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PAPER
Node-to-Node and Node-to-Set Disjoint Paths Problems in Bicubes

Arata KANEKO†, Htoo Htoo Sandi KYAW†, Nonmembers, Kunihiro FUJIYOSHI†,
and Keiichi KANEKO†a), Members

SUMMARY In this paper, we propose two algorithms, B-N2N and B-
N2S, that solve the node-to-node and node-to-set disjoint paths problems in
the bicube, respectively. We prove their correctness and that the time com-
plexities of the B-N2N and B-N2S algorithms are O(n2) and O(n2 log n),
respectively, if they are applied in an n-dimensional bicube with n ≥ 5.
Also, we prove that the maximum lengths of the paths generated by B-N2N
and B-N2S are both n+2. Furthermore, we have shown that the algorithms
can be applied in the locally twisted cube, too, with the same performance.
key words: bicube, hypercube, interconnection network, locally twisted
cube, massively parallel system, topology

1. Introduction

The hypercube [1] was once a very popular topology for in-
terconnection networks of massively parallel systems, and it
has many variants. The bicube [2] is such a topology and
it attracts much attention [3]–[7] because it can intercon-
nect the same number of nodes with the same degree as the
hypercube while its diameter is almost half of that of the
hypercube. In addition, the bicube preserves the property of
node symmetry.

In this paper, we propose two algorithms, B-N2N and
B-N2S, that solve the node-to-node and node-to-set disjoint
paths problems in the bicube, respectively. There is a generic
algorithm [8] that solves the problems in cube-based topolo-
gies. If we apply it to the problems in an n-dimensional
bicube (n ≥ 3), we can generate n node-disjoint paths whose
lengths are at most 2n − 1 in O(n4) time for both problems.
On the other hand, B-N2N generates n node-disjoint paths
of lengths at most n+2 in O(n2) time while B-N2S generates
n node-disjoint paths of lengths at most n + 2 in O(n2 log n)
time. B-N2N and B-N2S use the algorithm proposed by
Bossard and Kaneko [9], which we call H-N2S, because a
bicube consists of two hypercubes with bijective or one-
to-one edges between them. H-N2S solves the node-to-set
disjoint paths problem in the hypercube. Our algorithms, B-
N2N and B-N2S, can be applied in the locally twisted cube
with the same performance because a locally twisted cube
also consists of two hypercubes with bijective edges between
them [10].

Given a source node s and a destination node d in a

Manuscript received February 16, 2024.
Manuscript revised April 15, 2024.
Manuscript publicized May 17, 2024.

†Graduate School of Engineering, Tokyo University of Agri-
culture and Technology, Koganei-shi, 184–8588 Japan.

a) E-mail: k1kaneko@cc.tuat.ac.jp (Corresponding author)
DOI: 10.1587/transinf.2024EDP7040

k-connected graph, the node-to-node disjoint paths problem
is to generate k paths Ui: s { d (1 ≤ i ≤ k) such that
Ui (1 ≤ i ≤ k) are node-disjoint except for s and d. In
addition, given a source node s and a set of k destination
nodes {d1, d2, . . . , dk} in a k-connected graph, the node-to-
set disjoint paths problem is to generate k paths Ui: s { di
(1 ≤ i ≤ k) such that Ui (1 ≤ i ≤ k) are node-disjoint except
for s. The node-to-node disjoint paths problem [11]–[16]
and the node-to-set disjoint paths problem [8], [9], [17]–[23]
are important issues in parallel and distributed computation
as well as the set-to-set disjoint paths problem [18], [24]–
[28]: given a set of k source nodes {s1, s2, . . . , sk} and a set of
k destination nodes {d1, d2, . . . , dk} in a k-connected graph,
the set-to-set disjoint paths problem is to generate k paths Ui:
si { d ji (1 ≤ i ≤ k, { j1, j2, . . . , jk} = {1,2, . . . , k}) such
that Ui (1 ≤ i ≤ k) are node-disjoint. Generating disjoint
paths in a massively parallel system has many applications.
For example, multiple pairs of nodes can establish the full-
bandwidth communication over a network simultaneously by
using the circuit switching. The circuit switching provides an
optimal data transfer performance because it does not require
any switching inside the routers of intermediate nodes. Also,
the circuit switching does not allow any interference with
other communications, ensuring security and privacy. The
studies of the node-disjoint paths problems with respect to
some cube-based topologies are summarized in Table 1.

