
DOI:10.1587/transinf.2024EDP7033

Publicized:2024/08/07

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015
1

PAPER
Applying Run-Length Compression to the Configuration Data of
SLM Fine-Grained Reconfigurable Logic

Souhei TAKAGI†, Nonmember, Takuya KOJIMA††, Member, Hideharu AMANO†, Morihiro KUGA†††,
and Masahiro IIDA†††, Fellows

SUMMARY SLM (Scalable Logic Module) is a fine-grained recon-
figurable logic developed by Kumamoto University. Its small configura-
tion information size characterizes it, resulting in a smaller area for logic
cells. We have been developing an SoC-type FPGA called SLMLET to
take advantage of SLM. It keeps multiple sets of configuration data in the
memory module inside the chip in a compressed form and exchanges them
quickly. This paper proposes a simple run-length compression technique
called TLC(Tag Less Compression). It achieved a 1.01-3.06 compression
ratio, is embedded in the prototype of the SLMLET, and is available now.
Then, we propose DMC (Duplication Module Compression), which uses
repeatedly appearing patterns in the SLM configuration data. The DMC
achieves a better compression ratio for complicated designs that are hard to
compress with TLC.
key words: SLM reconfigurable logic, Run-Length Compression, FPGA

1. Introduction

In recent years, FPGA has rapidly advanced, achieving high
functionality and performance, and is widely utilized in
applications such as AI accelerators. In IoT (Internet of
Things), hardware that offloads anonymization and protocol
processing is necessary, and System-on-Chip (SoC) type FP-
GAs with embedded CPUs are used. However, recent SoC
FPGAs are often over-spec and tend to consume a lot of
power.

To address this problem, we have been developing a
tiny SoC FPGA called SLMLET[1], which provides a unique
FPGA core called SLM(Scalable Logic Module)[2], RISC-
V CPU, HyperBus interface, and DMA/switching function
as shown in Figure 1. The characteristic of SLM is its small
configuration data size. Leveraging this, SLMLET com-
presses multiple configuration data and stores them in the
chip’s internal memory. While SLMLET does not accom-
modate much logic, it effectively utilizes small-area SLM
by swapping configuration data for each task. This can also
reduce power consumption.

Research on compression and decompression of con-
figuration data was conducted in early FPGAs and was even
integrated into some commercial FPGAs. However, recent
FPGAs have increased logic capacity, and the frequency of
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Fig. 1: SLMLET Overview

configuration changes has decreased, reducing the necessity
for compression. Consequently, research on configuration
data compression is seldom pursued nowadays. Further-
more, this study aims to reduce the already small configura-
tion data for SLM, aiming to store more configuration data
sets within the chip. This differs from conventional FPGA
configuration data compression in its conditions.

This paper proposes a simple run-length TLC(Tag Less
Compression) technique. Although TLC achieves a good
compression ratio for simple designs, it cannot reduce the
size of complicated design configurations. So, we propose
DMC (Duplication Module Compression), which uses re-
peatedly appearing patterns in the SLM configuration data.
The early stage of the study was presented in the poster pa-
per[3] only including an idea of TLC.

The paper is organized as follows. In Section 2, we
review the configuration methods and related work. Sec-
tion 3 describes SLM and how to integrate in SLMLET-1.
In Section 4, we propose TLC and DMC, and evaluate the
compression ratio. Section 5 is for hardware implementa-
tion, and Section 6 concludes the paper.

2. Compression Methods

2.1 Run Length Compression

Compression methods are classified into two categories:
lossless compression, which allows complete restoration of
the original data, and lossy compression, which does not. For
the compression of configuration data, lossless compression
is required [4]. Lossy compression is commonly used for

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers
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data like images or audio data, where complete restoration
of the original data may not be necessary, achieving high
compression ratios.

However, for FPGA configuration data, compression
must be reversible. Two standard reversible compression
methods are Run Length Compression, which we focus on
here, and the Lempel Ziv method. Lempel Ziv methods are
popularly used for file compression. Although a high com-
pression ratio is achieved, the complexity makes it difficult
to decompress the configuration data with the logic in the
chip [5]. Thus, Lempel Ziv is only used to compare the
compression ratio in this paper.

Run-length Compression works by registering patterns
and their corresponding prefixes in advance. During com-
pression, when a target pattern appears, it is replaced with
the registered prefix, reducing the data size. During decom-
pression, the prefix part is replaced with the original data,
restoring the uncompressed data. This method is effective
for data with consecutive occurrences of specific values [6].

