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PAPER
Node-to-node and Node-to-set Disjoint Paths Problems in Bicubes

Arata KANEKO†, Htoo Htoo Sandi KYAW†, Nonmembers, Kunihiro FUJIYOSHI†,
and Keiichi KANEKO†a), Members

SUMMARY In this paper, we propose two algorithms, B-N2N and B-
N2S, that solve the node-to-node and node-to-set disjoint paths problems in
the bicube, respectively. We prove their correctness and that the time com-
plexities of the B-N2N and B-N2S algorithms areO(n2) andO(n2 logn),
respectively, if they are applied in an n-dimensional bicube with n ≥ 5.
Also, we prove that the maximum lengths of the paths generated by B-N2N
and B-N2S are both n+2. Furthermore, we have shown that the algorithms
can be applied in the locally twisted cube, too, with the same performance.
key words: bicube, hypercube, interconnection network, locally twisted
cube, massively parallel system, topology

1. Introduction

The hypercube [1] was once a very popular topology for in-
terconnection networks of massively parallel systems, and it
has many variants. The bicube [2] is such a topology and
it attracts much attention [3]–[7] because it can intercon-
nect the same number of nodes with the same degree as the
hypercube while its diameter is almost half of that of the
hypercube. In addition, the bicube preserves the property of
node symmetry.

In this paper, we propose two algorithms, B-N2N and
B-N2S, that solve the node-to-node and node-to-set disjoint
paths problems in the bicube, respectively. There is a generic
algorithm [8] that solves the problems in cube-based topolo-
gies. If we apply it to the problems in an n-dimensional
bicube (n ≥ 3), we can generaten node-disjoint paths whose
lengths are at most 2n− 1 in O(n4) time for both problems.
On the other hand, B-N2N generates n node-disjoint paths of
lengths at mostn+2 inO(n2) timewhile B-N2S generatesn
node-disjoint paths of lengths at most n+ 2 in O(n2 log n)
time. B-N2N and B-N2S use the algorithm proposed by
Bossard and Kaneko [9], which we call H-N2S, because
a bicube consists of two hypercubes with bijective or one-
to-one edges between them. H-N2S solves the node-to-set
disjoint paths problem in the hypercube. Our algorithms, B-
N2N and B-N2S, can be applied in the locally twisted cube
with the same performance because a locally twisted cube
also consists of two hypercubes with bijective edges between
them [10].

†The authors are with Graduate School of Engineering, Tokyo
University of Agriculture and Technology, Koganei-shi, 184-8588
Japan.

a) E-mail: k1kaneko@cc.tuat.ac.jp (Corresponding author).

Given a source node s and a destination node d in a
k-connected graph, the node-to-node disjoint paths problem
is to generate k paths Ui: s ; d (1 ≤ i ≤ k) such that Ui

(1 ≤ i ≤ k) are node-disjoint except for s andd. In addition,
given a source node s and a set of k destination nodes {d1,
d2, . . . ,dk} in a k-connected graph, the node-to-set disjoint
paths problem is to generate k paths Ui: s ; di (1 ≤ i ≤
k) such that Ui (1 ≤ i ≤ k) are node-disjoint except for
s. The node-to-node disjoint paths problem [11]–[16] and
the node-to-set disjoint paths problem [8], [9], [17]–[23] are
important issues in parallel and distributed computation as
well as the set-to-set disjoint paths problem [18], [24]–[28]:
given a set of k source nodes {s1, s2, . . . , sk} and a set of k
destination nodes {d1,d2, . . . ,dk} in a k-connected graph,
the set-to-set disjoint paths problem is to generate k pathsUi:
si ; dji (1 ≤ i ≤ k, {j1, j2, . . . , jk} = {1, 2, . . . , k}) such
that Ui (1 ≤ i ≤ k) are node-disjoint. Generating disjoint
paths in a massively parallel system has many applications.
For example, multiple pairs of nodes can establish the full-
bandwidth communication over a network simultaneously by
using the circuit switching. The circuit switching provides an
optimal data transfer performance because it does not require
any switching inside the routers of intermediate nodes. Also,
the circuit switching does not allow any interference with
other communications, ensuring security and privacy. The
studies of the node-disjoint paths problems with respect to
some cube-based topologies are summarized in Table 1.