In the rest of this paper, we use ‘disjoint’ instead of
‘node-disjoint’ for simplicity.

2. Preliminaries

In this section, we give the definitions of related topics and
the properties of the bicube. Generally, we adopt the nota-
tions and terminology from the traditional graph theory. For
example, a path in a graph G(V,E) is an alternate sequence
of nodes and edges: u1, (u1, u2), u2, . . . , ul−1, (ul−1, ul), ul
for ui ∈ V (1 ≤ i ≤ l), and we use a shorthand u1 →
u2 → · · · → ul or u1 { ul if the intermediate nodes are
not important. The length of a path is the number of edges
included in the path. Let us consider two paths P: u { v
and Q: x { y . Then, if P and Q do not have any common
node, they are disjoint. If P and Q do not have any common
node except for u(= x), they are disjoint except for u(= x).
If P and Q do not have any common node except for u(= x)
and v(= y), they are disjoint except for u(= x) and v(= y).

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Table 1 Time complexities and maximum path lengths of node-disjoint paths routing algorithms for
constructing n disjoint paths in n-dimensional cube-based topologies.

Definition 1: An n-dimensional hypercube, Hn, is an undi-
rected graph whose node set is {0,1}n. Given two nodes u
and v in Hn, u and v are neighboring if and only if h(u, v) = 1
where h(u, v) represents the Hamming distance between u
and v . □

The number of nodes and the diameter of Hn are 2n and
n, respectively. Hn is symmetric and its degree is n. Hn has a
recursive structure such that it consists of two Hn−1’s. Also,
Hn has a shortest-path routing algorithm SPR that generates
one of the shortest paths between any pair of nodes whose
length is at most n in O(n) time.

Definition 2: Given a bit sequence u = (un,un−1, . . . ,u1)(∈
{0,1}n), define a function p(u) by p(u) = un⊕un−1⊕· · ·⊕u1
where ‘⊕’ represents the exclusive-or operation: 0 ⊕ 0 =
1 ⊕ 1 = 0 and 1 ⊕ 0 = 0 ⊕ 1 = 1. Then, given a pair of
bit sequences u, v ∈ {0,1}n with an even n, u and v are in
lp-relation if and only if ‘u = v and p(u) = p(v) = 0’ or
‘u = v and p(u) = p(v) = 1’. □

For instance, for two bit sequences (0,1,1,0,0,1) and
(1,0,0,1,1,0), they are in lp-relation because (0,1,1,0,0,1) =
(1,0,0,1,1,0) and p(0,1,1,0,0,1) = p(1,0,0,1,1,0) = 1.

Definition 3: An n-dimensional bicube, Bn (n ≥ 3), is an
undirected graph whose node set is {0,1}n. Given a node
u = (un,un−1, . . . ,u1) in Bn, it has n neighboring nodes u(i)

(1 ≤ i ≤ n) where u(i) (1 ≤ i ≤ n−1) are given by u(i) = (un,
un−1, . . . ,ui+1,ui,ui−1, . . . ,u1) and u(n) is given depending
on the parity of n. That is, if n is odd, u(n) = (un, vn−1,
vn−2, . . . , v1), where (vn−1, vn−2, . . . , v1) is the bit sequence
that is in lp-relation with (un−1,un−2, . . . ,u1). If n is even,
u(n) = (un,un−1, vn−2, . . . , v1)where (vn−2, vn−3, . . . , v1) is the
bit sequence that is in lp-relation with (un−2,un−3, . . . ,u1).
Note that (u(i))(j) (1 ≤ i, j ≤ n) is denoted by u(i, j) in short.

□

As an example, B5 is shown in Fig. 1. Bn has the follow-
ing properties [2]. The number of nodes and the diameter of
Bn are 2n and ⌈(n + 1)/2⌉ (n ≥ 7), respectively. The diam-
eters of B3, B4, B5, and B6 are 3, 4, 4, and 5, respectively.
Bn is a node-symmetric graph whose degree is n. Because
the bicube is bipartite, it does not include any cycle with an
odd length. Now, let B0

n and B1
n be the subgraphs induced

by the node sets {(un,un−1, . . . ,u1) | un = 0}(⊂ V(Bn)) and

Fig. 1 Example of a 5-dimensional bicube, B5.

