
DOI:10.1587/transinf.2024EDP7076

Publicized:2024/09/05

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Fault-tolerant Routing in Bicubes∗

Yitong WANG†, Htoo Htoo Sandi KYAW†, Nonmembers, Kunihiro FUJIYOSHI†,
and Keiichi KANEKO†a), Members

SUMMARY The bicube is derived from the hypercube, and it provides
a topology for interconnection networks of parallel systems. The bicube
can interconnect the same number of nodes with the same degree as the
hypercube while its diameter is almost half of that of the hypercube. In
addition, the bicube preserves the property of node symmetry. Hence,
the bicube attracts much attention. In this paper, we focus on the bicube
with faulty nodes and propose three fault-tolerant routing methods to find a
fault-free path between any pair of non-faulty nodes in it.
key words: hypercube, interconnection network, massively parallel system,
topology

1. Introduction

The topology of the interconnection network of a parallel
system defines the pattern to interconnect the processing el-
ements by using links among them in the system, and the
system performance is closely related to the topology. The
topological structure of an interconnection network can be
discussed in a framework of the graph theory by regard-
ing its processing elements and links as nodes and edges,
respectively.

Many topologies have been proposed for interconnec-
tion networks. The bicube proposed by Lim et al. [2] is one
such topology. It is a variant of the hypercube [3]. The
bicube can interconnect the same number of nodes with the
same degree as the hypercube while its diameter is almost
half of the hypercube. Additionally, it has the good property
of node symmetry, where each node has the same view of the
network. Thus, a single common algorithm can be executed
on each node. Therefore, it can be easily applied to mas-
sively parallel systems, and it is recently studied eagerly [4]–
[8]. Because a massively parallel system includes many pro-
cessing elements, it is unrealistic to operate it while ignoring
faulty processing elements. Hence, it is important to design
algorithms so that they can tolerate faulty nodes. Thus, in
this study, we focus on the bicube with faulty nodes and pro-
pose three methods to find a fault-free path between any pair

Final manuscript received January 1, 202X.
†The authors are with Graduate School of Engineering, Tokyo

University of Agriculture and Technology, Koganei-shi, 184-8588
Japan.
∗This paper is an extended version based on a conference paper

[1], and it provides full descriptions of the lemma proofs and the
computer experiment.

a) E-mail: k1kaneko@cc.tuat.ac.jp (Corresponding author).

of non-faulty nodes in it. Specifically, in a bicube with a set
of permanently faulty nodes, for a non-faulty source node s
and a non-faulty destination node d, we propose an adaptive
routing method that finds a non-faulty path from s to d. In
this situation, it is assumed that each non-faulty node can
detect its neighboring faulty nodes in a constant time.

In a previous work [8], Okada and Kaneko proposed a
shortest-path routing algorithm in the bicube. For a node s
with a message in a bicube to a certain destination node t
with the distance d(s, t), their method divides the neighbor
nodes of s into two disjoint subsets: the preferred neighbor
node setPre(s, t) and the spare neighbor node setSpr(s, t).
The nodes in Pre(s, t) are on the shortest paths from s to
t. On the other hand, Spr(s, t) includes the neighbor nodes
that are not included in Pre(s, t).

In this paper, we first show that for any node w(∈
Spr(s, t)), d(w, t) = d(s, t) + 1 holds. In other words,
we show that Spr(s, t) does not include any node w such
that d(w, t) = d(s, t). Next, we propose three fault-tolerant
routing methods in the bicube, and compare them with a
baseline method by conducting a computer experiment.

The rest of this paper is structured as follows. In Section
2, we introduce the necessary definitions and Theorems. We
describe our methods in details in Section 3. In Section 4,
we explain the details of the computer experiment, and its
results. In Section 5, we give a conclusion and a future work.

2. Preliminaries

In this section, we give relevant definitions and a theorem.

Definition 1: Ann-dimensional hypercube,Qn, is an undi-
rected graph whose node set is {0, 1}n. Given two nodes a
and b inQn, a and b are adjacent if and only ifH(a, b) = 1,
whereH(a, b) represents the Hamming distance between a
and b. �

Figure 1 shows an example of a 4-dimensional hyper-
cube, Q4.

