
DOI:10.1587/transinf.2024EDP7049

Publicized:2024/09/12

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. FUNDAMENTALS, VOL.E98–A, NO.1 JANUARY 2015
1

PAPER
Multi-Scale Rail Surface Anomaly Detection Based on Weighted
Multivariate Gaussian Distribution

Yuyao LIU†, Qingyong LI†, Nonmembers, Shi BAO††, Member, and Wen WANG†a), Nonmember

SUMMARY Rail surface anomaly detection, referring to the process of
identifying and localizing abnormal patterns in rail surface images, faces the
limitation of robustness because of the large diversity of scale, quantity, and
morphology of surface anomalies. To address this challenge, we propose a
multi-scale rail surface anomaly detection method (MRS-AD) based on a
distributionmodel, which cooperates neighborhood information to precisely
locate rail surface anomalies. Specifically, MRS-AD integrates multi-scale
structures to enhance the perception of different scale information of anoma-
lies. Furthermore, the neighborhood information is utilized to capture the
correlations between adjacent regions, and thereby a weighted multivari-
ate Gaussian distribution model is estimated to improve the recognition
capability of anomalous morphologies. To validate the effectiveness of
MRS-AD, we collected and built a Rail Surface Anomaly Detection dataset
(RSAD), considering the scale and quantity of rail surface anomalies. Ex-
tensive experiments on RSAD, RSDD and NEU-RSDD-2 demonstrate the
superiority of MRS-AD. The code and dataset are publicly available at
https://github.com/lyy70/MRS-AD
key words: anomaly detection, multi-scale structure, distribution model,
neighborhood information

1. Introduction

Ensuring the safety and smooth operation of the railway
transportation system is imperative, demanding timely in-
spection and swift rectification of potential faults. Automatic
detection of rail surface defects serves as an effective means
to achieve this goal. Traditional strategies for rail surface
defect detection heavily rely on hand-crafted feature extrac-
tion [1–3]. However, constrained by various factors, these
approaches are no longer fully adaptable to the demands of
modern railway inspection. With the development of artifi-
cial intelligence, supervised deep learning has made signif-
icant strides in railway detection [4–6]. Nevertheless, these
methods often require substantial human effort for defect
data screening and labeling, leading to high implementation
costs. Recently, many efforts are devoted to unsupervised
anomaly detection, which aims to identify abnormal images
and locate anomalous regions using amodel trained solely on
anomaly-free images. unsupervised anomaly detection has
played a crucial role in various domains, including indus-
try [7], network [8], and video surveillance [9]. Therefore,
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Fig. 1: Sample images from RSAD. The left side represents
normal samples, while the right side represents anomalies
with significant differences in terms of scale, quantity, and
morphology.

in this paper, we also resort to unsupervised anomaly de-
tection to tackle rail surface anomaly detection for seeking
practical solutions.

Typical rail surface anomalies include scratches, miss-
ing pieces, cracks, etc. These anomalies often exhibit vari-
ous quantities at different scales, with some regions having
dense or sparse distributions of anomalies. Moreover, the
diverse morphology of anomalies make them challenging
to distinguish anomalies from normal regions, as illustrated
in Figure 1. Distribution models [10, 11] are commonly
employed to understand the spatial distribution character-
istics of normal samples, thereby distinguishing abnormal
samples. However, these methods lack the ability to cap-
ture the visual morphology of abnormal samples, leading to
poor performance under complex scenarios. To tackle this
problem, neighborhood information [12,13] is utilize to typ-
ically exhibit a more detailed consideration of the surround-
ing environment, allowing them to capture subtle variations
in anomalies and identify potential anomaly regions more
accurately. However, it is crucial to note that these models
may face unique challenges in perceiving anomaly scales.
Niu et al. [14] proposed a reconstruction network to identify
and locate anomalies with significant variations. Neverthe-
less, this approach still struggles from tackling samples with
subtle variations in anomaly appearance.

To comprehensively address the challenges of rail sur-
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face anomalies, an unsupervised Multi-scale Rail Surface
Anomaly Detection method (MRS-AD) based on distribu-
tion modeling is proposed by exploring coordinated neigh-
borhood information. Specially, MRS-AD integrates a
multi-scale structure into the distribution model with the
aim of understanding the spatial distribution of anomalies
and capturing information differences across different scales.
Simultaneously, coordinated neighborhood information is
employed to analyze the morphological edges of anomalies,
enhancing the localization capability for anomalies. The
contributions of this paper are summarized as follows:

• To address the diversity of scale and quantity for sur-
face anomalies on railway tracks, a multi-scale distribu-
tion model is designed to comprehensively encompass
anomalous features.