In the rest of this paper, we use ‘disjoint’ instead of
‘node-disjoint’ for simplicity.

2. Preliminaries

In this section, we give the definitions of related top-
ics and the properties of the bicube. Generally, we
adopt the notations and terminology from the tradi-
tional graph theory. For example, a path in a graph
G(V,E) is an alternate sequence of nodes and edges:
u1, (u1,u2),u2, . . . ,ul−1, (ul−1,ul),ul for ui ∈ V (1 ≤
i ≤ l), and we use a shorthand u1 → u2 → · · · → ul or
u1 ; ul if the intermediate nodes are not important. The
length of a path is the number of edges included in the path.
Let us consider two paths P : u ; v and Q: x ; y. Then,
if P and Q do not have any common node, they are disjoint.
IfP andQ do not have any common node except foru(= x),
they are disjoint except for u(= x). If P and Q do not have
any common node except for u(= x) and v(= y), they are
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Table 1 Time complexities and maximum path lengths of node-disjoint paths routing algorithms for
constructing n disjoint paths in n-dimensional cube-based topologies.

topology diameter
node-to-node node-to-set set-to-set

time length time length time length
Hypercube n O(n2) [11] n+ 1 [11] O(n2) [9] n+ 1 [9] O(n2 logn) [18] 2n [18]
Bicube d(n+ 1)/2e† — — — — — —
Locally Twisted Cube d(n+ 3)/2e‡ — — — — — —
Twisted Cube d(n+ 1)/2e — dn/2e+ 2§ [13] — — — —
Crossed Cube d(n+ 1)/2e O(n2) [12] 3n− 5 [12] — — — —
Twisted Crossed Cube d(n+ 1)/2e O(n2) [16] 4n− 8 [16] — — — —
0-Möbius Cube d(n+ 2)/2e O(n2) [15] 3n− 5 [15] O(n4) [22] 2n− 1 [22] O(n6) [27] 2n− 2 [27]
1-Möbius Cube d(n+ 1)/2e O(n2) [15] 3n− 5 [15] O(n4) [22] 2n− 1 [22] O(n6) [27] 2n− 2 [27]

†: n ≥ 7, ‡: n ≥ 5, §: n is odd.

disjoint except for u(= x) and v(= y).

Definition 1: Ann-dimensional hypercube,Hn, is an undi-
rected graph whose node set is {0, 1}n. Given two nodes
u and v in Hn, u and v are neighboring if and only if
h(u,v) = 1 where h(u,v) represents the Hamming dis-
tance between u and v. 2

The number of nodes and the diameter of Hn are 2n

and n, respectively. Hn is symmetric and its degree is n.
Hn has a recursive structure such that it consists of two
Hn−1’s. Also, Hn has a shortest-path routing algorithm
SPR that generates one of the shortest paths between any
pair of nodes whose length is at most n in O(n) time.

Definition 2: Given a bit sequence u = (un, un−1, . . . ,
u1)(∈ {0, 1}n), define a function p(u) by p(u) = un ⊕
un−1 ⊕ · · · ⊕ u1 where ‘⊕’ represents the exclusive-or op-
eration: 0 ⊕ 0 = 1 ⊕ 1 = 0 and 1 ⊕ 0 = 0 ⊕ 1 = 1.
Then, given a pair of bit sequences u,v ∈ {0, 1}n with an
even n, u and v are in lp-relation if and only if ‘u = v and
p(u) = p(v) = 0’ or ‘u = v and p(u) = p(v) = 1’. 2

For instance, for two bit sequences (0, 1, 1, 0, 0, 1)
and (1, 0, 0, 1, 1, 0), they are in lp-relation because
(0, 1, 1, 0, 0, 1) = (1, 0, 0, 1, 1, 0) and p(0, 1, 1, 0, 0, 1) =
p(1, 0, 0, 1, 1, 0) = 1.