Next, we give a definition of the lp-relation regarding
two n-dimensional bit sequences.

Definition 2: Given a bit sequence a = (an−1, an−2, . . . ,
a0)(∈ {0, 1}n) where n is even, define a function p(a) by
p(a) = an−1 ⊕ an−2 ⊕ · · · ⊕ a0, where the operator ⊕
represents the exclusive-or operation. Then, given a pair of
bit sequences a, b(∈ {0, 1}n), a and b are in lp-relation if

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

(0, 0, 0, 0) (0, 0, 0, 1)

(0, 1, 0, 0) (0, 1, 0, 1)

(0, 0, 1, 0) (0, 0, 1, 1)

(0, 1, 1, 0) (0, 1, 1, 1)

(1, 0, 0, 0) (1, 0, 0, 1)

(1, 1, 0, 0) (1, 1, 0, 1)

(1, 0, 1, 0) (1, 0, 1, 1)

(1, 1, 1, 0) (1, 1, 1, 1)

•◦ •◦

•◦ •◦

•◦ •◦

•◦ •◦

•◦ •◦

•◦ •◦

•◦ •◦

•◦ •◦

Fig. 1 Example of a 4-dimensional hypercube,Q4.

and only if either ‘a = b and p(a) = p(b) = 0’ or ‘a = b̄
and p(a) = p(b) = 1’ holds. �

For example, for two bit sequences (1, 0, 0, 0, 1, 0) and
(1, 0, 0, 0, 1, 0), they are in lp-relation because (1, 0, 0, 0, 1,
0) = (1, 0, 0, 0, 1, 0) and p(1, 0, 0, 0, 1, 0) = p(1, 0, 0, 0, 1,
0) = 0. For another pair of bit sequences (1, 1, 0, 0, 1, 0)
and (0, 0, 1, 1, 0, 1), they are in lp-relation because (1, 1, 0,

0, 1, 0) = (0, 0, 1, 1, 0, 1) and p(1, 1, 0, 0, 1, 0) = p(0, 0, 1,
1, 0, 1) = 1.

Now, we give a definition and a notation of the set of
neighbor nodes, and a definition of the bicube based on them.

Definition 3: For a node a in a graph, let N(a) = {n |
d(a,n) = 1} represent the set of neighbor nodes ofa, where
d(a, b) represents the distance between a and b. �

Definition 4: An n-dimensional bicube, Bn, is an undi-
rected graph, whose node set is {0, 1}n. For a node a
= (an−1, an−2, . . . , a0) in Bn, there are n neighbor nodes
N(a) = {a(0),a(1), . . . ,a(n−1)}. The (n − 1) nodes a(i)

(0 ≤ i ≤ n−2) are given by a(i) = (an−1, an−2, . . . , ai+1,

ai, ai−1, . . . , a0) while the node a(n−1) is given depending
on the parity of n. That is, if n is odd, a(n−1) = (an−1,
bn−2, . . . , b0), where (bn−2, bn−3, . . . , b0) is the bit se-
quence that is in lp-relation with (an−2, an−3, . . . , a0). If n
is even, a(n−1) = (an−1, an−2, bn−3, . . . , b0), where (bn−3,
bn−4, . . . , b0) is the bit sequence that is in lp-relation with
(an−3, an−4, . . . , a0). �

Figure 2 shows an example of a 4-dimensional bicube,
B4. For example, for the node a = (a3, a2, a1, a0) =
(0, 1, 1, 0) in the figure, a(2) = (0, 0, 1, 0), a(1) =
(0, 1, 0, 0), and a(0) = (0, 1, 1, 1). In addition, a(n−1) =

(0, 1, 1, 0)(3) = (0, 1, 0, 1) = (1, 1, 0, 1) = (a3, a2, b1, b0)
because n is even and (b1, b0) = (0, 1) is in lp-relation with
(a1, a0) = (1, 0).

The hypercube used to be the most popular topology
and it has many variants, including the bicube. Almost all of
them have the degree n and interconnect 2n nodes when they
are n-dimensional. We compare the properties of the bicube
with other cube-based topologies in terms of the diameter
and the symmetry, by summarizing them in Table 1.