• In response to the diverse morphology of surface
anomalies on railway tracks, neighborhood informa-
tion is integrated into the distribution model, thereby
further enhancing the accuracy of detection.

• A Rail Surface Anomaly Detection Dataset (RSAD)
is released including anomalies with different scale,
quantity and morphology.

This paper is organized as follows. Section 2 presents
the current research status of anomaly detection in the field
of railways. Section 3 gives the reasons and implementation
details of theMRS-AD. Section 4 discusses the experimental
results and evaluates the performance. Section 5 reports
conclusions.

2. Related work

2.1 Anomaly Detection

Unsupervised methods for industrial anomaly detection and
localization can be broadly categorized into two types:
reconstruction-based methods and embedding-based meth-
ods. In the former, the training of neural network is exclu-
sively dedicated to the reconstruction of normal images, mak-
ing anomalous images easily identified due to poor recon-
structions. Thus, anomaly scores are usually expressed using
reconstruction errors. Reconstruction-based methods pri-
marily leverage models such as Autoencoders (AEs) [15–21]
and Generative Adversarial Networks (GANs) [22–24].
Wang et al. [17] employed VQ-VAE to create a discrete
latent space, resampling discrete latent codes deviating from
the normal distribution and utilizing the resampled latent
codes for image reconstruction. DRÆM [18] introduces
a synthetic strategy for simulating anomalies, conducting
distinctive training of autoencoder models by augmenting
anomaly data. GANomaly [23] trains an adversarial autoen-
coder to enhance image reconstruction quality, defining the
anomaly score as the difference between the latent space
representations of the original and reconstructed images.

For the latter, deep neural networks are employed to
extract reference vectors that meaningfully describe the en-
tire images. Anomaly scores are typically represented by

the distance between the embedding vector of a test im-
age and the reference vectors in the training dataset. Typical
methods utilize networks pre-trained on ImageNet for feature
extraction [10–12,25–28]. PaDiM [10] computes and stores
statistical information on each normal feature as prepara-
tion for distinguishing anomalies. PatchCore [25] highlights
that biased features extracted by pre-trained CNNs can affect
precise anomaly localization, hence advocating for the use
of intermediate features with smaller biases. CFA [26] ad-
dresses the mismatch problem caused by biased features by
adopting coupled hyperspheres, thereby enhancing anomaly
recognition accuracy.

While existing anomaly detectionmethods have demon-
strated excellent performance, they have not fully exploited
the inherent relationships between multi-scale semantic fea-
tures in the context of rail surface environments. Addition-
ally, their characterization of anomaly morphology is not
accurate.

2.2 Rail Surface Defect Detection

Based on the output form of the final defect detection results,
methods for rail surface defect detection can be classified into
three categories: defect image classification, defect object
detection, and defect segmentation. Defect image classifi-
cation aims to identify defect images in normal samples and
output the corresponding defect categories. Niu et al. [14]
proposed a robust anomaly detection model (APGVR-GAN)
to enhance the capability of classifying anomalies and nor-
mal samples. Yang et al. [29] detected abnormal regions
of rail objects by using visual symmetry or occurrence fre-
quency. In contrast to defect classification tasks, defect ob-
ject detection locates defects through bounding boxes. Yu
et al. [2] introduced a coarse-to-fine rail defect detection
method (CTFM) to identify defects at the sub-image, region,
and pixel levels. Defect segmentation, due to its ability to
achieve pixel-level defect localization, is more widely ap-
plied. Ma et al. [30], based on the sparsity of rail surface
defect images, proposed SC-OCDA to address pixel-level
distribution alignment between the source and target do-
mains. However, in practical rail surface anomaly detection,
anomalies are relatively rare, but their distribution differ-
ences are significant, and there is a wide variety of scale and
morphological changes.

Considering the complex spatial characteristics ex-
hibited by rail surface anomalies, this work adopts an
embedding-based approach for rail surface anomaly detec-
tion. To alleviate the mismatch problem caused by Pre-
trained networks, MRS-AD utilizes features from specific
layers of the Pre-trained network to adapt to rail surface
images.