The number of compression patterns can be increased
by adjusting the length of prefixes corresponding to run
lengths. However, this may lead to a decrease in compression
ratio proportional to the length of the prefixes. Particularly,
for parts of the data that do not match any compression pat-
tern, if the prefix and data parts are always output as a set,
the data size may become larger than the original data by the
length of the prefix.

Regarding prefixes, ensuring complete differentiation
during the expansion process is crucial. Failure to distinguish
prefixes from other parts may result in incorrect restoration.
Depending on the characteristics of the original data and
the compression algorithm, it is essential to eliminate such
possibilities during the design phase.

One method to distinguish prefixes is to reserve a part
of the compressed data as a code section. For example, when
compressing to 32 bits, reserving the initial bits as a code
section is one way to achieve this. While this method allows
flexibility in determining compression pattern content for
any original data, it may lead to inefficiency due to including
code section data, even for parts that do not match the pattern.

Here, as an example of run-length expression, we intro-
duce a simple method called FPC (Frequent Pattern Com-
pressor). FPC is designed for Run Length compression of
32-bit integer data. It targets situations where zeros are likely
to appear consecutively near the beginning of the data. FPC
achieves compression by replacing consecutive zero parts
with a 3-bit prefix. The most efficient prefix corresponds
to data with 18 or more leading zeros, compressing 32-bit
original data to 17 bits [7].

Table 1 shows the prefixes and compression patterns
used in FPC. The method efficiently handles cases where a
sequence of zeros is longer than 18 bits. The unused prefix
and the uncompressed category provide additional flexibility.

2.2 Compression for FPGA configuration data

The compression of FPGA configuration data has been a re-

Table 1: Prefixes and Compression Patterns in FPC
Prefix Pattern encoded Data size

after encoding
101 18 bits or more leading zero 17 bits
100 17 bits leading zero 18 bits
011 16 bits leading zero 19 bits
010 15 bits leading zero 20 bits
001 14 bits leading zero 21 bits
000 13 bits leading zero 22 bits
111 Uncompressed 35 bits
110 (Unused prefix)

search topic since the 1990s due to the large amount of con-
figuration data, often containing many repetitive patterns.
Xilinx supported configuration data compression and de-
compression solution[8]. It uses Lampel-Zip for saving stor-
age, and the decompression is done with dedicated hardware
called System Ace[9].

However, recent commercial FPGAs, especially those
used for embedded purposes, typically load configuration
data serially from external flash memory. FPGAs used as
accelerators often transfer data rapidly from the host via
PCIe, and both scenarios usually have sufficient external
memory space. As a result, the necessity for compression
and decompression has diminished. Consequently, recent
research on compression and decompression methods often
targets specialized FPGAs.

Studies by [4] and [10] propose compression and de-
compression algorithms for the Xilinx XC6200 FPGA. The
XC6200 is a unique FPGA that allows the Configuration
Register, where configuration data is stored, to be mapped to
the host’s memory. By rewriting this register, the hardware
configuration can be changed rapidly. The proposed method
utilizes the XC6200’s configuration data, composed of ad-
dress and data pairs, and employs a run-length compression
method.

In [6], a compression and decompression circuit for
sending configuration data to a small original FPGA via
JTAG is proposed. The use of serial transmission allows for
flexible run-length compression using a 4-bit prefix. While
this work provides detailed hardware data, the proposed
method is more complex than ours.

[5] employs a sophisticated compression and decom-
pression circuit using a dictionary-based algorithm in the
LZ family, achieving high compression rates. However,
this method requires substantial hardware resources. [11]
presents a compression method for the FDP2009-II-SOPC,
a new FPGA. Similar to the XC6200, this FPGA uses con-
figuration data consisting of addresses and data, and the
proposed compression method takes advantage of this char-
acteristic. Notably, the architecture of this FPGA is designed
with compression of configuration data in mind.

[12] proposes a configuration data compression method
for CGRAs (Coarse-grained Reconfigurable Arrays). The
method aggregates the configuration of identical processing
elements when they occur consecutively, achieving signifi-
cant compression ratios.
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3. SLM

Kumamoto University developed SLM (Scalable Module
Logic) in 2014 as a new configuration method for FPGAs.
Based on the LUTs adopted in existing FPGAs, it reduces the
configuration information’s size to enhance the logic cell’s
area efficiency. An SLM with K inputs is composed of a K-
1 input LUT and w+1 Programmable NAND (PN) circuits.
In this case, while a K-input LUT requires 2𝑘 configuration
information, an SLM with the same number of inputs can
make do with 2𝑘−1 + 2w+2.