Table 1 shows the comparison of an n-dimensional
bicube Bn with an n-dimensional hypercube Qn [3], an
n-dimensional 0-Möbius cube 0-Mn [9], an n-dimensional
1-Möbius cube 1-Mn [9], an n-dimensional crossed cube
Cn [10], an n-dimensional twisted cube Tn[11], an

n-dimensional twisted crossed cube TCn [12], an n-
dimensional locally twisted cube LTn [13], and an n-
dimensional spined cube Sn [14].

The diameter is an important property of interconnec-
tion networks because it indicates the maximum number of
routing hops to transfer a message. As shown in Table 1,
the bicube and other variants of the hypercube have smaller
diameters than that of the hypercube. Another important
property of an interconnection network is the symmetry of
the network. As shown in Table 1, only the bicube and the
hypercube have the node symmetry. A topology with the
node symmetry is more conducive to designing algorithms,
because each node can use a single algorithm to process a
certain task including the fault-tolerant routing. Therefore,
the bicube provides a promising topology for the intercon-
nection networks of the massively parallel systems.

Regarding the distance between two arbitrary nodes in
Bn with odd n, Theorems 1 and 2 are provided by previous
works.

Theorem 1: Given a source node s = (sn−1, sn−2, . . . ,
s0) and a destination node t = (tn−1, tn−2, . . . , t0) in Bn

(n(≥ 3): odd), let u = (un−1, un−2, . . . , u0) = s ⊕ t and
h =

∑n−1
i=0 ui(= H(s, t)). If

∑n−2
i=0 si is even, the distance

between s and t, d(s, t), is given by:

d(s, t) =

3 (h = n),
min{h, 4} (h = n− 1, un−1 = 0),
2 (h = n− 1, un−1 = 1),
min{h, n− h+ 1} (h ≤ n− 2).

(Proof) From [2]. �

Theorem 2: Given a source node s = (sn−1, sn−2, . . . ,

(0, 0, 0, 0) (0, 0, 0, 1)

(0, 1, 0, 0) (0, 1, 0, 1)

(0, 0, 1, 0) (0, 0, 1, 1)

(0, 1, 1, 0) (0, 1, 1, 1)

(1, 0, 0, 0) (1, 0, 1, 0)

(1, 1, 0, 0) (1, 1, 1, 0)

(1, 0, 0, 1) (1, 0, 1, 1)

(1, 1, 0, 1) (1, 1, 1, 1)

•◦ •◦

•◦ •◦

•◦ •◦

•◦ •◦

•◦ •◦

•◦ •◦

•◦ •◦

•◦ •◦

Fig. 2 Example of a 4-dimensional bicube, B4.

Table 1 Comparison of cube-based topologies with order 2n and degree
n.

Topology Diameter Symmetry
Node Edge

Hypercube n 3 3
Bicube d(n+ 1)/2e? 3 7
0-Möbius Cube d(n+ 2)/2e 7 7
1-Möbius Cube d(n+ 1)/2e 7 7
Crossed Cube d(n+ 1)/2e 7 7
Twisted Cube d(n+ 1)/2e 7 7
Twisted Crossed Cube d(n+ 1)/2e 7 7

Locally Twisted Cube d(n+ 3)/2e† 7 7

Spined Cube dn/3e+ 3‡ 7 7

?: n ≥ 7, †: n ≥ 5, ‡: n ≥ 14

WANG et al.: FAULT-TOLERANT ROUTING IN BICUBES
3

s0) and a destination node t = (tn−1, tn−2, . . . , t0) in Bn

(n(≥ 3): odd), let u = (un−1, un−2, . . . , u0) = s ⊕ t and
h =

∑n−1
i=0 ui(= H(s, t)). If

∑n−2
i=0 si is odd, the distance

between s and t, d(s, t), is given by:

d(s, t) =

1 (h = n),
min{h, 4} (h = n− 1, un−1 = 0),
2 (h = n− 1, un−1 = 1),
3 (h = 1, un−1 = 1),
min{h, n− h+ 1} (otherwise).

(Proof) From [8]. �

Finally, we give a definition of the preferred, spare,
sideward, and backward neighbor node sets with a related
theorem.

