilize convolution
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Fig. 2 Overview of TIS framework. The framework comprises two sub-networks: classification net-
work and temporal regression network. Classification network focus on frame-level action classification,
while temporal regression network predicts temporal interval for each frame. Both sub-networks utilize
LSTM with convolution projection layer as backbone. PLS-NMS is applied to refine the preliminary
results and produce final key frame points.

projection layer to strengthen local feature learning. Convo-
lution projection layer is realized through three convolution
blocks, each comprising a 1D convolution layer, layer nor-
malization, and ReLU activation. Finally, a fully-connected
layer with softmax activation is used as the classification
head. The ultimate probability distribution of action label is
derived through Eqs. (2) and (3):

sit ,c = ReLU(LN(Conv(si−1
t ,c ))) (2)

pkt = so f tmax(Wcst ,c + bc) (3)

Where sit ,c denotes the output of i − th convolution
block, pkt represents predicted probability of action label
k, Wc and bc are parameters of fully-connected layer in
Classification network. Notably, output of Classification
network for static video summarization is importance score.

Temporal regression network. Temporal regression
network has the similar structure with Classification net-
work: a convolution layer comprised of three convolution
blocks and a regression head of a fully-connected layer. The
output of temporal interval can be obtained by following
equations:

ht ,r , ct ,r , fI ,r = LST M(ht−1,r , ct−1,r , ( ft + fI ,c)) (4)

sit ,r = ReLU(LN(Conv(si−1
t ,r ))) (5)

dt = Wr st ,r + br (6)

Where ht ,r , ct ,r express hidden state and cell of LSTM,
sit ,r denotes the output of i − th convolution block, dt is the
temporal interval from nearest action start point at time t, Wr

and br are parameters of fully-connected layer in Temporal
regression network.

3.3 Loss Function

Classification loss function. As for action start detection, to
learn the class label for each frame, we choose cross entropy
as loss function for optimization. This loss function quanti-
fies the disparity between the predicted probability distribu-
tion and the ground-truth one-hot label. Mathematically, it
can be expressed as:

LossC ,asd = −log
ep

k
t ,gt∑K

k=1 ep
k
t ,pre

(7)
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Where pkt ,gt is ground-truth probability, pkt ,pre is predicted
probability, K is the number of classes.

For static video summarization, we utilize Mean Square
Error (MSE) loss function for training which is described as:

LossC ,svs =
1
T

T∑
t=1

(st ,gt − st ,pre)2 (8)

Where st ,gt denotes ground-truth importance score, st ,pre
represents predicted importance score, and T is total length
of the video.

Temporal regression loss function. In the context of
frame-level temporal interval regression, the absence of a
suitable existing loss function prompts us to introduce an ef-
fective Temporal Interval Guided (TIG) loss for optimization
during the temporal regression stage. This loss function is
designed to emphasize the temporal interval from the nearest
key frame point for each frame, ensuring that the calculated
value remains within a range conducive to effective network
learning. The function is represented as follow:

LossR = |1 −
dt ,pre + 1
dt ,gt + 1

| (9)

Where dt ,pre denotes predicted temporal interval, and it is
a non-negative floating number; dt ,gt represents the ground-
truth temporal interval, and its actual value is non-negative
integer.

Finally, the total loss function for network joint training.
Both values of LossC and LossR varies from 0 to 1 with
different magnitude. The joint loss is expressed as:

Loss = LossC + LossR (10)

3.4 Post Processing

During inference stage, the predicted action label and tem-
poral interval are combined to determine final key frame
point. Specifically, we consider points with predicted tem-
poral interval dt ,pre ≤ dthd as candidates, where dthd is
a hyper-parameter. Then we propose PLS-NMS to further
process the candidates. PLS-NMS is more suitable for point-
level task as its confidence score decay function is related
to temporal interval instead of IoU, meanwhile the problem
of candidates overlapping in short time intervals is better
solved.

Similar to Soft-NMS, we first sort all candidate points
by confidence score sn (n ∈ N , N denotes the number of
candidates). Point with highest score input into final result
box R, while the remaining points are placed into candidate
box C. Then we calculate the decayed confidence score sj
( j ∈ J, J represents the number of remaining candidates)
for points in box C. This is achieved by employing a decay
function, which takes into account the temporal interval and
the point most recently placed into box R. Points with scores
less than the threshold sthd are then eliminated. This process
is repeated until there are no points left in box C, signifying
that the points in box R constitute the final key frame points.