3. Method

The MRS-AD aims to address the complexity of anomaly
scale, quantity, and morphology, facilitating accurate clas-
sification and localization of anomalies. As illustrated in
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Figure 2, in the training phase, a multi-scale distribution
model is firstly established based on the characteristics of
anomaly scale and quantity. To better capture anomaly
morphology, neighborhood information is utilized to form
a weighted multivariate Gaussian distribution. Specifically,
the target pixel is weighted based on the similarity of the dis-
tribution between the target pixel and its neighboring pixels,
with similarity measured by the Bhattacharyya distance [12].
Finally, in the inference phase, Mahalanobis distance [10] is
employed to express the anomaly score of the test image.

3.1 Multi-Scale Distribution model

Different scales of anomalies refer tomicroscopic small dam-
ages and welds, or macroscopic long-distance cracks and
large-area depressions. The uneven distribution of anomaly
quantity means that some areas on the rail surface exhibit
numerous and dense anomalies, while other areas are rela-
tively clear and sparse. Therefore, adopting a distribution
model and integrating a multi-scale structure can not only
understand the spatial distribution of normal samples but
also effectively capture anomaly context information.

For this purpose, the WideResNet-50 Pre-trained with
ImageNet(Frozen CNN) is employed as the backbone net-
work to construct themulti-scale distributionmodel. Herein,
the training set 𝑋train = {𝑥 | 𝑦 = 0} consists of 𝑁train nom-
inal images, and the test set 𝑋test = {𝑥 | 𝑦 = 0 𝑜𝑟 1} con-
sists of 𝑁test images that are either nominal or anomalous,
where 𝑦 ∈ {0, 1} denotes image 𝑥 as nominal with 0 and
anomalous with 1. The intermediate two layers of feature
maps are extracted from the specific hierarchical structure of
WideResNet-50, forming the feature set 𝜙 𝑗 (𝑥).

Due to the presence of redundant information, features
extracted by the Pre-trained ResNet may weaken the repre-
sentation of anomaly features [10]. Consequently, we resort
to reducing feature dimensions for highlighting the abnormal
clues. (see Section 4.4 for details). Simultaneously, to fur-
ther amplify the differences between anomalous and normal
regions and better preserve essential image characteristics,
max-pooling is adopted to process the feature set 𝜙 𝑗 (𝑥), and
the processed features are denoted as

{
𝑒
(ℎ,𝑤)
𝑖

| 𝑖 ∈ È1, 𝑁É
}
.

For all data during the preprocessing stage, which is
normalized using given mean and standard deviation values.
Consequently, it can be assumed that the hidden layer feature
values of the training data approximately follow a Gaussian
distribution. Therefore, the mean and covariance are com-
puted at each position (ℎ, 𝑤) on the feature map 𝑒 (ℎ,𝑤)

𝑖
and

repeated across different feature scales to form a multi-scale
distribution model. The definitions of mean and covariance
are defined as follows:

` (ℎ,𝑤) =
1
𝑁

𝑁∑︁
𝑖=1

𝑒
(ℎ,𝑤)
𝑖

, (1)

Σ(ℎ,𝑤) =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(
𝑒
(ℎ,𝑤)
𝑖

−` (ℎ,𝑤)
) (

𝑒
(ℎ,𝑤)
𝑖

−` (ℎ,𝑤)
)𝑇
+𝜖1𝐼 .

(2)

When computing the covariance matrix, a regulariza-
tion term 𝜖1𝐼 is introduced to ensure that the covariance
matrix remains full rank and invertible, thereby enhancing
the stability and reliability of the estimation [10].

3.2 Weighting of Neighborhood Similarity

Rail surface anomalies exhibit variousmorphologies, includ-
ing cracks, depressions, detachments, and pressure blocks,
as shown in the anomaly part of Figure 1. Cracks are typ-
ically long and thin, depressions and detachments appear
as local pits or peeling, while pressure blocks indicate lo-
cal protrusions or compressions on the rail surface. These
diverse anomaly morphologies, combined with the blurred
boundaries with normal regions, emphasize the need to ef-
fectively capture local features and anomaly patterns by con-
sidering coordinated neighborhood information based on a
multi-scale distribution model.