{(un,un−1, . . . ,u1) | un = 1}(⊂ V(Bn)), respectively. Then,
B0
n and B1

n are both isomorphic to an (n − 1)-dimensional
hypercube, Hn−1. In other words, Bn consists of two Hn−1’s.
The left and right subgraphs, B0

5 and B1
5 , form two distinct

H4’s in Fig. 1, in which (0,0,1,1,1)(∈ B0
5) is connected to

(1,1,0,0,0)(∈ B1
5) while it is connected to (1,0,1,1,1) in a

5-dimensional hypercube, H5, for example.

Lemma 1: For a node u ∈ V(Bb
n ) (b ∈ {0,1}), there are n

paths from u such that the other terminal nodes are included
in V(Bb̄

n ), the paths are disjoint except for u, and their lengths
are at most 2.
(Proof) We can generate n paths Li (1 ≤ i ≤ n) as follows:

Li :
{

u → u(i) → u(i,n) (1 ≤ i ≤ n − 1),
u → u(n) (i = n).

Then, the path lengths are at most 2. u(i,n) (1 ≤ i ≤ n − 1)
and u(n) are included in V(Bb̄

n ). Because u(i) (1 ≤ i ≤ n− 1)
and u(n) are distinct neighboring nodes of u, and Bb

n and
Bb̄
n are connected by one-to-one edges, the paths are disjoint

except for u. □
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3. B-N2N Algorithm

In this section, we describe our algorithm B-N2N that solves
the node-to-node disjoint paths problem in an n-dimensional
bicube, Bn. Let s and d be the source node and the des-
tination node, respectively. For n with 3 ≤ n ≤ 4, Bn is
isomorphic to Hn. Hence, it is trivial to find n paths between
s and d that are disjoint except for s and d in O(n2) time,
whose lengths are at most n + 1 by using the algorithm pro-
posed by Saad and Schultz [11]. Thus, we assume that n ≥ 5.
Without loss of generality, we can assume that s ∈ V(B0

n).
Then B-N2N is divided into two cases depending on the
position of the destination node.

3.1 B-N2N Case 1 (d ∈ V(B0
n))

Step 1 Apply H-N2S in B0
n to generate (n − 1) paths Pi:

s { d(i) (1 ≤ i ≤ n − 1) that are disjoint except for s.
Step 2 Select (n − 1) edges d(i) → d (1 ≤ i ≤ n − 1).
Step 3 Select two edges s → s(n) and d(n) → d.
Step 4 Apply SPR in B1

n to generate the shortest path R:
s(n) { d(n) (Fig. 2).

Step 5 Construct n paths, Ui (1 ≤ i ≤ n), that are disjoint
except for s and d as follows:

Ui :

{
s

Pi{ d(i) → d (1 ≤ i ≤ n − 1)
s → s(i)

R
{ d(i) → d (i = n)

3.2 B-N2N Case 2 (d ∈ V(B1
n))

Step 1 Select the edge s → s(n).

Fig. 2 After Step 4 of B-N2N Case 1

Fig. 3 After Step 4 of B-N2N Case 2

Step 2 Apply SPR in B1
n to generate the shortest path R:

s(n) { d. Let d(l) be the neighboring node of d that is
included in R.

Step 3 Apply H-N2S in B0
n to generate (n − 1) paths, Pi

(1 ≤ i(, l) ≤ n), that are disjoint except for s as follows:

Pi :
{

s { d(i,n) (1 ≤ i(, l) ≤ n − 1)
s { d(i) (i = n)

Step 4 Select (n − 2) paths Qi: d(i,n) → d(i) → d (1 ≤
i(, l) ≤ n − 1) of length 2 and a path Qn: d(n) → d of
length 1 (Fig. 3).

Step 5 Construct n paths, Ui (1 ≤ i ≤ n), that are disjoint
except for s and d as follows:

Ui :


s

Pi{ d(i,n)
Qi→ d(i)

Qi→ d (1 ≤ i(, l) ≤ n − 1)
s → s(n)

R
{ d(i)

R→ d (i = l)
s

Pi{ d(i)
Qi→ d (i = n)

4. B-N2S Algorithm

In this section, we describe our algorithm B-N2S that solves
the node-to-set disjoint paths problem in an n-dimensional
bicube, Bn. Let s be the source node and {d1, d2, . . . , dn}
be the set of n destination nodes. For n with 3 ≤ n ≤ 4,
Bn is isomorphic to Hn. Hence, it is trivial to find n paths
s { di (1 ≤ i ≤ n) that are disjoint except for s in O(n2)
time, whose lengths are at most n+ 1 by using the algorithm
proposed by Bossard and Kaneko [9]. Thus, we assume
that n ≥ 5. Without loss of generality, we can assume that
s ∈ V(B0

n) and {d1, d2, . . . , dn} ∩ V(B0
n) = {d1, d2, . . . , dl}.