In SLM, specific operations are performed on partial
functions obtained by expanding the logical function through
Shannon expansion, as expressed below:

𝑓 = 𝑥 · 𝑓(𝑥=0) + 𝑥 · 𝑓(𝑥=1)
The allowable operations involve the inversion or as-

signment of constants for any input variable or output. As a
result,

𝑓(𝑥=0) = 𝑓(𝑥=1)
SLM implementation is possible only for logical func-

tions where this equality holds.
The array structure of the SLM is shown in Figure 3.

Each tile provides LB (Logic Block), Connection Block on
Top side (CBT), Connection Block on Right side (CBR) and
SB (Switch Block). The detail of the structure is shown in
the paper[13].
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3.1 The SLM in the SLMLET-1

SLMLET-1, the prototype of SLMLET provides two FPGA-
IPs, each of which is shown in Fig. 4. The tile size of each
FPGA-IP is 16 × 16, thus, SLMLET-1 provides 256 × 2
tiles. Added to the fundamental structure, it provides 4 DSP
tiles including multipliers. Furthermore, LB includes a 4-
bit ripple carry adder, and all adders are cascaded by carry
chains. Here, the LB is further divided into LCB (Local Con-
nection Block), BLEs (Basic Logic Elements), and CYINT
(CarrY-IN selecTor). IOB (Input Output Block) includes 10
IOEs (Input Output Elements) for the input/output port of
the FPGA-IP.

In SLMLET-1, configuration data sets are stored in the
local memory and serially transferred to two FPGA-IPs in
parallel. This action is triggered by RISC-V software, while
the configuration operation itself is controlled by the hard-
ware. Since each FPGA-IP requires 103,880 bits and SLM-
LET works at 200MHz clock, it takes 520𝜇𝑠𝑒𝑐 to configure
two FPGA-IPs. It is much faster than those of the commer-
cial FPGAs. Also, the total configuration data is about 2/3
of the common FPGAs with 5-LUTs[2].

Figure 4 also shows the path for the configuration. Ar-
rows indicate the order of configuration from CONF IN to
CONF OUT. In other words, inside the memory, configura-
tion data are arranged in the reverse order of the arrows. In
other words, when reading the configuration data from the
beginning, the first part encountered is the Tile 1616 section.

3.2 Compression Strategy

While research on compressing and decompressing FPGA
configuration data has been conducted [6][10][4][5], these
methods are architecture-dependent and may not be suitable
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for SLM whose structure is different from traditional FP-
GAs. On the other hand, there is a commonality between the
configuration data of SLM and the one of existing FPGAs.
This commonality lies in the high proportion of zeros. This
characteristic is particularly pronounced in the configuration
data of simple circuits, and for such cases, a specialized
Run Length encoding of consecutive zeros is expected. For
this aim, we proposed a general compression strategy called
Tag Less Compression or TLC, and have implemented it in
SLMLET-1.

However, for complex circuits, the compression ratio of
TLC becomes low. Thus, we must make use of the architec-
tural features of the SLM. In the configuration data, LCB, SB,
and LB modules occupy a significant portion of the configu-
ration data, around 70% of the entire array. Taking advantage
of this, we propose using a run-length compression called
Duplicated Module Compression or DMC, which provides a
dictionary for modules that appear multiple times. The LCB,
responsible for connections within the logic block, has fewer
duplications and a higher proportion of zeros. Therefore, we
use the TLC for this part.

4. Compression Methods

4.1 Tag Less Compression

For SLMLET, compression can be done outside the chip,
while on-the-fly decompression needs to be done inside the
chip. Thus, the compression method with simple decom-
pressing hardware is required. Also, the compressed con-
figuration data must be efficiently stored in the memory for
RISC-V CPU. Considering these requirements, we propose
a TLC (Tag Less Compression) compression method.