Definition 5: Given a source node s and a destination node
t, let Pre(s, t), Spr(s, t), Swd(s, t), andBwd(s, t) repre-
sent subsets of the neighbor nodes of s, N(s), where
Pre(s, t) = {c | d(c, t) = d(s, t)− 1, c ∈ N(s)},
Spr(s, t) = N(s) \ Pre(s, t),
Swd(s, t) = {c | d(c, t) = d(s, t), c ∈ Spr(s, t)}, and
Bwd(s, t) = {c | d(c, t) = d(s, t) + 1, c ∈ Spr(s, t)}.

Pre(s, t), Spr(s, t), Swd(s, t), and Bwd(s, t) are called
the sets of preferred, spare, sideward, and backward neighbor
nodes of s to t, respectively. �

Figure 3 shows the relationship between the set of pre-
ferred neighbor nodes and the set of spare neighbor nodes.

Theorem 3 shows the preferred neighbor node set
Pre(s, t) and the spare neighbor node set Spr(s, t)(=
N(s) \ Pre(s, t)) for a source node s and a destination
node d in Bn with odd n.

Theorem 3: Given a source node s = (sn−1, sn−2, . . . ,
s0) and a destination node t = (tn−1, tn−2, . . . , t0) in Bn

(n(≥ 5): odd), let u = (un−1, un−2, . . . , u0) = s ⊕ t

and h =
∑n−2

i=0 ui. Then, the preferred neighbor node set
Pre(s, t) and the spare neighbor node set Spr(s, t) are
given by Table 2.
(Proof) From [8]. �

Next, we prove that Bwd(s, t) = Spr(s, t), that is,
Swd(s, t) = ∅ in Fig. 3 for any pair of the source node s

Pre(s, t)Spr(s, t)

Bwd(s, t)

Swd(s, t)
•◦· · ·•◦•◦

•◦

...

•◦

•◦
s

•◦

•◦

...

•◦

•◦
t

d+ 1 d(= d(s, t)) d− 1 · · · 0

Fig. 3 Relationship among preferred, spare, sideward, and backward
neighbor node sets of s to t.

and the destination node t in the bicube.

Lemma 1: Bn is bipartite.
(Proof) For a node a in Bn, let a(i) (0 ≤ i ≤ n − 1) be its
neighbor node. If 0 ≤ i ≤ n − 2, H(a,a(i)) = 1. Hence,
p(a(i)) = 1 − p(a). If i = n − 1 and n is odd, a(i) =

(an−1, bn−2, . . . , b0), where (bn−2, bn−3, . . . , b0) is the bit
sequence that is in lp-relation with (an−2, an−3, . . . , a0).
That is, p(bn−2, bn−3, . . . , b0) = p(an−2, an−3, . . . , a0).
Hence, p(a(i)) = 1 − p(a). If i = n − 1 and n is even,
a(i) = (an−1, an−2, bn−3, . . . , b0), where (bn−3, bn−4, . . . ,
b0) is the bit sequence that is in lp-relation with (an−3, an−4,
. . . , a0). That is, p(bn−3, bn−4, . . . , b0) = p(an−3, an−4,
. . . , a0). Hence, p(a(i)) = 1 − p(a). Therefore, Bn is
bipartite. �

Theorem 4: For a source node s and a destination node t
in Bn, Swd(s, t) = ∅.
(Proof) FromLemma 1, there is no cycle of odd length inBn.
Now, assume that there is a nodeu ∈ Swd(s, t). Then, there
is a path P from s to t, whose length is d = d(s, t). Also,
there is a pathQ from u to t, whose length is d. Let v be the
common node of P and Q that is closest to s and u. Note
that v may be t. Now, there is a cycle C that consists of the
subpaths s ; v, v ; u, and the edgeu→ s (Fig. 4). Then, the
length of C is d(s,v) +d(v,u) + 1 = 2d(s,v) + 1 because
d(s,v) = d(v,u) = d− d(v, t), and the existence of C of
odd length contradicts Lemma 1. Hence, Swd(s, t) = ∅. �

3. Proposed Methods

In the rest of this paper, we assume that permanent faults
may occur in multiple nodes. A faulty node loses all com-
munication functions with its neighbor nodes. A non-faulty
node can detect its neighbor faulty nodes inO(1) time using
the time-out mechanism. The occurrence of faulty nodes
during operation is not considered.