Definition 3: An n-dimensional bicube, Bn (n ≥ 3), is
an undirected graph whose node set is {0, 1}n. Given
a node u = (un, un−1, . . . , u1) in Bn, it has n neigh-
boring nodes u(i) (1 ≤ i ≤ n) where u(i) (1 ≤ i ≤
n − 1) are given by u(i) = (un, un−1, . . . , ui+1, ui, ui−1,
. . . , u1) and u(n) is given depending on the parity of n.
That is, if n is odd, u(n) = (un, vn−1, vn−2, . . . , v1),
where (vn−1, vn−2, . . . , v1) is the bit sequence that is in
lp-relation with (un−1, un−2, . . . , u1). If n is even, u(n) =
(un, un−1, vn−2, . . . , v1) where (vn−2, vn−3, . . . , v1) is the
bit sequence that is in lp-relation with (un−2, un−3, . . . , u1).
Note that (u(i))(j) (1 ≤ i, j ≤ n) is denoted by u(i,j) in
short. 2

As an example, B5 is shown in Fig. 1. Bn has the
following properties [2]. The number of nodes and the
diameter of Bn are 2n and d(n + 1)/2e (n ≥ 7), re-
spectively. The diameters of B3, B4, B5, and B6 are 3,
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Fig. 1 Example of a 5-dimensional bicube, B5.

4, 4, and 5, respectively. Bn is a node-symmetric graph
whose degree is n. Because the bicube is bipartite, it
does not include any cycle with an odd length. Now, let
B0

n and B1
n be the subgraphs induced by the node sets

{(un, un−1, . . . , u1) | un = 0}(⊂ V (Bn)) and {(un, un−1,
. . . , u1) | un = 1}(⊂ V (Bn)), respectively. Then, B0

n and
B1

n are both isomorphic to an (n − 1)-dimensional hyper-
cube, Hn−1. In other words, Bn consists of two Hn−1’s.
The left and right subgraphs, B0

5 and B1
5 , form two distinct

H4’s in Fig. 1, in which (0, 0, 1, 1, 1)(∈ B0
5) is connected to

(1, 1, 0, 0, 0)(∈ B1
5) while it is connected to (1, 0, 1, 1, 1) in

a 5-dimensional hypercube, H5, for example.

Lemma 1: For a node u ∈ V (Bb
n) (b ∈ {0, 1}), there

are n paths from u such that the other terminal nodes are
included in V (Bb̄

n), the paths are disjoint except for u, and
their lengths are at most 2.
(Proof) We can generate n paths Li (1 ≤ i ≤ n) as follows:

Li :

{
u→ u(i) → u(i,n) (1 ≤ i ≤ n− 1),
u→ u(n) (i = n).

Then, the path lengths are at most 2. u(i,n) (1 ≤ i ≤ n− 1)
and u(n) are included in V (Bb̄

n). Because u(i) (1 ≤ i ≤
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n − 1) and u(n) are distinct neighboring nodes of u, and
Bb

n andBb̄
n are connected by one-to-one edges, the paths are

disjoint except for u. 2

3. B-N2N Algorithm

In this section, we describe our algorithm B-N2N that solves
the node-to-node disjoint paths problem in an n-dimensional
bicube, Bn. Let s and d be the source node and the des-
tination node, respectively. For n with 3 ≤ n ≤ 4, Bn is
isomorphic to Hn. Hence, it is trivial to find n paths be-
tween s and d that are disjoint except for s and d in O(n2)
time, whose lengths are at most n + 1 by using the algo-
rithm proposed by Saad and Schultz [11]. Thus, we assume
that n ≥ 5. Without loss of generality, we can assume
that s ∈ V (B0

n). Then B-N2N is divided into two cases
depending on the position of the destination node.

3.1 B-N2N Case 1 (d ∈ V (B0
n))

Step 1 Apply H-N2S in B0
n to generate (n − 1) paths Pi:

s ; d(i) (1 ≤ i ≤ n− 1) that are disjoint except for s.
Step 2 Select (n− 1) edges d(i) → d (1 ≤ i ≤ n− 1).
Step 3 Select two edges s→ s(n) and d(n) → d.
Step 4 Apply SPR in B1

n to generate the shortest path R:
s(n) ; d(n) (Fig. 2).