Fig. 5: Tag Less Compression (TLC)

TLC is a type of run-length compression that targets
patterns with n-bit continuous zeros. Here, we explain with
a 4-bit version shown in Figure 5). When more than four
continuous zeros are found in the original data, ’0000’ is first
outputted. After that, the number of consecutive patterns of
’0000’ is specified by 4 bits. In the example of Figure 5, the
pattern ’0000 0000 0000’ is compressed into ’0000 0011’.
’0011’ shows the number of continuous ’0000’s. To repre-
sent the consecutive occurrence of ”0000” up to 15 times,
a 4-bit pattern is used. This allows the representation of
patterns with up to 15 consecutive occurrences using 8 bits.
Patterns that are not the target of compression are outputted
as they are. On the contrary, the worst-case scenario is when
”0000” appears only once. In this case, the conversion of a
4-bit string to 8 bits would result in a decrease in compres-
sion efficiency as shown in Figure 5. One of the features of
this method is that it does not use tags. Data are handled in

4-bit units by not using tags and are easy to handle with most
CPUs. This ability facilitates both compression and decom-
pression implementations. The problem with TLC is that it
can increase the data amount if only one ’0000’ frequently
appears.

4.2 Duplicated Module Compression

TLC has been implemented in SLMLET-1 and is available
in the actual chip. However, as shown later, the compres-
sion ratio of TLC is low when the complicated design is
implemented. For further compression, we need to use the
features of SLM configuration data.

The FPGA-IP consists of tiles and IOBs as shown in
Figure 3. The configuration data of the tiles accounts for a
significant portion of the entire bitstream data. Therefore,
we aimed to compress the configuration data of the tiles and
proposed DMC (Duplicated Module Compression).

Each tile, as shown in Figure 3, comprises multiple
modules. Switch Blocks (SB) and Logic Blocks (LB) exhibit
duplications with the same modules in other tiles. Hence, we
performed a run-length compression by creating dictionar-
ies for these modules. Additionally, while Local Connection
Blocks (LCB) rarely show duplications with the same mod-
ules in other tiles, they have a high percentage of zeros.
Therefore, we applied a similar approach to TLC.

The DMC uses a dictionary that associates configura-
tion data with prefixes. For example, we show the case of
LB, which has 21-bit configuration data. For each config-
uration data for an LB, we provide a variable length prefix.
Here, we provide a directory with 𝑛 entries, as shown in
Table 2. Here, let 𝑛 be nine. List the top nine configuration
data with high duplicate frequencies for LB and assign them
variable prefixes in sequence, starting with 01, 001, 0001,
. . . 00000001. Furthermore, since the compression speed
is not crucial in this paper, the LB part is read in advance
to create the dictionary. We replace the target configuration
data with the corresponding prefix in the compression step
in the server which is used for SLM design. Compared with
the time for the place&route step of SLM design, the time
for the compression in the server is negligible.

In the decompression step, when the top bit is ’1’, it
shows uncompressed data, so output the following 21-bit
data as it is. This top bit is added as needed. When the first
bit is ’0,’ we scan the bit pattern until we find ’1’ and get the
prefix. Then, we refer to the dictionary and change the prefix
with the corresponding 21-bit configuration data.Since the
configuration data is serially sent to the FPGA-IP, we used
the variable length prefix. This approach aims to improve
compression rates by inserting the shortest ’1’ as a marker
for patterns not in the dictionary. It means outputting a ”1”
before the configuration data. We assigned lengths based
on the descending order of occurrence frequencies for other
patterns. Additionally, for LB’s configuration data handled
in 21-bit units, we limited the prefix length to 10 bits (𝑛 = 9).
This restriction is based on the criterion that the compression
rate improves as long as the target configuration data appears
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at least twice.
The same procedure was applied to the SB by creating

dictionaries. Since SB’s configuration data is handled in
45-bit units, we limited the prefix length to 22 bits.

Table 2: An example of a dictionary for LB
prefix configuration data
01 001100010001010000000
001 000001011000010000010
.
.
.

.

.

.

000000001 00111110111110000100

Next, Table 3 illustrates the relationship between con-
trol signals and selected signals in the configuration of LCB.
Each LCB has 20 outputs, each assigned a 5-bit control sig-
nal. Despite half of the control signals being allocated to
GND on the format, they are not used in practice. We at-
tempted compression focusing on this feature because nearly
half of LCB’s outputs select GND. Specifically, we utilized
the unused control signals from 10001 onwards. During
compression, when GND is selected or when 00000 occurs
consecutively, we replace them with 5-bit data ranging from
10001 to 11111, depending on the occurrence count. As
shown in 4, 10001 represents two consecutive occurrences,
and 11111 represents 16 consecutive occurrences. Since
these 5-bit data are not used for the original control sig-
nals, they will not appear in LCB’s configuration data for
other purposes. Therefore, during decompression, if the
corresponding bit sequence appears, outputting 00000 for
the corresponding number of times allows for restoration.
This processing is similar to that of 5-bit TLC.

