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SUMMARY Recent years have seen remarkable progress in human pose 

estimation. However, manual annotation of keypoints remains tedious and 

imprecise. To alleviate this problem, this paper proposes a novel method 

called Multi-Scale Contrastive Learning (MSCL). This method uses a 

siamese network structure with upper and lower branches that capture 

diffirent views of the same image. Each branch uses a backbone network to 

extract image representations, employing multi-scale feature vectors to 

capture information. These feature vectors are then passed through an 

enhanced feature pyramid for fusion, producing more robust feature 

representations. Subsequently, The feature vectors are then further encoded 

by mapping and prediction heads to predict the feature vector of another 

view. Using negative cosine similarity between vectors as a loss function, 

the backbone network is pre-trained on a large-scale unlabeled dataset, 

enhancing its capacity to extract visual representations. Finally, transfer 

learning is performed on a small amount of labelled data for the pose 

estimation task. Experiments on COCO datasets show significant 

improvements in Average Precision (AP) of 1.8%, 0.9%, and 1.2% with 1%, 

5%, and 10% labelled data on COCO. In addition, the Percentage of Correct 

Keypoints (PCK) improves by 0.5% on MPII&AIC, outperforming    

mainstream contrastive learning methods. 

key words: human pose estimation, contrastive learning, multi-scale 

feature, feature pyramid network. 

1. Introduction 

Human pose estimation involves determining the positions 

of  keypoints through heatmap estimation or coordinate 

regression. Various approaches, often trained on widely-

used datasets like COCO [1], have shown precise results. 

However, the process of annotating keypoints in images is 

subjective and heavily relies on the annotator's expertise, 

especially for occluded or less prominent keypoints. 

Moreover, annotations in the same data set will vary from 

annotator to annotator, which will lead to inconsistent 

annotation standards in the data set. Achieving objective and 

accurate annotations typically requires wearable devices, 

incurring significant costs. Thus, constructing a dataset with 

diverse scenes and uniformly distributed actions proves to 

be exceedingly challenging. 

To reduce the annotation workload, modern approaches 

often use semi-supervised and self-supervised learning. 

Self-supervised learning, in particular, has gained attention 

for its powerful ability to learn image representations from 

large amounts of unlabelled data. This method involves pre-

training on an extensive unlabeled dataset, followed by 

transfer learning on a smaller dataset with partial 

annotations, mitigating performance degradation due to 

insufficient labeled data. Among self-supervised learning 

approaches, contrastive learning has excelled for its 

exceptional performance and broad applicability across 

various domains. Numerous studies have demonstrated the 

remarkable performance of contrastive learning's pre-

trained networks on diverse downstream tasks [2]. However, 

in the human pose estimation task, a unique challenge 

emerges - accurately predicting spatial locations for human 

body keypoints requires semantic information at various 

scales. For instance, when specific keypoints are occluded, 

utilizing local information from nearby keypoints becomes 

imperative for prediction [3]. The current contrastive 

learning methods are mainly applied to image 

classification[4], and it is of great significance to design a 

contrastive learning method for the characteristics of human 

pose estimation. 

To address these challenges, we propose a novel approach 

called Multi-Scale Contrastive Learning, which considers 

the spatially sensitive nature inherent in human pose 

estimation tasks [5]. This method is designed for robust 

representation learning, leveraging the rich multiscale 

information in the last layers of the encoder. Firstly, for a 

given image, two views are generated using different 

augmentations, such as affine transformations and color 

enhancements. Subsequently, the same backbone network 

extracts features of the same dimension but different depths. 

These multiscale features are further fused within a Feature 

Pyramid Network (FPN) to eliminate the adverse effects of 

shallow features. Next, the features are forwarded in parallel 

to mapping heads encoding, with one view forwarded to the 

prediction head for secondary encoding, aiming to predict 

the feature vectors of the other view. Finally, different scale 

loss weights are configured, and multiscale feature pairwise 

contrastive losses between the two views are computed. 

Backpropagation occurs in the view branches of the 

prediction head to update the weights of the backbone 

network. 

Our primary contributions can be summarized as follows: 

·We propose a novel multi-scale contrastive learning 

framework for semi-supervised human pose estimation, 

which enables backbone networks to better understand and 

represent semantic information at different scales, and 

alleviates the problems caused by annotated data. 
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·We employ an enhanced FPN module to effectively fuse 

multi-scale feature vectors, thereby generating more 

semantically rich fusion feature vectors. This improvement 

contributes to enhancing network performance, particularly 

in tasks that involve multi-scale information. 

·When transferring the pre-trained model to downstream 

semi-supervised human pose estimation tasks, the 

performance of MSCL significantly outperforms that of the 

other contrastive learning methods. 