In general, due to the existence of faulty nodes, message
routings may fail. A routing failure occurs in two situations.
In the first situation, the node that has the message cannot
find any neighbor node to forward themessage. In the second
situation, the message is infinitely forwarded along a fixed
cycle or between two adjacent nodes.

Okada and Kaneko proposed a shortest-path routing
method inBn [8]. For a source node s with a message and a
destination node t in Bn without faulty nodes, their method

•◦

•◦

•◦C	 •◦

Q

P

u

s

v
t

Fig. 4 Cycle C: s ; v ; u→ s of odd length.

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 2 Pre(s, t) and Spr(s, t) in Bn (n(≥ 5): odd) [8].

Coverage Results∑n−2
i=0 si h Additional Conditions Pre(s, t) Spr(s, t) d(s, t)

h = n — {s(i) | 0 ≤ i ≤ n− 2} {s(n−1)} 3

h = n− 1
un−1 = 0 {s(i) | 0 ≤ i ≤ n− 1} ∅ 4
un−1 = 1 {s(q) | uq = 0} {s(q) | uq = 1} 2

even dn/2e < h ≤ n− 2
un−1 = 0, h = n− 2 {s(n−1)} {s(i) | 0 ≤ i ≤ n− 2} 3
un−1 = 1 or h ≤ n− 3 {s(q) | uq = 0} {s(q) | uq = 1} n− h+ 1

h < dn/2e
un−1 = 1, h ≤ 2 {s(n−1)} {s(i) | 0 ≤ i ≤ n− 2} h

un−1 = 0 or 3 ≤ h {s(q) | uq = 1} {s(q) | uq = 0} h

h = dn/2e — {s(i) | 0 ≤ i ≤ n− 1} ∅ dn/2e
h = n — {s(n−1)} {s(i) | 0 ≤ i ≤ n− 2} 1

h = n− 1
un−1 = 0 {s(i) | 0 ≤ i ≤ n− 1} ∅ 4
un−1 = 1 {s(n−1)} {s(i) | 0 ≤ i ≤ n− 2} 2

un−1 = 0, h = n− 2 {s(n−1)} {s(i) | 0 ≤ i ≤ n− 2} 3

odd
dn/2e < h ≤ n− 2 un−1 = 0, h ≤ n− 3 {s(q) | uq = 0} {s(q) | uq = 1} n− h+ 1

un−1 = 1 {s(n−1), s(q) | uq = 0} {s(q) | uq = 1, q 6= n− 1} n− h+ 1

un−1 = 0 {s(q) | uq = 1} {s(q) | uq = 0} h

h < dn/2e un−1 = 1, h = 1 {s(i) | 0 ≤ i ≤ n− 2} {s(n−1)} 3
un−1 = 1, 2 ≤ h {s(q) | uq = 1, q 6= n− 1} {s(n−1), s(q) | uq = 0} h

h = dn/2e — {s(i) | 0 ≤ i ≤ n− 1} ∅ dn/2e

obtains Pre(s, t) in O(n) time, forwards the message to a
node in it, and repeats the process regarding the node as a
new source node until the message arrives at the destination
node.

First, we extend their method to be applied to Bn with
a faulty node set F . We call this extended method ‘Simple’.
In Simple, if Pre(s, t) 6⊂ F , it selects a non-faulty node
in Pre(s, t). Otherwise, that is, if Pre(s, t) ⊂ F , Simple
selects a non-faulty node in Bwd(s, t). The pseudo code of
Simple is shown in Fig. 5.

The existence of faulty nodes causes detours in the
message routing. In the situation, a non-faulty node from
Bwd(s, t) \ F can be arbitrarily selected because Swd(s,
t) = ∅ is guaranteed by Theorem 4.

procedure Simple(s, t)
/*
** s: node that has the message
** t: destination node
*/
while s <> t do begin

Fwd := Pre(s, t) \ F; Bwd := (N(s) \ Pre(s, t)) \ F;
if Fwd <> ∅ then select s from Fwd
else if Bwd <> ∅ then select s from Bwd
else error (’message delivery failed’)

end

Fig. 5 The baseline algorithm Simple.