To achieve this, the content of the target pixel is en-
hanced by utilizing information from neighboring pixels. In
other words, the distribution of the target pixel is assisted
in definition by the similarity in distribution between neigh-
boring pixels and the target pixel. Figure 3 illustrates the
process of weighted similarity distribution estimation, in-
volving a specific method for similarity calculation.

Firstly, the neighborhood is defined as the set of 𝑝 pixels
adjacent to the target pixel (ℎ, 𝑤):

𝑁
(ℎ,𝑤)
𝑝 =

{(
ℎ′, 𝑤′

)
| ℎ′ ∈ [ℎ − b𝑝/2c, ℎ + b𝑝/2c]
𝑤′ ∈ [𝑤 − b𝑝/2c, 𝑤 + b𝑝/2c]}.

(3)

Secondly, Bhattacharyya distance [12] is a method used
to measure the similarity between two probability distribu-
tions. We use it to calculate the similarity between the target
pixel (ℎ, 𝑤) and all pixels in the neighborhood 𝑁 (ℎ,𝑤)𝑝 . The
Bhattacharyya distance is based on the Bhattacharyya coef-
ficient (BC), which measures the overlap between two dis-
tributions, and its negative exponential value is considered
to represent the similarity of these two distributions. Thus,
the similarity 𝑚𝑎 defined by the Bhattacharyya distance is
defined as follows:

𝑚𝑎 = DBatt

(
N(

𝑒
(ℎ,𝑤)
𝑖

) ,N(
𝑁
(ℎ,𝑤)
𝑝

) ) = 𝑒
− 𝐵𝐶

𝛾 , (4)

𝐵𝐶

(
N(`1 ,Σ1) ,N(`2 ,Σ2)

)
' 1
8
(`1 − `2)𝑇 Σ′(−1) (`1 − `2) , (5)

where the `1 and `2 represent the means of the target pixel
(ℎ, 𝑤) and its neighborhood pixels 𝑁 (ℎ,𝑤)𝑝 , Σ′ denotes the
average of the covariance Σ1 of the target pixel and the co-
variance Σ2 of the neighborhood pixels. Here, the balancing
parameter 𝛾 is used to measure the similarity or dissimilarity
between the two probability distributions.

Lastly, the distribution of the target pixels is weighted
using the similarity 𝑚𝑎. To ensure the stability of the com-
putation results, normalization of the similarity 𝑚𝑎 is nec-
essary, as indicated in Eq. 6. Subsequently, the weighted
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Fig. 2: Overview of the MRS-AD. In training, two-scale distribution models are estimated by applying the similarity between
the distribution of the target pixel and its neighboring pixels as weights. In inference, the anomaly score of a pixel (h, w) is
computed using the Mahalanobis distance between the target pixel in the test image and nominal distributions.

Fig. 3: Estimation of weighted similarity distribution.

mean ˆ̀ (ℎ,𝑤) and covariance Σ̂(ℎ,𝑤) are estimated for each
feature position (ℎ, 𝑤) to precisely describe the distribution
of each pixel in the training images.

𝑚′𝑎 =
𝑚𝑎∑

𝑎∈𝑁 (ℎ,𝑤)𝑝
𝑚𝑎

, (6)

ˆ̀ (ℎ,𝑤) =
1
𝑁

𝑁∑︁
𝑖=1

∑︁
𝑎∈𝑁 (ℎ,𝑤)𝑝

𝑚′𝑎𝑒
𝑎
𝑖 , (7)

Σ̂(ℎ,𝑤) =
1

𝑁 −∑
𝑎∈𝑁 (ℎ,𝑤)𝑝

(𝑚′𝑎)2
×

𝑁∑︁
𝑖=1

∑︁
𝑎∈𝑁 (ℎ,𝑤)𝑝

𝑚′𝑎
(
𝑒𝑎𝑖 − ˆ̀

(ℎ,𝑤)
) (

𝑒𝑎𝑖 − ˆ̀
(ℎ,𝑤)

)𝑇
+ 𝜖2𝐼 .

(8)

The formation of the weighted multivariate Gaussian
distribution is illustrated in Algorithm 1. This algorithm
is designed not only to capture anomalies across multiple
scales but also to effectively identify the edges of anomalous
shapes.