Fig. 3 The pseudo-code of proposed PLS-NMS post-processing algo-
rithm, where f is confidence score decay function and output R contains
final results, with corresponded confidence score in S.

The confidence score decay function is presented as follows:

ŝj =
sj

1 + e |d j−dm | (11)

Where sj denotes the raw confidence score, dj expresses
predicted temporal interval of candidate j, dm is predicted
temporal interval of latest point put into box R. The whole
process algorithm is formally described in Fig. 3.

4. Experiments

To demonstrate the universality, effectiveness of pro-
posed model, we conduct sufficient experiments on THU-
MOS’14 [35], Activitynet v1.3 [36], TVSum [37], and
SumMe [38] datasets.

4.1 Datasets

THUMOS’14 [35] is a popular dataset for action detection
which contains 20 types of action. The total duration of the
dataset is more than 20 hours. Following [4], [5], [27], [28],
we train our model with validation dataset of 200 untrimmed
videos and test them with test dataset of 213 untrimmed
videos.

ActivityNet v1.3 [36] is one of the largest datasets
for action detection which contains approximately 15K
untrimmed videos in total and 200 action classes are an-
notated. Following [4], [5], [27], [28], we train our models
on the train set and test them on the validation set.

SumMe [38] is one of the benchmark datasets for video
summarization. It contains 25 videos covering both first-
person and third-person view. Every video is annotated by
18 users for subjective summary. Moreover, frame-level
ground-truth importance score that adopted by averaging
user summaries per frame is provided for training.

TVSum [37] is another benchmark dataset for video
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Table 1 Comparisons with state-of-the-art methods using p-mAP(%) at depth Rec=1.0 under different
offset thresholds on THUMOS’14.

summarization. It is composed of 50 videos and annotated
by 20 users for user summary. Frame-level ground-truth
importance score is also provided for training.

4.2 Evaluation Protocols

For action start detection, we assess the performance of our
model with point-level mAP (p-mAP) introduced by [4].
Confidence scores for each action class are sorted firstly and
then calculate by order. A prediction is classified as pos-
itive when its action class is correct and temporal interval
from a ground-truth point is smaller than a specified offset
threshold. It is essential to emphasize that calculation for
the same ground-truth point is not allowed. Under each ac-
tion class point-level average precision (p-AP) is calculated
firstly, and p-mAP is subsequently obtained by averaging
p-AP throughout action classes. Furthermore, we adopt an-
other metric AP depth at recall X% proposed by [4]. The
p-AP on the Precision-Recall curve with the recall rate is
averaged from 0% to X%. The p-mAPs under different off-
set thresholds are then averaged to obtain the final average
p-mAP at each depth. Temporal offset thresholds are varied
from 1s to 10s.

For static video summarization, as there is no standard
evaluation protocols, we use the same metric as employed in
dynamic video summarization, as adopted in previous stud-
ies [29], [30], [34]. We compare similarity between the gen-
erated summary and user annotated summary by F1-Score
which is obtained by precision and recall. The computed
F1-Scores for all users are then averaged to obtain the fi-
nal F1-Score. Additionally, we consider Spearman’s ρ and
Kendall’s τ correlation coefficients proposed by [39] to cover
the shortage of F1-Score. We conduct our experiments on
five random divided splits of training and testing datasets
provided by previous work [40]. The reported results are
obtained by averaging results across the five splits. Notably,
MSVA [30] provide five new non-overlap splits to rectify is-
sues related to video dropped or duplicated in previous splits.
We also report our results on the non-overlap splits.

4.3 Implementation Details

Feature description. For action start detection, follow-
ing [5], [41], [42], we downsample the videos into 24 fps
and set every 6 frames as a chunk for feature extraction. We
utilize TSN [43] model to extract both RGB and flow fea-

tures. For THUMOS’14 dataset, we adopt the same metric
as in [42] where RGB feature are extracted with model of
Resnet-50 [44] as backbone and flow feature are extracted
with BN-Inception [45]. For Activitynet v1.3, both fea-
tures are extracted by Resnet-50 pretrained on Kinetics-400.
TS feature are obtained by concatenating RGB and flow
feature.For static video summarization, we follow previous
work [29] with the same setting for both SumMe and TVSum
datasets. Videos are downsampled to 2 fps, and features are
pre-extracted by GoogleNet [46].