In the subsequent subsections, we propose three meth-
ods that tolerate the node fault to find a fault-free path from
a non-faulty source node s to a non-faulty destination node
t in Bn with a set of faulty nodes F .

3.1 Method1

When we applied Simple to faulty bicubes, we observed
many routing failures. Hence, we analyzed how these fail-
ures have occurred in B11, B12, and B13, and found that 40
to 50 percent of them were caused when the messages are at
3 hops to the destination nodes (Fig. 6).

0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Ratio of Faulty Nodes

Ra
tio

of
Fa
ilu

re
sa

t3
H
op

s

B11

B12

B13

Fig. 6 Ratios of failure cases where messages are at distance 3 to desti-
nation nodes in B11, B12, and B13.

To address this problem, we have devised a method,
Method1, in which the depth-first search is adopted to en-
sure the message delivery when the message is at 3 hops to
the destination node. In Fig. 7, the node s, which has the

WANG et al.: FAULT-TOLERANT ROUTING IN BICUBES
5

message, first sends a probe signal including the informa-
tion of the destination node t to the node u in Pre(s, t).
However, u returns the reject signal because there is no non-
faulty node in Pre(u, t). Because the node v is faulty, it is
skipped. Then, s sends another probe signal to the node w.
Because there are non-faulty nodes in Pre(w, t),w returns
the acknowledge signal. Hence, s forwards the message to
w. Then, w forwards the message to its non-faulty neigh-
bor node in Pre(w, t), and it is delivered to the destination
node t. Note that signal exchange is only performed between
the node s and the non-faulty preferred neighbor nodes in
Pre(s, t). |Pre(s, t) \ F | = O(n) and it takes O(n) time
to obtain Pre(u, t) \F at each node u(∈ (Pre(s, t) \F)).
Hence, a call of the depth-first search at a node, say s in
Fig. 7, takes O(n2) time.

Pre(s, t) Pre(u, t)

Pre(w, t)

u

v

w

•◦s

•◦

•◦

•◦

...

•◦

•◦

•◦

•◦

•◦ t

: probe
: reject
: acknowledge
: message

•◦ : faulty node

Fig. 7 Depth-first search of Method1 with d(s, t) = 3.

This process is repeated until the message is delivered
to the destination node or the message delivery fails by an
infinite loop. We assume that the infinite loop can be detected
by the timeout mechanism.

Figure 8 shows the pseudo code of Method1 inBn. For
a source node s and a destination node t, it is invoked by
Method1(s, t).

procedure Method1(s, t)
/*
** s: node that has the message
** t: destination node
*/
while s <> t do begin

Fwd := Pre(s, t) \ F; Bwd := (N(s) \ Pre(s, t)) \ F;
if d(s, t) = 3 then begin
execute DFS to find w ∈ Fwd
that ensures message delivery;

if w exists then s := w
else if Bwd <> ∅ then select s from Bwd
else error (’message delivery failed’) end

else if Fwd <> ∅ then select s from Fwd
else if Bwd <> ∅ then select s from Bwd
else error (’message delivery failed’)

end

Fig. 8 Fault-tolerant routing algorithm Method1.

InB5with a faulty node setF = {(0, 1, 1, 0, 1), (1, 0, 1,
1, 0), (0, 1, 0, 1, 0), (1, 1, 1, 1, 0), (1, 1, 1, 0, 0), (1, 1, 0, 0,
1)}, let the source node s and the destination node t be (1,