2. Related Work 

2.1 Human Pose Estimation 

Human pose estimation has undergone significant 

advancements, with Convolutional Neural Networks 

(CNNs) assuming a predominant role owing to their robust 

localisation and generalisation capabilities, particularly in 

heatmap representation [6-11]. Recently, the emergence of 

vision transformers has led to another wave of excellent 

work in this field. Some studies predominantly employ 

CNNs as the backbone [12-14], using complex transformer 

structures to refine the extracted features and model 

relationships between key points. Another set of studies 

focuses on feature encoding using improved vision 

transformer architectures [15-17], followed by simple 

decoders to predict heatmaps. Despite the immense potential 

of vision transformers, they require significant 

computational resources and extensive data support, and 

hence cannot fully replace the role of CNNs. 

While fully supervised approaches to human pose 

estimation are abundant, research to semi-supervised 

approaches for this task has been notably limited. One  

study [18], using an improved teacher-student network 

model, confirmed the importance of effective strong-weak 

augmentation strategies and the reliability of stable teacher-

generated pseudo-labels. Building on this foundation, 

another study systematically investigated semi-supervised 

human pose estimation methods. And a method called ESCP  

is proposed [19], which involves creating pairs of difficult 

and easy samples by applying various augmentations to the 

same image. These pairs are then fed into a student-teacher 

network, by establishing hard-easy sample pairs, the 

network is guided more accurately to learn the pose 

information of challenging images. This approach prevents 

high-response samples from being misclassified as 

background, thus avoiding network collapse. 

2.2 Contrastive Learning 

The primary goal of contrastive learning is to improve the 

network's ability to extract representations, to facilitate 

seamless transfer to various downstream tasks, and to 

effectively address the challenges associated with collecting 

and annotating large labelled datasets. Initially, contrastive 

learning methods primarily concentrated on pattern 

recognition. SimCLR, as a simple contrastive learning 

method, aimed to learn universal representations by 

maximising the consistency between different transformed 

views of the same image and minimising the consistency 

between transformed views of different images. In order to 

build a larger feature contrast library, a momentum 

contrastive method called MoCoV2 was proposed [20], 

drawing inspiration from dictionary look-up. It used a queue 

and a moving average encoder to construct a dynamic 

dictionary, effectively decoupling memory from dictionary 

capacity. Another study introduced a simple siamese 

network known as SimSiam [21], which learned 

representations without the need for negative image pairs, 

large batch sizes, and momentum encoding. It maximised 

the similarity between two augmentations of an image to 

learn image representations. 

Subsequently, Multiscale representation learning has found 

extensive applications across a range of downstream tasks 

with a focus on acquiring discriminative feature 

representations at various scales [22-24]. The integration of 

multi-scale learning with contrastive learning has emerged 

as a potent tool for tasks demanding information at multiple 

scales. This fusion equips models to comprehensively 

comprehend semantic information within images, leading to 

enhanced performance across a diverse array of downstream 

tasks. For instance, one study introduced a self-supervised 

pyramid representation learning framework [25]. This 

framework leverages correlations among multiple local 

patch-level features to extract fine-grained information from 

the image, effectively emulating the presentation of objects 

at distinct scales. Furthermore, this method employed multi-

scale and multi-view features to enhance semi-supervised 

heart image segmentation, thereby improving segmentation 

performance even with limited annotations. 

Recently, the introduction of ESCP has enabled contrastive 

learning to be fine-tuned for semi-supervised human pose 

estimation tasks as well. However, a substantial portion of 

current pretraining networks are tailored for segmentation or 

object detection [26-28], with a primary focus on pixel-level 

information. This specialisation may not render them 

directly suitable for the task of human pose estimation. 

Therefore, given that human pose estimation necessitates 

both deep features encompassing global information and 

shallow features capturing fine-grained details to aid in 

predicting challenging keypoints, we propose a multi-scale 

feature contrastive learning method. This method aims to 

bolster the network's proficiency in extracting features 

across a range of scales, aligning with the requirements of 

human pose estimation. 

3. Method 

In Fig. 1, we present an overview of MSCL and detail the 

inference process. Firstly, perform random augmentation on 

the original image to obtain two different views,
1X  and

2X  . 

Subsequently, forward these views to their respective 
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backbone networks for feature extraction, such as ResNet or 

any other convolutional neural network (in this paper, 

ResNet50 is used as the backbone network) [29]. Then, with 

the feature vectors extracted from the backbone network, 

existing methods typically employ the deepest layer's one-

dimensional global feature vector to represent the entire 

image. However, different layers of features contain varying 

levels of semantic information, which plays a crucial role in 

accurately locating keypoints and understanding poses. 

Therefore, our method utilises multiple feature vectors from 

different layers to better extract multi-scale information 

from the views. In particular, in ResNet50, we employ the 

feature vectors from four stages: conv2_x, conv3_x, 

conv4_x, and conv5_x. These feature vectors are 

represented as 1 2 3 4f , f , f , f  , with dimensions of 56 56 256   ,

28 28 512  ,14 14 1024  and 7 7 2048  respectively. 