B0
n B1

n

···

· · ·

s(n)

d(n)

s

d

d(1)
d(2) d(n−1)
• • •

•

•

•

•

Fig. 2 After Step 4 of B-N2N Case 1

Step 5 Construct n paths, Ui (1 ≤ i ≤ n), that are disjoint
except for s and d as follows:

Ui :

{
s

Pi
; d(i) → d (1 ≤ i ≤ n− 1)

s→ s(i) R
; d(i) → d (i = n)

3.2 B-N2N Case 2 (d ∈ V (B1
n))

Step 1 Select the edge s→ s(n).
Step 2 Apply SPR in B1

n to generate the shortest path R:
s(n) ; d. Let d(l) be the neighboring node of d that
is included in R.

Step 3 Apply H-N2S in B0
n to generate (n − 1) paths, Pi

(1 ≤ i( 6= l) ≤ n), that are disjoint except for s as
follows:

Pi :

{
s ; d(i,n) (1 ≤ i( 6= l) ≤ n− 1)
s ; d(i) (i = n)

Step 4 Select (n − 2) paths Qi: d(i,n) → d(i) → d (1 ≤
i(6= l) ≤ n− 1) of length 2 and a path Qn: d(n) → d
of length 1 (Fig. 3).

B0
n B1

n

s(n)

d

s

d(n)

···

d(1,n)
d(2,n)

d(n−1,n)

· · ·

· · · ···
d(1)

d(2) d(l) d(n−1)

•

•

•

•

• •
•

• • • •

Fig. 3 After Step 4 of B-N2N Case 2

Step 5 Construct n paths, Ui (1 ≤ i ≤ n), that are disjoint
except for s and d as follows:

Ui :


s

Pi
; d(i,n) Qi→ d(i) Qi→ d (1 ≤ i( 6= l) ≤ n− 1)

s→ s(n) R
; d(i) R→ d (i = l)

s
Pi
; d(i) Qi→ d (i = n)

4. B-N2S Algorithm

In this section, we describe our algorithm B-N2S that solves
the node-to-set disjoint paths problem in an n-dimensional
bicube, Bn. Let s be the source node and {d1,d2, . . . ,dn}
be the set of n destination nodes. For n with 3 ≤ n ≤ 4,
Bn is isomorphic to Hn. Hence, it is trivial to find n paths
s ; di (1 ≤ i ≤ n) that are disjoint except for s in O(n2)
time, whose lengths are at most n+1 by using the algorithm
proposed by Bossard and Kaneko [9]. Thus, we assume that
n ≥ 5. Without loss of generality, we can assume that s ∈
V (B0

n) and {d1,d2, . . . ,dn}∩V (B0
n) = {d1,d2, . . . ,dl}.

If {d1,d2, . . . ,dn} ∩ V (B0
n) = ∅, we execute the steps as

l = 0. Then B-N2S is divided into two cases depending on
the distribution of the destination nodes.

4.1 B-N2S Case 1 (l = n)

Step 1 Apply H-N2S in B0
n to generate (n − 1) paths Pi:

s ; di (1 ≤ i ≤ n− 1) that are disjoint except for s.
Step 2 If dn is included in one of the paths generated in

Step 1, say Px: s ; dx, let Px: s ; dn by discarding
the subpath dn ; dx, and exchange the indices of dx

and dn.
Step 3 Select two edges s→ s(n) and d

(n)
n → dn.

Step 4 Apply SPR in B1
n to generate the shortest path R:

s(n) ; d
(n)
n (Fig. 4).