3.3 Computation of anomaly score

During the inference process, the anomaly score D(h,w)Mah for
each position feature 𝑒 (ℎ,𝑤) on the test image is determined

Algorithm 1: Weighted multivariate Gaussian
distribution

Data: Set of training data 𝑥, 𝑁
Result: weighted: ˆ̀ (ℎ,𝑤) and Σ̂(ℎ,𝑤)

1 for 𝑥 in 𝑁train do
2 Extract feature: 𝜙 𝑗 (𝑥) ← Pre-train CNN (𝑥);
3 Pre-processing the extracted features:

𝑒
(ℎ,𝑤)
𝑖

← preprocessing
(
𝜙 𝑗 (𝑥)

)
;

4 Calculating similarity as in Eq.4 and Eq.5:

𝑚𝑎 ← DBatt
(
N(

𝑒
(ℎ,𝑤)
𝑖

) , N(
𝑁
(ℎ,𝑤)
𝑝

) );
5 Weighted results as in Eq.6, Eq.7 and Eq.8:

ˆ̀ (ℎ,𝑤) , Σ̂(ℎ,𝑤) ← FGaussian
(
𝑒
(ℎ,𝑤)
𝑖

, 𝑚𝑎

)
;

6 end

by its Mahalanobis distance [10] from the weighted multi-
variate Gaussian distribution. The feature extraction for each
position on the test image aligns with the training process.
The definition of the anomaly score D(h,w)Mah is as follows:

D(h,w)Mah =

√︂(
𝑒 (ℎ,𝑤) − ˆ̀ (ℎ,𝑤)

)𝑇 (
Σ̂(ℎ,𝑤)

)−1 (
𝑒 (ℎ,𝑤) − ˆ̀ (ℎ,𝑤)

)
,

(9)
where ˆ̀ (ℎ,𝑤) and Σ̂(ℎ,𝑤) represent the mean and covariance
of the weighted multivariate Gaussian distribution. To ob-
tain an anomaly map with the same resolution as the input
sample, linear interpolation is performed on Mahalanobis
distances at different scales, and the average is taken as the
final anomaly score map. Subsequently, Gaussian smooth-
ing with 𝜎 = 4 is applied for further refinement, resulting
in pixel-level anomaly scores, and the maximum value is
extracted to obtain the image-level anomaly score.
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(a) (b)

Fig. 4: Partial samples of industrial dataset. (a) RSDD dataset. (b) NEU-RSDD-2 dataset. The left column of each part is the
normal images, and the right side is the abnormal images.

4. Experiments

4.1 Dataset

To assess the anomaly detection and localization perfor-
mance of the MRS-AD, experiments were conducted on
three rail surface anomaly datasets. Additionally, some
classical anomaly detection algorithms were employed for
experimental comparisons.

RSAD dataset. As depicted in Figure 1, the RSAD
dataset is derived from the official RSDD dataset and other
rail surface images, providing images of rail surface anoma-
lies in different environments. Here, based on the character-
istics of rail surface anomaly scales and quantities, anomaly
images are categorized into three types of diseases: mild,
moderate, severe. To enrich the content of the RSADdataset,
we have mixed these three types of diseases to create a mix
disease, with each category containing different normal, ab-
normal and pixel-level Ground-Truth images provided by
professional railway inspectors. The RSAD dataset consists
of 3,502 normal images and 1,288 anomalous images for re-
search and evaluation. During the experiments, rail surface
images from different environments were uniformly resized
to 224 x 224 for consistency with other anomaly detection
methods.

RSDD Dataset. As shown in Figure 4(a), this dataset is
constructed from high-speed railways and operational heavy-
duty railways. In the experiments, it aligns with the dataset
provided by Niu et al. [14] and includes 400 normal images
and 295 anomaly images without pixel-level annotations.
The images were also uniformly resized to 224 x 224 during
the experiments.

NEU-RSDD-2 Dataset. As depicted in Figure 4(b), the
NEU-RSDD-2 dataset was collected on sections of narrow-
gauge railways. In the experiments, it aligns with the dataset
provided by Niu et al. [14]. Due to prolonged exposure to
outdoor conditions, the steel rail surfaces are influenced by
factors such as rain and air, resulting in severe interference

such as rust and mottling. This dataset comprises a total of
699 images, including 415 normal images and 284 anomaly
images, with no pixel-level annotations. The image size is
224 x 224.