 
Fig. 1  MSCL's overall architecture. 

Following the acquisition of multi-scale feature vectors, 

they are not directly forwarded to the mapping head. Instead, 

an enhanced FPN module is introduced [30], whereby the 

multi-scale feature vectors are simultaneously forwarded to 

the FPN module for feature fusion. The fused multi-scale 

feature vector 1 2 3 4, , , is then passed to the mapping head. 

In comparison to directly forwarding to the mapping head, 

the fused feature vector contains richer semantic 

information. The deep features have an increased receptive 

field on the original image, effectively preventing the 

network from learning shortcuts through shallow feature 

vectors. Subsequently, the fused feature vector is parallelly 

forwarded to the mapping head for encoding, where a 

nonlinear transformation is applied to the feature vectors. 

The encoded feature vectors are denoted as
1 2 3 4, , ,     . 

Finally, the feature vector from the upper branch is 

forwarded to the prediction head for further encoding, 

denoted as 2 3 4, , ,  . The feature vector from the lower 

branch is not subjected to any further operations and is 

simply mapped identically. 

The multi-scale feature vectors from the upper and lower 

branches represent the representation information of the two 

views at different granularities. This information must be 

used to train the backbone network in order to extract 

different representations effectively [31]. Specifically, the 

feature vectors from the upper branch are used to predict 

those from the lower branch. The negative cosine similarity 

of the two views is utilised as the loss function for gradient 

backpropagation, updating the weights of the backbone 

network. It is crucial to halt gradient propagation for the 

lower branch to prevent training collapse. In the 

aforementioned inference, we utilised the feature vectors 

from the upper branch to predict those from the lower branch. 

Leveraging the symmetric structure of the siamese network, 

we can also interchange the positions of the upper and lower 

views, significantly enhancing the training efficiency of the 

network. 

An alternative interpretation of MSCL involves 

considering the upper branch as the student network and the 

lower branch as the teacher network [32]. The student and 

teacher networks undergo different augmentations on the 

images, followed by further feature mapping. The student 

network additionally forwards the feature vectors to the 

prediction head and predicts the feature vectors generated by 

the teacher network. According to the similarity comparison 

results of the two feature vectors, the gradient 

backpropagation of the weight parameters of the student 

network is updated, and the gradient propagation of the 

teacher network is stopped. Different from traditional 

teacher-student networks, the student-teacher network in 

this paper shares weights and employs a dual network 

approach [33], allowing the performance of the student 

network to no longer be restricted by the performance of the 

teacher network. 

3.1 Feature Pyramid Networt 

 
Fig. 2  Architecture of the feature pyramid network. 

The overall architecture of the feature pyramid is depicted 

in Fig. 2. We have annotated the dimensions of the feature 

vectors at different scales to facilitate a better understanding 

of the FPN inference process. The feature vectors are 

obtained from different stages of the backbone network, 

firstly adjusted in dimension by conv1, and then fed into the 

Feature Fusion Module (FFM) to be fused into 512-

dimensional feature vectors. The steps for feature fusion 

with the different scale feature vectors extracted from the 

backbone network can be represented using formulas: 

Backbone FPN
Projector Predictor

Shared
Feature 

Comparison

C

C

Stop-grad

X'1

X'2

Fifi Zi

Conv1

2×up

2×up

2×up
56×56×256

28×28×512

14×14×512

7×7×512

Conv2 Pooling

1×1×512

FFM

1*1 Conv Conv1

Conv23*3 Conv

2 × up
2 × Up

Sampling
Add

f1, f2, f3, f4
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( ) ( )( )( )i i i+1Pool Conv2 Conv1 f Up Conv1 f= − +       (1) 

( )2j jPool Conv Conv1 f= − −                   (2) 

where  1,2,3i , 4j = ,Up represents up-sampling operation.

Pool Conv−  denotes a series of operations, including max-

pooling and convolution (with kernel sizes of 1 and 3). The 

four multi-scale feature vectors are forwarded to the feature 

pyramid, and the output feature dimensions are the same 

after dimensionality reduction. Following dimension 

reduction, the multi-scale feature 1 2 3 4, , , is forwarded to 

the mapping head for encoding. 

In the initial experiments, forwarding the multi-scale 

features directly extracted by the backbone network to the 

mapping head for encoding did not yield satisfactory results. 