Table 3: Relation of Configuration data and selected signal
on LCB

Configuration data Selected signal
00000 GND
00001 GI[0]
00010 GI[1]
.
.
.

.

.

.

01100 GI[11]
01101 LI[0]
01110 LI[1]
01111 LI[2]
10000 LI[3]
10001 GND
10010 GND
.
.
.

.

.

.

11111 GND

Note that we did not compress CBT and CBR, because
they do not occupy a large part of configuration data and
have a small degree of similarity.

4.3 Compression Ratio Evaluation

We measured the compression ratio for circuits implemented

Table 4: Relation of compressed data and original configu-
ration data on LCB

Compressed data original configuration data
00000 00000
00001 00001
00010 00010
.
.
.

.

.

.

10000 10000
10001 Repeat 00000 2 times
10010 Repeat 00000 3 times
.
.
.

.

.

.

11111 Repeat 00000 16 times

on the actual SLM reconstruction logic in the evaluation pro-
cess. The targeted SLM, shown in Figure 3 has 256 tiles, and
the entire configuration can realize a logic circuit equivalent
to 5k gates. In SLMLET-1, two FPGA-IP were implemented
and the same decompression circuits are provided and work
in parallel.

We compared the compression ratios for the config-
uration data of circuits implemented on SLM, including
anonymization circuits (ldp, dp), multiplication (mul), com-
munication protocol-related circuits (mac), and encryption
circuits (aes). Additionally, we calculated the compres-
sion ratio for circuits from publicly available benchmarks
LGSynth[14] and iwls05[15]. The tools used to generate
configuration data are freeware and tools developed at Ku-
mamoto University [16]. As an example of Lampel-Ziv
compression, we used gzip command on Linux. Note that
gzip is difficult to implement in a small chip, and it shows the
upper limit of the compression. Also, we selected FPC[7]
shown in Section 2 as an example of another run-length
compression that can be implemented in a small chip. The
compression ratio is calculated by dividing the original data’s
size by the compressed data’s size. In other words, a larger
value indicates a better compression efficiency.

Table 5: Compression Ratio Measurement Results
Original Data Compression Ratio

DMC TLC gzip FPC
dp 1.31 1.22 1.43 1.05
dp-chain 1.33 1.25 1.45 1.06
mac 2.06 2.48 3.61 1.39
mul 2.45 3.06 5.52 1.49
ldp 1.59 1.62 1.31 1.97
0.aes 1.22 1.04 1.28 0.97
1.aes 1.20 1.01 1.21 0.96
LGSynth
s298 2.55 3.26 6.53 1.52
s1494 2.56 3.28 6.89 1.53
iwls05
s9234 1.70 1.65 2.04 1.20
s13207 1.61 1.67 1.94 1.18

As shown in Table 5 and Figure 6, TLC tends to achieve
higher compression ratios for simple designs whose config-
uration data includes a lot of consecutive zeros. Sometimes,
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Fig. 6: Compression Ratio with SLM Configuration Data

it is better than DMC because it does not have tags, which
sometimes becomes the overhead. Compared to the FPC, it
achieves a constantly better compression ratio.

On the other hand, it cannot compress the configura-
tion data for complicated designs like AES at all. On the
other hand, DMC, though not outperforming TLC in simple
circuits like mac and mul, demonstrates stable compression
ratios even for circuits where TLC struggles. The compres-
sion ratio is smaller than that of gzip, but closes or better in
some cases. If the target designs are simple, we can save the
local memory and more number of configuration data sets
according to the ratio shown in Table 5.

5. Implementation on Hardware

5.1 DMC Implementation

The configuration compression proposed here aims to store
the configuration data set in the local memory as much as
possible. The time of initial transfer of the configuration
data set from the outside chip to the local memory is re-
duced in correspondence with the compression rates shown
in Table 5. However, in SLMLET, dynamic reconfiguration
is done with the inner-chip configuration. The inner-chip
transfer time remains constant regardless of compression, as
shown in Section 3.1, at 520𝜇sec. This value is smaller than
that of conventional FPGAs due to the following factors:
the initially small configuration data of SLM, the higher fre-
quency of chip-internal transfers at 200MHz compared to the
clock for normal configuration data settings, and the ability
to perform in parallel with two FPGA modules. It is not
the purpose of this proposal to further reduce this value by
compressing it.