4.2 Implementation details and Metrics

All experiments were implemented in PyCharm using Py-
Torch. To maintain the same experimental setup as the
comparative anomaly detection methods [10] [25] [26], we
employed the WideResNet-50 pre-trained on ImageNet as
the backbone network, and executed it on an NVIDIA RTX
3080ti GPU and an Intel(R) Xeon(R) Gold 6240 CPU @
2.60GHz. To achieve optimal detection performance, the
following settings were used: neighborhood size 𝑝 = 3,
balance parameter 𝛾 = 0.75, regularization term 𝜖1 = 0.5,
𝜖2 = 0.0015. The feature map dimension 𝐷2 for 𝜙2 (𝑥) is
250, while the dimension 𝐷3 for feature map 𝜙3 (𝑥) is set
to 450. The parameters for the ablation study were kept
consistent.

In anomaly detection, the Area Under the Receiver Op-
erator Curve (AUROC) [10] is commonly used as an eval-
uation metric. This study assesses the performance on the
RSAD datasets in terms of anomaly classification (Image-
wise AUROC) and localization (Pixel-wise AUROC). Addi-
tionally, the Pixel-wise F1max score is employed to evaluate
the model’s pixel-level localization performance.

Consistent with prior work [14], the following metrics
were used to evaluate performance on theRSDDdataset: Ac-
curacy (ACC), Precision (PRE), True Positive Rate (TPR),
F1 score, andMatthews Correlation Coefficient (MCC, rang-
ing from -1 to 1).

4.3 The experimental results and analysis

Experimental Evaluation on RSAD. TheMRS-AD is com-
pared with three previous anomaly detection algorithms:
PaDiM [10], PatchCore [25], and CFA [26], assessing their
anomaly detection capabilities in rail surface scenarios. Ta-
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Table 1: Image / Pixel-wise AUROC(%) of anomaly detection methods on RSAD.
Method Mild_disease Moderate_disease Severe_disease Mix_disease Average

PaDiM [10] 98.3 / 99.0 95.7 / 95.6 93.4 / 88.8 96.2 / 94.3 95.9 / 94.4
PatchCore [25] 90.1 / 97.1 96.2 / 95.1 99.0 / 92.3 95.6 / 94.6 95.6 / 94.6
CFA [26] 95.8 / 95.4 97.1 / 93.9 98.9 / 88.8 96.8 / 92.2 96.8 / 92.9

MRS-AD 97.3 / 98.2 97.1 / 95.9 97.6 / 93.1 97.1 / 95.8 97.3 / 95.8

Fig. 5: Visualization results of anomaly detection methods on the RSAD dataset. The first column represents abnormal images,
the second column is the ground truth, then displays PaDiM’s heatmap, PatchCore’s heatmap, and CFA’s heatmap, the last
column presents the heatmap generated by the MRS-AD.

ble 1 quantitatively compares the detection performance of
the MRS-AD and other methods in terms of anomaly classi-
fication and localization (Image/Pixel-wise AUROC).

MRS-AD demonstrates excellent average detection re-
sults. In the RSAD dataset, mild disease refers to defects of
small-scale; moderate disease encompasses fewer instances
of Medium-scale defects as well as numerous smaller de-
fects; severe disease involves large-scale defects; and mixed
disease includes all three types of defects. MRS-AD uti-
lizes a multi-scale feature structure and integrates neighbor-
hood information to perceive defects across different scales
and enhance edge detection accuracy across various defect
morphologies, thereby achieving optimal average detection
results. Besides, in scenarios involving mild defects, MRS-
AD demonstrates comparable performance to PaDiM [10],
which uses a smaller receptive field to accurately detect
small-scale defects, as shown in Figure 5 of the manuscript.

In cases of severe defects, PatchCore [25] shows a slight
advantage by computing the maximum anomaly value of
neighbors.

Figure 6 illustrates the performance of the MRS-AD
in terms of Pixel-wise F1max. The F1 score provides a
comprehensive evaluation of the model’s performance un-
der imbalanced class distributions, balancing precision and
recall, thereby offering effective guidance for a holistic as-
sessment of binary classificationmodels. Tomore intuitively
compare the differences among various methods in anomaly
localization, the maximum value in the F1 score is selected
for comparison. It is worth noting that when it comes to se-
vere andmixed diseases, the stability of PatchCore is slightly
higher than that of MRS-AD, and it has better generalization
ability.