One possible explanation for this is that features at different 

levels in the feature maps have varying expressive 

capabilities. Shallow features primarily reflect details such 

as brightness and edges, whereas deep features reflect a 

richer overall structure. Using shallow features alone may 

not capture global structural information, potentially 

weakening the expressive power of the features. In contrast, 

deep features are constructed from shallow features and 

naturally encompass the information from shallow layers 

[34]. Therefore, an intuitive approach is to up-sample the 

shallow features to match the dimensions and then fuse them 

with the deep features. This approach balances details and 

overall structure, resulting in fused features with more 

enriched expressive capabilities, as confirmed by 

subsequent ablation experiments. 

3.2 Multi-Scale Feature Contrast 

Before calculating the similarity between feature vectors 

from two views, it is essential to encode the fused feature 

vectors. Studies have demonstrated that the omission of an 

encoding layer or the use of a linear encoding layer can have 

a profound impact on the network's performance. This may 

be attributed to the phenomenon of information loss, which 

can result from contrastive loss, such as the loss of object 

colour or orientation. The utilisation of a nonlinear encoding 

layer has been shown to mitigate this loss of information. In 

this paper, the encoding layer is referred to as the mapping 

head. The process of encoding multi-scale feature vectors in 

order to forward them to the mapping head is represented by 

the following formula: 

( ) ( )( )( )2i i iProj f FC BN FC BN ReLU f = = − − −     (3) 

where  1,2,3,4i  , ( )Proj  represents mapping encoding,   

FC BN ReLU− −  represents the MLP mapping operation, 

which includes fully connected mapping, batch 

normalization, and activation function, 2  represents 

repeating the MLP mapping twice. The fully connected 

layers in the input and output of the mapping head are 512-

dimensional, including the hidden fully connected layer 

which is also 512-dimensional. 

One of the feature vectors is selected and forwarded to the 

prediction head for further encoding. The simsiam paper 

demonstrates that removing the prediction head not only 

renders the asymmetric variant of the siamese network 

ineffective but also causes the training of the network to 

collapse. The encoding process of the prediction head is 

represented by the following formula: 

( ) ( )( )i i iPred FC FC BN ReLU = = − −           (4) 

where  1,2,3,4i  , ( )Pred  represents the prediction 

encoding. In the prediction head, the input and output 

dimensions are 512-dimensional, while the hidden fully 

connected layer is 128-dimensional, distinguishing it from 

the mapping head. Additionally, in the mapping head, each 

MLP layer is followed by a batch normalization layer, 

whereas in the prediction head, only the first MLP has a 

batch normalization layer. 

There are two primary approaches for calculating multi-

scale features: intra-scale feature pairwise comparison and 

inter-scale feature comparison [35]. While inter-scale 

comparison involves actively comparing features across all 

scales to introduce potential multi-scale representations by 

coupling features across different scales, it has been 

demonstrated that pairwise feature comparison yields 

superior results compared to inter-scale feature comparison. 

This superiority can be attributed to the distinct hierarchical 

characteristics maintained by features at each scale. Failure 

to consider these differences may result in a degradation of 

the feature representation. Consequently, our proposed 

method adopts the pairwise comparison method and the 

formula for calculating the negative cosine similarity of 

pairwise features is as follows: 

( )
2 2

,


 = − 


                     (5) 

where
2
represents the L2 norm, which is equivalent to the 

mean square error L2 of the normalised vector, representing 

the similarity between the two views with a minimum value 

of -1. The dimension of the feature vector is 512-

dimensional. The symmetric loss for a single-scale variant 

of the siamese network is as follows: 

( )( ) ( )( )
1 1

,stopgrad ,stopgrad
2 2

 = +        (6) 

wher ( )stopgrad  represents the stop-gradient operation. 

( )stopgrad  , ( )stopgrad    represents the operation of not 

participate in the network's backpropagation gradient 

process. Then, we summarize the contrastive loss from the 

layers at different scales and define the multi-scale 

contrastive loss as follows: 

g i i

i




=                               (7) 

Where i represents the feature extracted at the -i th level 

by the backbone network.
i
is the loss value for the -i th
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pair of features,and
i is the balance weight for

i
. 

4. Experimental Section 

4.1 Experimental Settings 

The code runs on the Linux operating system and is 

configured with Python 3.8, CUDA 11.3, and PyTorch 1.11 

as the basic environment. MMSelfSup 0.9 is used as the 

underlying framework. The model training is conducted on 

four Nvidia GeForce RTX 3090 GPUs, with a batch size of 

64 for each GPU, resulting in a total batch size of 256. With 

regard to the ImageNet dataset, the total number of epochs 

is 100, with a total of 1 million iterations. It should be noted 

that a single complete training process takes 3 days. With 

regard to the pretraining on ImageNet, the training 

hyperparameters of MoCoV2 are utilised, employing SGD 

as the optimiser with weight decay and momentum set to 1e-

4 and 9e-1, respectively. The initial learning rate is set to 5e-

2, and a cosine learning rate decay function is applied. 