If {d1, d2, . . . , dn} ∩ V(B0
n) = ∅, we execute the steps as

l = 0. Then B-N2S is divided into two cases depending on
the distribution of the destination nodes.

4.1 B-N2S Case 1 (l = n)

Step 1 Apply H-N2S in B0
n to generate (n − 1) paths Pi:

s { di (1 ≤ i ≤ n − 1) that are disjoint except for s.
Step 2 If dn is included in one of the paths generated in

Step 1, say Px : s { dx , let Px : s { dn by discarding
the subpath dn { dx , and exchange the indices of dx
and dn.

Step 3 Select two edges s → s(n) and d(n)n → dn.
Step 4 Apply SPR in B1

n to generate the shortest path R:
s(n) { d(n)n (Fig. 4).

Step 5 Construct n paths, Ui (1 ≤ i ≤ n), that are disjoint
except for s as follows:

Ui :

{
s

Pi{ di (1 ≤ i ≤ n − 1)
s → s(n)

R
{ d(n)i → di (i = n)

4.2 B-N2S Case 2 (l < n)

Step 1 For each node of di (l + 1 ≤ i ≤ n), find a path Qi:
d′i(∈ V(B0

n)) { di of lengths at most 2 such that it is
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Fig. 4 After Step 4 of B-N2S Case 1

Fig. 5 During Step 4 of B-N2S Case 2

Fig. 6 After Step 5 of B-N2S Case 2

disjoint from other paths Q j (l + 1 ≤ j(, i) ≤ n) and
does not include destination nodes d1, d2, . . . , dl .

Step 2 Select the edge s → s(n).
Step 3 Apply SPR in B1

n to generate the shortest path R:
s(n) { dn.

Step 4 If the path R does not include any node on the
paths generated in Step 1, go to Step 5. Otherwise,
let d̂x be the closest one to s(n) along R. Also, let
Qx : d′x { d̂x { dx be the path to which d̂x belongs
(Fig. 5). Then, discard the subpath d̂x { dn of R, and
select R: s(n) { d̂x { dx . Also, exchange the indices
of Qx and Qn, the indices of dx and dn, and the indices
of d′x and d′n.

Step 5 Discard the path Qn (Fig. 6).
Step 6 Apply H-N2S in B0

n to generate (n − 1) paths Pi:
s { di (1 ≤ i ≤ l) and Pi: s { d′i (l + 1 ≤ i ≤ n − 1)
that are disjoint except for s.

Step 7 Construct n paths, Ui (1 ≤ i ≤ n), that are disjoint
except for s as follows:

Ui :


s

Pi{ di (1 ≤ i ≤ l)
s

Pi{ d′i
Qi
{ di (l + 1 ≤ i ≤ n − 1)

s → s(n)
R
{ di (i = n)

5. Correctness and Complexities

Lemma 2: For a source node s and a set of n destination
nodes {d1, d2, . . . , dn} in an n-dimensional hypercube, the
H-N2S algorithm by Bossard and Kaneko [9] generates n
paths from s to di (1 ≤ i ≤ n) of lengths at most n + 1 that
are disjoint except for s in O(n2) time.
(Proof) From [9]. □

Lemma 3: In Case 1, for a source node s and a destination
node d in an n-dimensional bicube with n ≥ 5, B-N2N takes
O(n2) time to generate n paths from s to d of lengths at most
n + 1 that are disjoint except for s and d.
(Proof) In Step 1, H-N2S takes O(n2) time to generate (n−1)
paths Pi: s { d(i) (1 ≤ i ≤ n − 1) of lengths at most n that
are disjoint except for s from Lemma 2. In Step 2, it takes
O(n) time to select (n − 1) edges. In Step 3, it takes O(1)
time to select two edges. In Step 4, SPR takes O(n) time to
generate the shortest path whose length is at most n− 1. The
total time complexity of B-N2N in Case 1 is O(n2), and the
maximum path length is n+ 1. The paths Ui: s