Experimental Evaluations on RSDD and NEU-
RSDD-2. Table 2 reports the detection performance of the
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Table 2: The results of image-level evaluation metrics of MRS-AD on the RSDD and NEU-RSDD-2 datasets.
RSDD NEU-RSDD-2

Method AUC ACC PRE TPR F1 MCC AUC ACC PRE TPR F1 MCC

AnoGAN [22] 0.72 0.60 0.85 0.26 0.41 0.29 0.48 0.29 0.77 0.06 0.11 0.02
GANomaly [23] 0.83 0.74 0.92 0.52 0.69 0.53 0.65 0.35 0.88 0.13 0.24 0.12
VAE [15] 0.76 0.64 0.88 0.33 0.49 0.36 0.61 0.32 0.85 0.10 0.18 0.08
OCGAN [24] 0.66 0.54 0.71 0.12 0.21 0.13 0.64 0.29 0.76 0.06 0.11 0.01
MemAE [20] 0.83 0.73 0.91 0.5 0.67 0.51 0.62 0.37 0.90 0.16 0.28 0.14
DAPE [21] 0.76 0.60 0.83 0.24 0.38 0.27 0.58 0.37 0.91 0.17 0.29 0.15

APGVR-GAN [14] 0.87 0.79 0.92 0.63 0.77 0.60 0.81 0.60 0.96 0.48 0.64 0.39

MRS-AD 0.92 0.86 0.88 0.90 0.86 0.71 0.87 0.83 0.93 0.93 0.89 0.52

Fig. 6: Performance of Pixel-wise F1max% for anomaly de-
tection algorithms on RSAD.

MRS-AD and the method mentioned by Niu et al. [14] in
the same environment. The results indicate that, despite
the MRS-AD exhibiting some limitations in predictive ac-
curacy based on specific auxiliary evaluation metrics, these
shortcomings are attributed to the reconstruction network’s
emphasis on providing a more precise representation of the
anomaly region. Nevertheless, it continues to demonstrate
commendable classification capabilities, rendering it well-
suited for scenarios characterized by imbalances among dif-
ferent categories.

4.4 Ablation study

Evaluation of the effectiveness of key design components.
The effectiveness of each module in the MRS-AD was ex-
amined, and ablation experiments were conducted to assess
and compare their impact on detection performance.

As depicted in Table 3, individual modules contribute
differently to anomaly detection. The multi-scale architec-
ture enables the detection of anomaly at various scales, Pre-
processing enhances feature extraction, and the neighbor-
hood information module improves target pixel recognition.
This demonstrates the effectiveness of combining weighted
similarity inference with both the multi-scale architecture
and neighborhood information.

Table 4 investigates the impact of using different
scales on detection results in the RSAD dataset, where
layer1, layer2, and layer3 represent three specific feature
layers extracted from a network Pre-trained on ImageNet.

Table 3: The influence of each key component on mean
AUROC in the RSAD dataset.

Baseline Multi-
Scale

Neighbor
Information

Image-wise
(Average)

Pixel-wise
(Average)

X 94.8 94.3
X X 95.7 95.0
X X 94.9 95.6
X X X 97.3 95.8

Table 4: The influence of applying different layers on mean
AUROC in the RSAD dataset, Layer1*2*3 denotes the con-
catenation of three layers of features, Layer1+2+3 indicates
the independent processing of three layers of features.

Layer used Image-wise
(Average)

Pixel-wise
(Average)

Layer3 94.8 94.3
Layer1*2*3 96.6 95.4
Layer2*3 97.1 95.8
Layer1+2+3 96.6 95.5
Layer2+3 97.3 95.8

Layer1*2*3 denotes the concatenation of three layers of fea-
tures, where the concatenation process aligns with that em-
ployed in PaDiM [10]. Subsequently, the integrated features
are used for neighborhood information fusion. Layer1+2+3
indicates the fusion of the three layers independently with
neighborhood information. The experimental results indi-
cate that employing a single-layer feature yields less infor-
mative content and results in inferior detection performance.
Utilizing three layers of features enhances the detection per-
formance for small anomalies, albeit with increased redun-
dancy. However, leveraging the features from the last two
layers not only alleviates biases linked to the categories of
ImageNet but also adjusts to the dataset, retaining a richer
set of semantic information. This adaptation contributes to
more effective detection results.