Step 5 Construct n paths, Ui (1 ≤ i ≤ n), that are disjoint
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B0
n B1

n

•
s(n)

•
d
(n)
n

•

• •· · ·• · · · •

•

s

d1

d2 dn

dn−1

dx

Fig. 4 After Step 4 of B-N2S Case 1

except for s as follows:

Ui :

{
s

Pi
; di (1 ≤ i ≤ n− 1)

s→ s(n) R
; d

(n)
i → di (i = n)

4.2 B-N2S Case 2 (l < n)

Step 1 For each node of di (l+1 ≤ i ≤ n), find a pathQi:
d′i(∈ V (B0

n)) ; di of lengths at most 2 such that it is
disjoint from other paths Qj (l + 1 ≤ j(6= i) ≤ n) and
does not include destination nodes d1,d2, . . . ,dl.

Step 2 Select the edge s→ s(n).
Step 3 Apply SPR in B1

n to generate the shortest path R:
s(n) ; dn.

Step 4 If the path R does not include any node on the
paths generated in Step 1, go to Step 5. Otherwise,
let d̂x be the closest one to s(n) along R. Also, let
Qx: d′x ; d̂x ; dx be the path to which d̂x belongs
(Fig. 5). Then, discard the subpath d̂x ; dn of R,

B0
n B1

n

•
s(n)

•
dl+1

•

• •

•

•

•

• •dn−1
dn

d′x
d̂x

dx

•···• • •·
··
•

s

d1

dl d′l+1
d′n

d′n−1

Fig. 5 During Step 4 of B-N2S Case 2

and select R: s(n) ; d̂x ; dx. Also, exchange the
indices of Qx and Qn, the indices of dx and dn, and
the indices of d′x and d′n.

Step 5 Discard the path Qn (Fig. 6).
Step 6 Apply H-N2S in B0

n to generate (n − 1) paths Pi:
s ; di (1 ≤ i ≤ l) andPi: s ; d′i (l+1 ≤ i ≤ n−1)
that are disjoint except for s.

Step 7 Construct n paths, Ui (1 ≤ i ≤ n), that are disjoint
except for s as follows:

B0
n B1

n

•
s(n)

•
dl+1

•

•

•

•

•

• •dn−1
dx

d̂n

dn

•···• • · · · •
··
·•

s

d1

dl d′l+1
d′x

d′n−1

Fig. 6 After Step 5 of B-N2S Case 2

Ui :


s

Pi
; di (1 ≤ i ≤ l)

s
Pi
; d′i

Qi
; di (l + 1 ≤ i ≤ n− 1)

s→ s(n) R
; di (i = n)

5. Correctness and Complexities

Lemma 2: For a source node s and a set of n destination
nodes {d1,d2, . . . ,dn} in an n-dimensional hypercube, the
H-N2S algorithm by Bossard and Kaneko [9] generates n
paths from s to di (1 ≤ i ≤ n) of lengths at most n+ 1 that
are disjoint except for s in O(n2) time.
(Proof) From [9]. 2

Lemma 3: In Case 1, for a source node s and a destination
node d in an n-dimensional bicube with n ≥ 5, B-N2N
takes O(n2) time to generate n paths from s to d of lengths
at most n+ 1 that are disjoint except for s and d.
(Proof) In Step 1, H-N2S takesO(n2) time to generate (n−1)
paths Pi: s ; d(i) (1 ≤ i ≤ n − 1) of lengths at most n
that are disjoint except for s from Lemma 2. In Step 2, it
takes O(n) time to select (n − 1) edges. In Step 3, it takes
O(1) time to select two edges. In Step 4, SPR takes O(n)
time to generate the shortest path whose length is at most
n − 1. The total time complexity of B-N2N in Case 1 is
O(n2), and the maximum path length is n + 1. The paths
Ui: s

Pi
; d(i) → d (1 ≤ i ≤ n− 1) are disjoint except for s

and d because Pi (1 ≤ i ≤ n− 1) are generated by H-N2S.
The path Un is disjoint from other paths Ui (1 ≤ i ≤ n− 1)
except for s and d because it is outside of B0