Parameter settings. Hidden size of LSTM for Classi-
fication network and Temporal regression network are set to
4096 and 1024 respectively. Convolution projection layer
contains three 1D convolution layers with kernel size=3
and padding size=1. We utilize stochastic gradient de-
scent (SGD) optimizer with learning rate=5e-3 and momen-
tum=0.9 to train our model. Threshold of temporal interval
dthd of PLS-NMS is set to 11 on THUMOS’14 and 8 on
Activitynet v1.3 respectively, while 3 for static video sum-
marization. Confidence score threshold sthd is set to 0.2 for
action start detection and 0.5 for static video summarization.

4.4 Comparison with SOTA Methods

We compare our results with SOTA methods on action
start detection, and reproduce several deep learning methods
of dynamic video summarization for comparision of static
video summarization. We use evaluation metrics p-mAP and
average p-mAP proposed by [4] on the two popular datasets
THUMOS’14 and Activitynet for action start detection. In
the context of static video summarization, we adopt F1-
Score, Spearman’s ρ and Kendall’s τ correlation coefficients
on two benchmark datasets TVSum and SumMe.

Results on THUMOS’14. As presented in Table 1,
we compare our results with both online methods (Shou et
al. [4], Startnet [5], Wang et al. [27], DABR [28]) and offline
method (Iljung et al. [1]). The focus of the action start de-
tection task is on evaluating the average performance across
various temporal offset thresholds. Notably, our method
significantly outperforms other SOTA methods under most
offset thresholds. What is worth mentioning that we outper-
form DABR [28] by 5.7% p-mAP on average across offsets.
Remarkably, our results are more than twice as effective as
Iljung et al. [1] as both offline methods. Table 2 illustrates
the comparison on different recall depths. It can be seen that
we have reached SOTA performance under most depths of
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Table 2 Comparisons with state-of-the-art methods using average p-mAP(%) at different depths on
THUMOS’14.

Table 3 Comparisons with SOTA methods using p-mAP(%) at depth Rec=1.0 under different offset
thresholds on Activitynet v1.3.

Table 4 Comparisons with baseline methods using F1 score, Kendall τ and Spearman ρ correlation
coefficients metrics on SumMe and TVSum. Noted that F1 reports experiment results conducted on
previous random splits and F∗

1 reports experiment results conducted on new non-overlap splits provided
by MSVA [30].

Table 5 Ablation study evaluated using p-mAP(%) at depth Rec=1.0 under different offset thresholds
on THUMOS’14. The first line presents results of model training without convolution projection layer,
the second line presents results of model training with L1-loss, and results of candidates post-process
with NMS are shown in the third line.

recall, and outperform other methods by a substantial mar-
gin. This comprehensive evaluation affirms the effectiveness
of our model across various evaluation scenarios.

Results on Activitynet v1.3. The comparative analy-
sis of results of results on Activitynet v1.3 is presented in
Table 3. Given the vast scale of this dataset, the challenge
of learning video features poses a significant hurdle, leading
to generally unsatisfactory results across all methods. De-
spite these challenges, our method demonstrates remarkable
performance, achieving competitive results and surpassing

previous methods across a majority of temporal offsets.
Results on SumMe and TVSum. For fair comparison,

we have reproduced several recent static video summariza-
tion methods with shared source code and evaluate under
metrics of static video summarization as baselines. For
other methods, predicted frame-level importance scores are
first sorted, then summaries are generated by selecting top
15% frames. In contrast, our method generates summaries
using the output of PLS-NMS, ensuring that the length does
not exceed 15% of the original videos. We compare with
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A2Summ [34] and PGL-SUM [29] on previous splits, and
compare with MSVA [30] on new splits they provide. As de-
picted in Table 4, our method outperforms all other methods
under all evaluation metrics on both datasets. This compre-
hensive evaluation underscores the effectiveness and supe-
rior performance of our proposed approach in the realm of
static video summarization.

In general, our method consistently surpasses the per-
formance of previous approaches, achieving SOTA perfor-
mance on action start detection and also provide competitive
results on static video summarization. This consistent supe-
riority substantiates the universality and effectiveness of our
method in the domain of key frame detection.

4.5 Ablation Study

To demonstrate effectiveness of each part of the proposed
method, we conduct ablation study on THUMOS’14 dataset
within realm of action start detection.