4.2 Datasets 

ImageNet: The dataset referred to as the most prevalent in 

image classification tasks is ImageNet-1K [36]. This dataset 

comprises a total of 1.28 million images distributed across 

1K classes. It features a well-balanced class distribution, 

containing iconic object views. During pretraining, the data 

augmentation process aligns with the methodology detailed 

in the MoCoV2 paper. This encompasses a range of image 

transformations, including random resizing and cropping to

224 224  pixels, random colour jittering, random grayscale 

transformation, gaussian blur, and random horizontal 

flipping. 

4.3 Evaluation Protocol 

The performance of the pretrained network is evaluated by 

fine-tuning it for human pose estimation tasks. Two popular 

and challenging datasets are used for this purpose: COCO 

KeyPoints and MPII&AIC. 

COCO KeyPoints: The datasets include four subsets: 

TRAIN, VAL, TEST-DEV, and TEST-CHALLENGE. There 

are 123K unlabeled images, with an input image size of 

256×192. To assess the impact of different numbers of 

annotated images on network accuracy, following the semi-

supervised experimental standards, we randomly select 1K, 

5K, and 10K samples from TRAIN as labeled images, and 

the remaining samples in the training set are unlabeled. We 

evaluate network performance on the validation set, using   

( ) @ 0.50:0.05:0.95mean AP  as the primary metric for 

subsequent evaluation. 

MPII Dataset [37]: The dataset comprises approximately 

25K images and 40K annotated human instances, with an 

input image size of 256 192 . Following the semi-supervised 

experimental setup, we use the MPII training set as the 

labeled set and the AIC dataset as the unlabeled set [38], 

which includes 210K images and 370K human instances. 

We evaluate network performance on the MPII test set, 

using PCKh@0.5 as the evaluation metric. 

Following common protocols, we use SimpleBaseline to 

estimate heatmaps and contrastive learning pretrained 

models as the backbone network [39]. We train for a total of 

approximately 36K iterations on the COCO dataset using the 

Adam optimizer with an initial learning rate of 1e−3 [40]. 

The learning rate is reduced to 1e−4 and 1e−5 at 24K and 

30K iterations, respectively. On the MPII&AIC dataset, we 

train for about 30k iterations, also using the adam optimizer 

with an initial learning rate of 1e−3, and we reduce the 

learning rate at 15K and 21K iterations. In the validation set, 

the ground truth bounding boxes are utilised, and the images 

are not flipped. 

4.4 Evaluation Metrics 

In the COCO dataset, mean average precision (mAP) is 

employed as the evaluation metric. The similarity between 

the ground truth and detected keypoints is calculated using 

object keypoint similarity (OKS) as a scalar. Based on a 

predefined threshold, the proportion of images that meet the 

specified criteria is computed. The specific calculation 

formula is as follows: 

( )
1

pm p

m p

oks T
AP

 
=
 

 
                     (8) 

Where p represents the -p th  person, T represents the 

specified threshold, m represents the -m th sample. 

In the MPII dataset, we utilise the proportion of correctly 

detected keypoints (PCK) as the evaluation metric. 

PCKh@0.5 indicates normalisation with respect to head 

length, whereby the ratio is calculated when the distance 

between the detected keypoints and their corresponding 

ground truth is less than 50% of the head bounding box 

diagonal distance (scale factor). The specific calculation 

formula is as follows: 

1

pi

kdefp i
pk

mean

p i

d
T

d
PCK


 

 
 
 

=

 

                (9) 

Where i represents the -i th  keypoint, k represents the   

-k th  threshold, p represents the -p th  person,
pi

d  

represents the euclidean distance between the predicted 

value and the ground truth value of keypoint i for person p,  

def

p
d  represents the scale factor for person p, 

kT  represents 

the user-defined threshold. 
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4.5 Experimental Results 

To ensure a fair comparison with existing contrastive 

learning pretrained networks, we adhere to the contrastive 

learning experimental settings outlined in the MocoV2 

paper and employ the same pretraining publicly available 

datasets and data augmentation methods. In the experiments 

comparing with baseline methods, we perform transfer 

learning using the semi-supervised human pose estimation 

framework. We fine-tune the pretrained network with 

limited annotations and evaluate the effectiveness of 

MSCL's pretrained network in human pose estimation. 

Furthermore, the advantages of our method in semi-

supervised pose estimation networks will be analysed. 

Table 1 The semi-supervised pose estimation experiment on the COCO 

dataset. 