n other than s
and d. 2

Lemma 4: In Case 2, for a source node s and a destination
node d in an n-dimensional bicube with n ≥ 5, B-N2N
takes O(n2) time to generate n paths from s to d of lengths
at most n+ 2 that are disjoint except for s and d.
(Proof) In Step 1, it takes O(1) time to select the edge. In
Step 2, SPR takes O(n) time to generate the shortest path R
of length at most n− 1. It takes O(1) time to find l of d(l).
In Step 3, H-N2S takesO(n2) time to generate (n−1) paths
Pi (1 ≤ i(6= l) ≤ n) of lengths at most n that are disjoint
except for s from Lemma 2. In Step 4, it takes O(n) time
to generate Qi (1 ≤ i(6= l) ≤ n) of lengths at most 2. The
total time complexity of B-N2N in Case 2 is O(n2), and the
maximum path length is n+ 2. Ul is disjoint from other Ui
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(1 ≤ i( 6= l) ≤ n) except for s and d because it is outside of
B0

n other than s and it does not include any neighboring node
of d except for d(l). Ui (1 ≤ i(6= l) ≤ n) are disjoint except
for s and d among others because Pi (1 ≤ i( 6= l) ≤ n)
are generated by H-N2S and Qi (1 ≤ i( 6= l) ≤ n) include
distinct nodes d(i,n) (1 ≤ i( 6= l) ≤ n−1) and d(i) (1 ≤ i( 6=
l) ≤ n). Consequently, Ui (1 ≤ i ≤ n) are disjoint except
for s and d. 2

Theorem 1: For a source node s and a destination noded in
an n-dimensional bicube with n ≥ 5, the B-N2N algorithm
takes O(n2) time and it generates n paths from s to d of
lengths at most n+ 2 that are disjoint except for s and d.
(Proof) From Lemmas 3 and 4. 2

Lemma 5: In Case 1, for a source node s and a set of
n destination nodes {d1,d2, . . . ,dn} in an n-dimensional
bicube with n ≥ 5, B-N2S takes O(n2) time to generate n
paths from s to di (1 ≤ i ≤ n) of lengths at most n+ 1 that
are disjoint except for s.
(Proof) In Step 1, H-N2S takesO(n2) time to generate (n−1)
paths Pi: s ; di (1 ≤ i ≤ n− 1) of lengths at most n that
are disjoint except for s from Lemma 2. In Step 2, it takes
O(n2) time to check if dn is included in one of the paths
generated in Step 1. It takesO(n) time to discard the subpath
and exchange the indices of dx and dn. In Step 3, it takes
O(1) time to select two edges. In Step 4, SPR takes O(n)
time to generate the shortest path whose length is at most
n − 1. The total time complexity of B-N2S in Case 1 is
O(n2), and the maximum path length is n + 1. The paths
Ui (1 ≤ i ≤ n − 1) are disjoint except for s because they
are generated by H-N2S. The path Un is disjoint from other
paths Ui (1 ≤ i ≤ n − 1) except for s because it is outside
of B0

n other than s and dn. 2

Lemma 6: In Step 1 of Case 2, B-N2S can find the pathQi

for each destination node di (l + 1 ≤ i ≤ n).
(Proof) From Lemma 1, there are n candidate paths for Qi.
Destination nodes dj (1 ≤ j ≤ l or i+1 ≤ j ≤ n) can block
at most one of them. Also, each of the paths Qj : d′j ; dj

(l + 1 ≤ j ≤ i − 1) can block at most one of the candidate
paths because there is no cycle of length 3 in Bn. Note that
because B0

n and B1
n are connected by bijective edges, the

edge d(n)
j → dj of Qj cannot block two candidate paths at

a time. Hence, B-N2S can find at least one of n candidates
for Qi. 2

Lemma 7: In Case 2, for a source node s and a set of n des-
tination nodes {d1,d2, . . . ,dn} in an n-dimensional bicube
with n ≥ 5, B-N2S takes O(n2 log n) time to generate n
paths from s to di (1 ≤ i ≤ n) of lengths at most n+ 2 that
are disjoint except for s.
(Proof) In Step 1, it takes O(n2 log n) time to find Qi

(l + 1 ≤ i ≤ n) of lengths at most 2 by using a balanced
binary search tree. In Step 2, it takes O(1) time to select
the edge. In Step 3, SPR takes O(n) time to generate R of
length at most n− 1. In Step 4, it takesO(n2) time to check
if R includes a node on the paths generated in Step 1. It
takes O(n) time to find d̂x and discard the subpath, update