Investigating hyperparameters. Firstly, the impact of
different neighborhood sizes 𝑝 on detection performancewas
investigated. As shown in Figure 7, the performance reached
the optimal level when the neighborhood size was set to 3.
With an increase in the neighborhood range, image-levelAU-
ROC gradually decreased, while pixel-level AUROC showed
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Fig. 7: The influence of applying different neighborhood size
on mean AUROC in the RSAD dataset.

Table 5: The influence of applying different dimensional-
ity reduction methods on Image/Pixel-wise AUROC in the
RSAD dataset.

Dimension
Reduction Randomly Select [10] Top-d Select [12]

𝐷2 = 350
𝐷3 = 550

96.7 / 95.6 95.6 / 94.8

𝐷2 = 250
𝐷3 = 450

97.3 / 95.8 95.6 / 94.7

𝐷2 = 150
𝐷3 = 350

96.4 / 95.4 95.4 / 94.3

ROC gradually decreased, while pixel-level AUROC showed
a gradual improvement. This indicates that the model might
focus more on the overall features of the image, neglecting
local details, resulting in the local details of anomalies be-
ing subdued. However, at the same time, it captured richer
anomaly cues, leading to better localization performance.

Next, the impact of different dimensionality reduction
methods and the number of reduced dimensions was investi-
gated. For the distribution model, this study mainly explored
two dimensionality reduction approaches: 1) random chan-
nel reduction [10], and 2) selecting the top-d dimensions
with fewer non-zero values [12]. Table 5 demonstrates the
influence of these two dimensionality reduction methods on
the detection results. The strategy of random channel reduc-
tion is more reasonable. This is because in channels with
fewer non-zero values, there might still be some anomalous
information that plays a crucial role in the weighted process
of neighboring pixels. Therefore, random reduction was ap-
plied independently to features 𝜙 𝑗 (𝑥) at different scales. The
optimal detection performance is achieved when the feature
map dimensions of 𝜙2 (𝑥) and 𝜙3 (𝑥) are set to 250, 450.

4.5 Discussion

Despite demonstrating high efficacy in railway surface
anomaly detection, MRS-AD still exhibits certain limita-
tions.

Table 6: Inference times of various anomaly detection mod-
els on the RSAD dataset.

PaDiM [10] PatchCore [25] CFA [26] MRS-AD
Inference time(sec.) 0.1274 0.0069 0.0409 0.1325

Fig. 8: Instances of detection failure on the RSAD dataset.

Table 6 compares model inference times reported in
PaDiM [10] to assess the computational costs across dif-
ferent anomaly detection methods. Due to the computation
of neighborhood similarity, the MRS-AD method requires
more time for inference but exhibits superior detection per-
formance compared to PaDiM [10].

Figure 8 illustrates instances where MRS-AD fails to
detect anomalies in the RSAD dataset. It can be observed
that other comparison methods also exhibit poor detection
results. Although PatchCore [25] can detect defect areas ex-
tensively, it fails to accurately detect defect edges. MRS-AD
utilizes a distribution model that integrates neighborhood in-
formation. When railway defects take on elongated shapes,
they extend beyond the neighborhood’s sensitivity range,
leading to altered anomaly decisions in adjacent regions and
resulting in misclassification. Therefore, dynamically ad-
justing the neighborhood range is a challenge we aim to
address in the future.

5. Conclusion

This paper has proposed a novel model for rail surface
anomaly classification and localization, which takes into
consideration the scale, morphology, and quantity character-
istics of rail anomalies. The model leverages a multi-scale
distribution model and collaborates with neighborhood in-
formation to better identify and locate anomalies. The ex-
perimental results demonstrate that MRS-AD exhibits the
best performance in unsupervised railway surface anomaly
detection. The model shows robustness in handling mixed
disease, validating the effectiveness of this approach. Addi-
tionally, a rail surface anomaly dataset is created based on the
scale and quantity characteristics of anomalies, providing a
more comprehensive validation for detection methods.

Futureworkwill focus on developing anomaly detection
solutions tailored to real-world scenarios, with a particular
emphasis on incorporating zero/few-shot anomaly detection
approaches to address rail surface anomalies.
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