Methods Backbone 1K 5K 10K 

SimpleBaseline Res18 31.5 46.4 51.1 

SimpleBaseline* Res50 32.5 48.1 55.4 

PseudoPose Res18 37.2 50.9 56.0 

DataDistill Res18 37.6 51.6 56.6 

ESCP Res18 41.5 54.8 58.7 

ESCP* Res50 44.1 57.9 62.7 

MSCL(our) Res50 45.1 58.8 63.5 

The symbol ' * ' denotes reimplementation, use AP as the evaluation metric 

Table 1 presents the results of human pose estimation 

detection on the COCO dataset, with a comparison to other 

methods. Specifically, we use SimpleBaseline as the 

representative of fully supervised human pose estimation 

methods. The detection results represent the detection 

accuracy of the network in the presence of only a few 

annotated samples in the fully supervised setting. The ESCP 

framework is employed as the baseline for semi-supervised 

methods, with our method serving as a comparison. This 

allows for the demonstration of the enhanced performance 

of MSCL on the COCO dataset [41, 42]. We also compare 

with two semi-supervised methods, PseudoPose and 

DataDistill. The former utilizes pseudo-label generation, 

while the latter integrates multiple network outputs to obtain 

more reliable pseudo-labels. 

By randomly sampling 1K, 5K, and 10K labeled images 

from the COCO training set, with the remaining images used 

as unlabeled data for training. Table 1 shows that the 

detection accuracy on the COCO validation set improved by 

approximately 1% AP when the contrastive learning 

pretrained network was used. This demonstrates the 

effectiveness of the method. The backbone network is 

particularly sensitive to the spatial positions of objects and 

effectively utilizes the surrounding information to recognize 

challenging keypoints when limited annotated data is 

available. This aids in enhancing the network's detection 

accuracy, leading to the largest improvement when only 1K 

annotated images are utilized. This improvement is 

potentially due to the pretrained backbone network's ability 

to extract multi-scale features during the pretraining phase. 

 

 

Table 2 Pose estimation transfer learning on the COCO dataset. 

Pre-train 1K 5K 10K 

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 

Super.IN* 44.0 75.0 44.3 58.0 85.0 63.4 62.7 87.3 69.5 

SimSiam 43.2 73.9 44.0 58.4 85.2 64.2 62.3 87.4 69.5 

MoCoV2 44.4 75.0 45.3 59.0 85.2 65.3 62.0 87.3 68.6 

DenseCL 42.7 74.1 43.0 58.0 85.2 63.9 61.4 86.3 68.4 

MSCL(our) 45.0 75.2 45.6 59.3 85.2 65.2 63.5 88.3 70.5 

The symbol ' * ' denotes the fully supervised pretrained network on ImageNet, use AP 

as the evaluation metric 

In Table 2, we present the performance of current state-of-

the-art contrastive learning methods fine-tuned for human 

pose estimation on the COCO dataset, and compare them 

with MSCL. We downloaded the pretrained models for 

leading contrastive learning methods, SimSiam, MoCoV2, 

and DenseCL, from third-party websites. We estimate 

heatmaps using the simplebaseline method. "super. IN" 

represents the model pretrained on the ImageNet dataset 

through the fully supervised approach, which has been 

widely used for model weight initialization in various 

computer vision tasks to date. To ensure the objectivity of 

the experimental results, the hyperparameters used for 

MSCL during the transfer process are identical to those of 

the mentioned methods. 

As illustrated in Table 2, when the number of labelled 

samples is limited, MSCL outperforms other state-of-the-art 

self-supervised learning methods and even surpasses 

supervised networks by 1 AP point. Our findings indicate 

that common contrastive learning methods are effective in 

semi-supervised human pose estimation. This can be 

attributed to the advantages of self-supervised methods, 

which learn knowledge from unlabeled images without 

relying on annotated data. In comparison to supervised 

methods, networks that have been pretrained using self-

supervised approaches demonstrate enhanced generalisation 

performance due to the learning that occurs from unlabelled 

images. It is noteworthy that DenseCL, which has been 

developed for the purposes of object detection and 

segmentation, exhibits a reduction in AP in comparison to 

its base network, MoCoV2. This indicates that contrastive 

learning methods, which have been demonstrated to be 

effective for detection and segmentation tasks, may not be 

as readily transferable to human pose estimation. This 

observation serves to highlight the significance of our 

method, emphasising the necessity of our approach in 

addressing this specific challenge. 

The proposed method was tested on the more realistic 

MPII&AIC dataset, which comprises both annotated and 

unlabeled images sourced from MPII and AIC, respectively. 

The AIC dataset, short for "AI Challenger Global AI 

Challenge," was open-sourced in 2017, providing over 700K 

labeled human action analysis data, 300K images with scene 

annotations, and semantic description data. It is the largest 

publicly available research dataset in China to date. 

Similarly, for the other comparative methods, the parameters 

used during transfer learning are identical to those of MSCL. 
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Table 3 Pose estimation transfer learning on the MPII dataset. 