Pi{ d(i) → d
(1 ≤ i ≤ n − 1) are disjoint except for s and d because Pi

(1 ≤ i ≤ n − 1) are generated by H-N2S. The path Un is
disjoint from other paths Ui (1 ≤ i ≤ n − 1) except for s and
d because it is outside of B0

n other than s and d. □

Lemma 4: In Case 2, for a source node s and a destination
node d in an n-dimensional bicube with n ≥ 5, B-N2N takes
O(n2) time to generate n paths from s to d of lengths at most
n + 2 that are disjoint except for s and d.
(Proof) In Step 1, it takes O(1) time to select the edge. In
Step 2, SPR takes O(n) time to generate the shortest path R
of length at most n − 1. It takes O(1) time to find l of d(l).
In Step 3, H-N2S takes O(n2) time to generate (n − 1) paths
Pi (1 ≤ i(, l) ≤ n) of lengths at most n that are disjoint
except for s from Lemma 2. In Step 4, it takes O(n) time
to generate Qi (1 ≤ i(, l) ≤ n) of lengths at most 2. The
total time complexity of B-N2N in Case 2 is O(n2), and the
maximum path length is n + 2. Ul is disjoint from other Ui

(1 ≤ i(, l) ≤ n) except for s and d because it is outside of
B0
n other than s and it does not include any neighboring node

of d except for d(l). Ui (1 ≤ i(, l) ≤ n) are disjoint except
for s and d among others because Pi (1 ≤ i(, l) ≤ n) are
generated by H-N2S and Qi (1 ≤ i(, l) ≤ n) include distinct
nodes d(i,n) (1 ≤ i(, l) ≤ n − 1) and d(i) (1 ≤ i(, l) ≤ n).
Consequently, Ui (1 ≤ i ≤ n) are disjoint except for s and
d. □

Theorem 1: For a source node s and a destination node d in
an n-dimensional bicube with n ≥ 5, the B-N2N algorithm
takes O(n2) time and it generates n paths from s to d of
lengths at most n + 2 that are disjoint except for s and d.
(Proof) From Lemmas 3 and 4. □
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Lemma 5: In Case 1, for a source node s and a set of n des-
tination nodes {d1, d2, . . . , dn} in an n-dimensional bicube
with n ≥ 5, B-N2S takes O(n2) time to generate n paths from
s to di (1 ≤ i ≤ n) of lengths at most n + 1 that are disjoint
except for s.
(Proof) In Step 1, H-N2S takes O(n2) time to generate (n−1)
paths Pi: s { di (1 ≤ i ≤ n − 1) of lengths at most n that
are disjoint except for s from Lemma 2. In Step 2, it takes
O(n2) time to check if dn is included in one of the paths
generated in Step 1. It takes O(n) time to discard the subpath
and exchange the indices of dx and dn. In Step 3, it takes
O(1) time to select two edges. In Step 4, SPR takes O(n)
time to generate the shortest path whose length is at most
n − 1. The total time complexity of B-N2S in Case 1 is
O(n2), and the maximum path length is n + 1. The paths
Ui (1 ≤ i ≤ n − 1) are disjoint except for s because they
are generated by H-N2S. The path Un is disjoint from other
paths Ui (1 ≤ i ≤ n − 1) except for s because it is outside of
B0
n other than s and dn. □

Lemma 6: In Step 1 of Case 2, B-N2S can find the path Qi

for each destination node di (l + 1 ≤ i ≤ n).
(Proof) From Lemma 1, there are n candidate paths for Qi .
Destination nodes d j (1 ≤ j ≤ l or i + 1 ≤ j ≤ n) can block
at most one of them. Also, each of the paths Q j : d′j { d j

(l + 1 ≤ j ≤ i − 1) can block at most one of the candidate
paths because there is no cycle of length 3 in Bn. Note that
because B0

n and B1
n are connected by bijective edges, the

edge d(n)j → d j of Q j cannot block two candidate paths at a
time. Hence, B-N2S can find at least one of n candidates for
Qi . □

Lemma 7: In Case 2, for a source node s and a set of n des-
tination nodes {d1, d2, . . . , dn} in an n-dimensional bicube
with n ≥ 5, B-N2S takes O(n2 log n) time to generate n paths
from s to di (1 ≤ i ≤ n) of lengths at most n + 2 that are
disjoint except for s.
(Proof) In Step 1, it takes O(n2 log n) time to find Qi