The decompression must be done on the fly when the
configuration data is sent to the FPGA-IP so as not to de-
grade the high-speed configuration. The configuration data
is stored in the local memory of SLMLET Tile-by-Tile as
shown in Figure 7, and transferred to the SLM module in a
bit-serial manner. The upper data format is the original one,

LCB(20bit)×5 CBT
（24b)

SB(45bit)×4 BLE(21bit)×4CBR
（24b)

BLE(21
bit)×4

LCB(20bit)×
5

Tile iTile i-1 Tile i+1

Configuration data
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Compressed
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Compressed
BLE×4

Compressed
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Compressed
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CBT
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Fig. 7: The configuration data format without and with DMC
compression
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Fig. 8: Block diagram of the decompression circuit

and the lower one is the DMC compressed format. Note that
the configuration data for I/O modules and DSPs are omitted
in the figure. The transferred order is shown by the red arrow
in Figure 3.

In Figure 8, an overview of the decompression circuit
is presented.

The 32-bit data in the local memory is fetched to the
waiting buffer and serially transferred to the output buffer.
The output buffer is a shift register, but all bits can be ob-
served in parallel. Based on the several bits in the output
buffer, the appropriate table is selected and the referred data
from the table is serially transferred. When the LCB is de-
compressed, the TLC decompressor shown in Figure 9 is
used.

In the case of TCL decompression, 00000 is the mark
of the compression and the following 5-bit shows the con-
tinuous number of 00000. Thus, the 00000 in the register
is iteratively outputted until the counter becomes zero as
shown in Figure 9a). Otherwise, the number in the register
is serially outputted as it is.

32-bit data is read out from the local memory, while
the decompressed data is transferred serially with the same
clock. Therefore, the decompression hardware can operate
with ample time margin.
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a) The case of TLC compressed b) The case of TLC un-compressed

Fig. 9: Operation of TLC decompression

Table 6: Area of Decompression Circuits
Algorithm Area (µ𝑚2)
DMC 708.9
TLC(SLMLET) 664.8
FPC 5147

5.2 Evaluation of Circuit Area

The logic circuits for decompressing the data from TLC
and DMC were described in Verilog HDL and synthesized
for the NANGATE 45nm process. The logical synthesis
was performed using Synopsys Design Compiler N-2017.09-
SP1. Although the decompression circuit is integrated into
the configuration setting circuit of the SLMLET-1 chip for
practical use, in this evaluation, the circuit was designed
to operate independently at 1GHz for assessment purposes.
Under the same conditions, the circuit area was evaluated
alongside the FPC (Frequent Pattern Compression) circuit
used in the literature [17]. Note that all tables of the DMC
decompressor are implemented with registers and the area is
included in the Table 6.

As shown in Table 6, DMC, in addition to compressing
the LBC portion equivalent to TLC, involves table refer-
ences, but the increase in area is not significantly high. The
local memory size of SLMLET-1 is 20684 𝜇m. SLMLET-1
is designed with 55nm process, while the above evaluation
is done with 45nm process. However, considering the dif-
ference in the process size, the area of the decompression
circuits is sufficiently small.

6. Conclusion

In this paper, we aimed to further compress the configuration
data of SLM, which originally had excellent area efficiency,
to enable the storage of multiple configuration data in the
chip’s memory. Compared to existing methods that switch
logic circuits by reading from external memory, using config-
uration data stored within the chip results in shorter required
times. As the decompression needs to be performed online,
the decompression algorithm also requires to be simple.

To address this, we proposed compression methods,

TLC and DMC, based on the assumption of SLM recon-
struction logic. We implemented these algorithms in C and
evaluated the compression ratios. For the decompression
circuit, we simulated its operation using Verilog, set a target
delay for 1GHz operation, and evaluated the area using Syn-
opsys’ Design Compiler with the NANGATE45nm process.

As a result, we found that TLC and DMC decompres-
sion circuits could be implemented with relatively small cir-
cuit areas of 664.8 µ𝑚2 and 708.9 µ𝑚2, respectively.
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