Pre-train Hea Sho Elb Wri Hip Kne Ank Total 

Super.IN* 97.9 96.4 91.3 86.2 89.9 86.6 82.4 90.5 

SimSiam 98.4 96.6 91.6 86.7 90.5 86.9 82.9 90.9 

MoCov2 98.4 96.6 91.7 86.7 90.4 87.1 83.0 91.0 

DenseCL 98.2 96.6 91.5 86.8 90.2 87.4 83.0 90.9 

MSCL(our) 98.8 97.0 92.1 87.2 90.8 87.5 83.7 91.4 

The symbol ' * ' denotes the fully supervised pretrained network on ImageNet, use 

PCKh@0.5 as the evaluation metric 

In Table 3, the contrastive learning methods used are the 

same as those in the previous experiment. From the results 

on the MPII test set, it can be observed that our proposed 

method surpasses mainstream contrastive learning 

approaches and even outperforms supervised pretrained 

networks. Other contrastive learning methods also exhibit 

promising performance on the MPII dataset. This may be 

attributed to the pretraining of networks on the abundance 

of annotated images in MPII, where networks are already 

well-equipped to predict less prominent keypoints. It does 

not show the role of multi-scale information in semi-

supervised human pose estimation. 

4.6 Visualization Results 

In order to further investigate how MSCL works, the 

regions of interest when extracting image features for the 

backbone network are visualised by Grad-CAM [43], as 

shown in Fig. 3. Specifically, the image features in the final 

stage of the backbone network are demonstrated using the 

pre-training weights of each comparative learning method 

for initialisation and fine-tuning of the fully connected layer 

on the ImageNet dataset. Among them, methods b and c 

perform well on the image classification task, and method d 

has advantages on the image segmentation and target 

detection tasks. It can be observed that methods b and c 

focus on entities in the image and are not interested in the 

background. Method d focuses on a very wide region in the 

image and acquires more background information. For the 

human pose estimation task, the region of interest of the 

proposed method is spread out centred on the entities, 

similar to method d, but with less interest in the background 

information. 

 
Fig. 3 Comparison of Grad-CAM visualizations for contrastive learning 

methods. 

4.7 Ablation Experimental Results 

For the proposed multi-scale contrastive learning method 

in this paper, we conducted a series of ablation experiments. 

The experiments involved the selection of weight ratios in 

the multi-scale loss formula and the choice of a pretraining 

dataset, with the objective of demonstrating the contribution 

of each module to MSCL. The downstream task 

performance was evaluated based on the predicted results of 

the pretrained network on the MPII test set. 

4.7.1 Results of Different Loss Weights 

The hyperparameter λ, derived from equation (7), was 

employed as a weight to balance the cosine similarity across 

different scales. The weight for the deepest layer's feature 

was identified as a crucial factor in the convergence of 

training. Consequently, among all parameter proportions, 

the weight for λ was maintained above 40%. The results for 

various λ configurations were presented in Table 4, 

illustrating the impact of different parameter settings on the 

network's performance. The optimal result for parameter 

configuration was then selected. The experimental results 

indicated that allocating an excessive weight to the feature 

vector of the deepest layer resulted in a decreased network 

accuracy. It was postulated that the optimal weight for deep-

layer features should be approximately 0.5, enhancing the 

network's ability to extract multi-scale information. 

Table 4 The effect of different loss weights. 

Ratio of  λ PCKh@0.5 

2:2:2:4 91.0 

1:1:2:6 90.9 

1:1:1:7 90.7 

1:2:2:5(our) 91.4 

4.7.2 Results of Different Modules in MSCL 

In Table 5, we conducted a series of experiments to 

investigate the impact of different modules in MSCL on the 

training results. The experiments were conducted in a total 

of four trials. In this context, CC and IN respectively 

represent the COCO and ImageNet datasets. The proposed 

method was subjected to a preliminary training phase on the 

COCO and ImageNet datasets. MS denotes the use of 

multiple-scale feature vectors in the feature extraction, 

feature encoding, and cosine similarity calculation stages of 

the siamese network architecture. The method utilises 

feature vectors derived from four stages of Res50. FPN 

stands for Feature Pyramid Network, indicating whether 

feature fusion across different scales is performed in the 

feature pyramid before projection encoding. 

Table 5 The impact of different modules in MSCL 

# CC IN MS FPN PCKh@0.5 

1  √   90.9 

2  √ √  90.5 

3 √  √ √ 91.1 

4(our)  √ √ √ 91.4 

In the initial experiment, the multi-scale and feature 

pyramid modules were removed and the network was 

trained using the standard siamese network contrastive 

learning approach, which served as the baseline method. In 



IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX 

8 

the second experiment, the multi-scale module was added to 

the baseline method, which was the approach used in the 

early stages of the experiment. The results indicated a slight 

decline in performance, likely due to the comparison of 

single features, which may have hindered the extraction of 

effective features from the network's shallow stages, 

impacting overall performance. In the fourth experiment, we 

added the feature pyramid module to further integrate 

features and enhance the robustness of feature 

representation. The results showed that the inclusion of MS 

and FPN significantly improved the pretrained network's 

performance in the pose estimation task, indicating a 

substantial enhancement over the original contrastive 

method. 