(l + 1 ≤ i ≤ n) of lengths at most 2 by using a balanced
binary search tree. In Step 2, it takes O(1) time to select
the edge. In Step 3, SPR takes O(n) time to generate R of
length at most n − 1. In Step 4, it takes O(n2) time to check
if R includes a node on the paths generated in Step 1. It
takes O(n) time to find d̂x and discard the subpath, update
R, and exchange the indices. In Step 5, it takes O(1) to dis-
card Qn. In Step 6, H-N2S takes O(n2) time to generate Pi

(1 ≤ i ≤ n − 1) of lengths at most n from Lemma 2. The
total time complexity of B-N2S in Case 2 is O(n2 log n), and
the maximum path length is n+2. Ui (1 ≤ i ≤ l) are disjoint
among others except for s because they are generated by H-
N2S. Also, they are disjoint from Uj (l + 1 ≤ j ≤ n − 1)
except for s because Pj (l + 1 ≤ j ≤ n − 1) are generated
by H-N2S and Q j (l + 1 ≤ j ≤ n − 1) are outside of B0

n

other than d′j . Moreover, the paths are disjoint from Un

except for s because it is outside of B0
n other than s. Ui

(l + 1 ≤ i ≤ n − 1) are disjoint among others except for s
because Pi (l + 1 ≤ i ≤ n − 1) are generated by H-N2S and
Qi (l + 1 ≤ i ≤ n − 1) are generated in Step 1 such that

they are disjoint. In addition, the paths are disjoint from Un

except for s because R is outside of B0
n other than s, and it

is generated such that it is ensured to be disjoint from Qi

(l + 1 ≤ i ≤ n − 1) in Step 4. Consequently, Ui (1 ≤ i ≤ n)
are disjoint except for s. □

Theorem 2: For a source node s and a set of n destina-
tion nodes {d1, d2, . . . , dn} in an n-dimensional bicube with
n ≥ 5, the B-N2S algorithm takes O(n2 log n) time and it
generates n paths from s to di (1 ≤ i ≤ n) of lengths at most
n + 2 that are disjoint except for s.
(Proof) From Lemmas 5 and 7. □

Because an n-dimensional locally twisted cube consists
of two (n − 1)-dimensional hypercubes with bijective edges
between them, it is trivial that we can apply B-N2N and B-
N2S in the locally twisted cube with the same performance.

Definition 4: An n-dimensional locally twisted cube, LTn

(n ≥ 3), is an undirected graph whose node set is
{0,1}n. Given a node u = (un,un−1, . . . ,u1) in LTn,
it has n neighboring nodes u(i) (1 ≤ i ≤ n) where
u(i) = (un,un−1, . . . , (ui+1 ⊕ un),ui,ui−1, . . . ,u1) (1 ≤ i ≤
n − 2), u(n−1) = (un,un−1,un−2, . . . ,u1), and u(n) =
(un,un−1, . . . ,u1). □

Theorem 3: For a source node s and a destination node d
in an n-dimensional locally twisted cube with n ≥ 5, the
B-N2N algorithm takes O(n2) time and it generates n paths
from s to d of lengths at most n + 2 that are disjoint except
for s and d.
(Proof) From Theorem 1. □

Theorem 4: For a source node s and a set of n destination
nodes {d1, d2, . . . , dn} in an n-dimensional locally twisted
cube with n ≥ 5, the B-N2S algorithm takes O(n2 log n)
time and it generates n paths from s to di (1 ≤ i ≤ n) of
lengths at most n + 2 that are disjoint except for s.
(Proof) From Theorem 2. □

6. Conclusion

In this paper, we have proposed two algorithms, B-N2N and
B-N2S, that solve the node-to-node and node-to-set disjoint
paths problems in the bicube, respectively. We have proved
the correctness of the algorithms. We have also proved that
the time complexities of the B-N2N and B-N2S algorithms
are O(n2) and O(n2 log n), respectively, and the maximum
path lengths are both n + 2 if they are applied in an n-
dimensional bicube with n ≥ 5. In addition, we have shown
that the algorithms can be applied in the locally twisted cube
with the same performance.

One of our future works is to check whether the bound
of the path lengths n + 2 is tight or not. Also, our future
works include inventing an algorithm to solve the set-to-set
disjoint paths problem in the bicube.
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