Effectiveness of convolution projection layer. We
conducted a comparative analysis to assess the performance
of our model with and without the convolution projection
layer, results are presented in first and last line of Table 5.
It demonstrates that the inclusion of the convolution projec-
tion layer enhances the learning capabilities of the network,
particularly by emphasizing local features.

Effectiveness of TIG loss. We compare the proposed
TIG-loss with L1-loss. Results of network training with L1-
loss are shown in second line of Table 5. Network training
with TIS loss outperforms the other significantly by around
14% p-mAP on average. TIS loss controls the loss value
within the range conducive to effective network learning,
rendering the network more sensitive to temporal interval.

Effectiveness of PLS-NMS. To demonstrate the supe-
riority of PLS-NMS, we compare it with traditional NMS,
which results are shown in third line of Table 5. The perfor-
mance of PLS-NMS exceeds NMS by 5% p-mAP on average,
presenting suitability of PLS-NMS for point-level tasks and
its effectiveness in addressing challenge of candidates over-
lapping.

Ablation study of hyper-parameters. For choosing
the optimal hyperparameters in PLS-NMS, we first fix the
time threshold to a value within an appropriate range, then
obtain the optimal score threshold through ablation study.
After that, the score threshold is fixed and time threshold
is adjusted. Results of ablation study of hyper-parameters
as depicted in Fig. 4. Figure 4 (a) presents results when
time threshold is fixed to 11 and score threshold varies from
0.1 to 0.9. Figure 4 (b) presents results when score thresh-
old is fixed to 0.2 and time threshold varies from 5 to 15.
This experimentation provides insights into the selection of
hyper-parameters in PLS-NMS. Remarkably, there is only a
minor discrepancy in results when the score threshold varies
from 0.1 to 0.4 and the time threshold varies from 9 to 15.
This study demonstrates the stability and insensitivity of our
method to changes in hyper-parameters when they fall within
an appropriate range.

Fig. 4 Ablation study of hyper-parameters in PLS-NMS. Averaged p-
mAP across 1–10s offsets is reported for every threshold. (a) Time threshold
is fixed to 11 and score threshold varies from 0.1 to 0.9; (b) score threshold
is fixed to 0.2 and time threshold varies from 5 to 15.

5. Visualization Results

In this section, we present visualizations of example re-
sults generated by our model, as illustrated in Fig. 5. We
choose examples of BaseballPitch and FrisbeeCatch from
THUMOS’14 dataset to demonstrate results of action start
detection. The example of BaseballPitch is relatively easier
for model to predict action start point as the athlete making
up a large part of the video frame and the color of athlete’s
clothes contrasting sharply with the background. However,
the example of FrisbeeCatch is not that easy. There are a lot
of people in the video, so it is challenging for the model to
detect when the action actually starts. In both examples, our
model exhibits exceptional performance, accurately predict-
ing action categories and ensuring that the temporal distances
between the predicted action start frames (marked in red) and
the ground-truth frames (marked in blue) are less than 1s.

Furthermore, we choose ‘video 20’ and ‘video 42’ from
TVSum dataset to demonstrate performance of our model in
static video summarization. The gray bars represent an-
notated importance scores, while blue bars are predicted
importance scores of our selected key frames. Notably, the
majority of our predictions align accurately with the ground-
truth, and the margin of error is within a few frames. Other
than action start, key frame is a more ambiguous concept for
both human and model. Therefore, though there are some
instances where we fall short of predicting high ground-truth
values, the visualization results still strongly demonstrate the
effectiveness of our model.
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Fig. 5 Visualization results of examples from THUMOS’14 and TVSum dataset. (a) Results of action
start detection. Ground-truth action start frames are labels with blue and our predictions are labeled with
red; (b) gray bars in the background are ground-truth importance score and predicted importance score
of key frames are labeled with blue.

6. Conclusion

In this work, we introduce a novel and effective Temporal
Interval Guided (TIG) framework designed for key frame

detection. Our two-stage framework is complemented by
spatio-temporal feature learning module with convolution
projection layer, a structured TIG-loss and a post-processing
strategy PLS-NMS, demonstrating a highly competitive per-
formance in both action start detection and static video sum-
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marization. Sufficient experiments have proved the univer-
sality and effectiveness of our approach, it significantly out-
performs previous works and have reached SOTA perfor-
mance on datasets of action start detection. Moreover, our
approach has the potential of extending to other temporal
point-level detection tasks, such as anomaly detection and
temporal signal detection. In future work, we will further
investigate multimodal key point detection like combining
text and video context.
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