In the third experiment, we attempted to use the COCO 

dataset as the pretraining dataset. The COCO dataset is more 

natural and realistic compared to the ImageNet dataset, 

containing a variety of outdoor scenes. It is widely used for 

object-level and pixel-level recognition tasks like object 

detection and instance segmentation. For pretraining on 

COCO, we used an initial learning rate of 0.3 instead of the 

original 0.05. The optimiser employed was SGD, with 

weight decay and momentum set to 1e-4 and 9e-1, 

respectively. A batch size of 256 was used for training, 

which lasted for a total of 800 epochs. It can be observed 

that the performance of the pretrained network on COCO is 

lower than on ImageNet. This indicates that, despite the 

greater number of objects per image in COCO compared to 

ImageNet, the broader diversity and quantity of images in 

ImageNet may facilitate more comprehensive learning, 

potentially outperforming the benefits of the higher object 

count in COCO. 

4.7.3 Results of training loss 

The training loss curves for the aforementioned 

experiments are provided, allowing for an intuitive 

comparison of the differences when including the MS and 

FPN modules. As illustrated in Fig. 4, the red curve 

represents the first experiment, which serves as the baseline 

method described in Table 5. The blue curve represents the 

fourth experiment, which involves the method with MS and 

FPN. It can be observed that both the red and blue curves 

gradually converge, indicating that the training process is 

normal. However, when trained for the same number of 

epochs, the method with MS and FPN consistently 

demonstrates faster convergence, indicating that the multi-

scale feature approach more effectively predicts the 

complementary branch of the network, thereby enhancing 

the detection accuracy in comparison to the baseline method. 

 
Fig. 4 The training loss for 0-100 epochs during pretraining. 

The graph above depicts the results of two experiments. 

The red curve represents the second experiment, in which 

only the MS module was employed. The blue curve 

represents the fourth experiment, in which both the MS and 

FPN modules were employed. It can be observed that the 

blue curve gradually converges, while the red curve exhibits 

a notable anomaly. The red curve demonstrates a faster 

convergence in the initial stages of training, followed by a 

sudden and significant decline in loss after a certain period 

of training, accompanied by subsequent fluctuations in loss. 

Our analysis indicates that this is due to the unmerged 

shallow features in MS assisting the network in predicting 

the other branch with ease during the early stages of training, 

making the prediction task relatively straightforward and 

acting as a kind of shortcut. This results in a reduction in the 

network's ability to extract features. As the number of 

iterations increases, the network's ability to make accurate 

predictions improves, resulting in a sudden significant 

decrease in loss. The incorporation of FPN effectively 

addresses this phenomenon by integrating shallow features 

across diverse scales, preventing the formation of premature 

shortcuts and ensuring a more consistent and effective 

feature extraction throughout the training process. 

4.8. Discussion 

This section presents a visualisation of the keypoint 

detection results obtained by transferring the MSCL method 

to the field of human pose estimation. In order to 

demonstrate the performance of the pretrained network on 

various human poses and in different scenes, human body 

images from the COCO dataset were selected. This 

illustrates the network's adaptability to different levels of 

difficulty in human pose estimation. 
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Fig. 5 Keypoints visualization. 

As shown in Fig. 5, the prediction results are excellent 

when the keypoints are unoccluded in the first image. In the 

second image, where only partial keypoints are annotated in 

the GT, we observe that the network predicts additional 

keypoints based on its learned patterns and does so fairly 

accurately. For the third and fourth images with more 

complex poses, the network is able to predict the keypoints 

quite accurately. However, in the fifth image with significant 

occlusion, the network incorrectly predicts the left foot near 

the right foot, possibly misinterpreting the left foot as part 

of the chair, resulting in a deviation in prediction. This 

indicates that the detection capability of our pretraining 

network for small-scale features can still be further 

improved. 

5. Conclusion 

In this paper, we presented a contrastive learning method 

named MSCL based on siamese networks, specifically 

designed and optimized for human pose estimation tasks.  

The proposed approach employs paired comparison learning 

with feature vectors of different scales and incorporates an 

enhanced FPN module for feature fusion, enabling the 

network to better extract semantic information across 

various scales. Our approach enables significant 

improvements in the COCO and MPII&AIC datasets, 

substantially narrowing the gap between supervised pre-

trained networks and unsupervised pre-trained networks in 

semi-supervised human pose estimation tasks. We hope this 

proposed method inspires research in contrastive learning 

within the field of human pose estimation. Additionally, we 

anticipate that unsupervised pre-trained networks might 

eventually replace widely used supervised pre-trained 

networks in human pose estimation tasks. 
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