R, and exchange the indices. In Step 5, it takes O(1) to
discard Qn. In Step 6, H-N2S takes O(n2) time to generate
Pi (1 ≤ i ≤ n−1) of lengths at most n from Lemma 2. The
total time complexity of B-N2S in Case 2 isO(n2 log n), and
the maximum path length is n + 2. Ui (1 ≤ i ≤ l) are dis-
joint among others except for s because they are generated by
H-N2S. Also, they are disjoint from Uj (l+1 ≤ j ≤ n− 1)
except for s because Pj (l + 1 ≤ j ≤ n − 1) are generated
by H-N2S and Qj (l + 1 ≤ j ≤ n − 1) are outside of B0

n

other than d′j . Moreover, the paths are disjoint from Un

except for s because it is outside of B0
n other than s. Ui

(l + 1 ≤ i ≤ n − 1) are disjoint among others except for s
because Pi (l+1 ≤ i ≤ n− 1) are generated by H-N2S and
Qi (l + 1 ≤ i ≤ n − 1) are generated in Step 1 such that
they are disjoint. In addition, the paths are disjoint from Un

except for s because R is outside of B0
n other than s, and

it is generated such that it is ensured to be disjoint from Qi

(l+1 ≤ i ≤ n−1) in Step 4. Consequently, Ui (1 ≤ i ≤ n)
are disjoint except for s. 2

Theorem 2: For a source node s and a set of n destination
nodes {d1,d2, . . . ,dn} in an n-dimensional bicube with
n ≥ 5, the B-N2S algorithm takes O(n2 log n) time and it
generates n paths from s to di (1 ≤ i ≤ n) of lengths at
most n+ 2 that are disjoint except for s.
(Proof) From Lemmas 5 and 7. 2

Because an n-dimensional locally twisted cube consists
of two (n− 1)-dimensional hypercubes with bijective edges
between them, it is trivial that we can apply B-N2N and B-
N2S in the locally twisted cube with the same performance.

Definition 4: An n-dimensional locally twisted cube, LTn

(n ≥ 3), is an undirected graph whose node set is {0, 1}n.
Given a node u = (un, un−1, . . . , u1) in LTn, it has
n neighboring nodes u(i) (1 ≤ i ≤ n) where u(i) =
(un, un−1, . . . , (ui+1 ⊕ un), ui, ui−1, . . . , u1) (1 ≤ i ≤
n − 2), u(n−1) = (un, un−1, un−2, . . . , u1), and u(n) =
(un, un−1, . . . , u1). 2

Theorem 3: For a source node s and a destination node d
in an n-dimensional locally twisted cube with n ≥ 5, the
B-N2N algorithm takes O(n2) time and it generates n paths
from s to d of lengths at most n+ 2 that are disjoint except
for s and d.
(Proof) From Theorem 1. 2

Theorem 4: For a source node s and a set of n destination
nodes {d1,d2, . . . ,dn} in an n-dimensional locally twisted
cube with n ≥ 5, the B-N2S algorithm takes O(n2 log n)
time and it generates n paths from s to di (1 ≤ i ≤ n) of
lengths at most n+ 2 that are disjoint except for s.
(Proof) From Theorem 2. 2

6. Conclusion

In this paper, we have proposed two algorithms, B-N2N and
B-N2S, that solve the node-to-node and node-to-set disjoint
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paths problems in the bicube, respectively. We have proved
the correctness of the algorithms. We have also proved that
the time complexities of the B-N2N and B-N2S algorithms
are O(n2) and O(n2 log n), respectively, and the maximum
path lengths are both n + 2 if they are applied in an n-
dimensional bicube with n ≥ 5. In addition, we have shown
that the algorithms can be applied in the locally twisted cube
with the same performance.

One of our future works is to check whether the bound
of the path lengths n + 2 is tight or not. Also, our future
works include inventing an algorithm to solve the set-to-set
disjoint paths problem in the bicube.
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