0, 0, 1, 0) and (1, 1, 1, 0, 1), respectively. Then, Fwd(s, t)
= {(0, 1, 1, 0, 1), (1, 1, 0, 1, 0), (1, 0, 1, 1, 0), (1, 0, 0, 0, 0),
(1, 0, 0, 1, 1)}, where (1, 1, 0, 1, 0), (1, 0, 0, 0, 0), (1, 0, 0, 1,
1) /∈ F . If there are multiple non-faulty nodes in Fwd(s, t),
the node with a different bit in the highest dimension is se-
lected. Hence, Method1 selects its neighbor node (1, 1, 0,
1, 0) and forwards the message to it. Now, the distance be-
tween the node with the message and the destination node is
3. Hence, to select the neighbor node to forward the mes-
sage, the routing switches to the depth-first search. First,
a probe signal is sent to a non-faulty neighbor node (1, 1,
0, 0, 0)(∈ Fwd((1, 1, 0, 1, 0), t) \ F). Then, Fwd((1, 1,
0, 0, 0), t) = {(1, 1, 1, 0, 0), (1, 1, 0, 0, 1)} ⊂ F . Thus, a
reject signal is sent back to (1, 1, 0, 1, 0). Hence, another
non-faulity node (1, 1, 0, 1, 1)(∈ Fwd((1, 1, 0, 1, 0), t)\F)
is selected, and the probe signal is sent to it. Here, (1, 1, 1, 1,
1)(∈ Fwd((1, 1, 0, 1, 1), t)) is not faulty, and an acknowl-
edge signal is sent back. Finally, the message is delivered
to the destination node t via (1, 1, 0, 1, 1) and (1, 1, 1, 1, 1)
because t = (1, 1, 1, 0, 1) ∈ Fwd((1, 1, 1, 1, 1), t) \ F .

3.2 Method2

In the actual routing process, we observed that many routing
failures are caused by infinite loops between two adjacent
nodes. To solve this problem, we propose Method2, which
inhibits forwarding the message to the previous node. When
a node receives a message from the previous node, it can
detect the previous node easily by checking the input chan-
nel buffer of its router that contains the message. Hence,
additional information to the message is not required at all.
In Method2, each node never forwards the message to its
previous node. This process is repeated until the message is
delivered to the destination node.

Figure 9 shows the pseudo code of Method2 in Bn.
For a source node s and a destination node t, it is invoked
by Method2(s, t). In the pseudo code, p represents the
previous node, and it is initialized by s as a dummy node
because there is not any previous node when the message is
initially injected from the source node.

In B5 with a set of faulty node F = {(0, 0, 0, 1, 1), (0,
1, 0, 1, 0), (1, 1, 1, 1, 1), (1, 1, 0, 1, 0), (1, 0, 0, 1, 0), (0, 0, 1,

procedure Method2(s, t)
/*
** s: node that has the message
** t: destination node
*/
p := s; /* p: previous node */
while s <> t do begin

Fwd := (Pre(s, t) \ {p}) \ F;
Bwd := ((N(s) \ Pre(s, t)) \ {p}) \ F;
p := s;
if Fwd <> ∅ then select s from Fwd
else if Bwd <> ∅ then select s from Bwd
else error (’message delivery failed’)

end

Fig. 9 Fault-tolerant routing algorithm Method2.

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

1, 1)}, let the source node s and the destination node
t be (0, 1, 0, 1, 1) and (1, 1, 0, 1, 1), respectively. Then,
Fwd(s, t) = {(0, 0, 0, 1, 1), (0, 1, 1, 1, 1), (0, 1, 0, 0, 1), (0,
1, 0, 1, 0)}, where (0, 1, 1, 1, 1), (0, 1, 0, 0, 1) /∈ F . If there
are multiple non-faulty nodes in Fwd(s, t), the node
with a different bit in the highest dimension is selected.
Hence, Method2 selects its neighbor node (0, 1, 1, 1, 1)
and forwards the message to it. Then, Fwd((0, 1, 1, 1, 1),
t) = {(1, 1, 1, 1, 1)} ⊂ F , Because there is not any non-
faulty node in Fwd((0, 1, 1, 1, 1), t), a non-faulty node in
Bwd((0, 1, 1, 1, 1), t) must be selected. If there are mul-
tiple non-faulty nodes in Bwd((0, 1, 1, 1, 1), t), the node
with a different bit in the highest dimension is selected.
Now, Bwd((0, 1, 1, 1, 1), t) \ F = {(0, 1, 0, 1, 1), (0, 1, 1,
0, 1), (0, 1, 1, 1, 0)}. However, Method2 never forwards
the message to the previous node (0, 1, 0, 1, 1). Hence,
Method2 selects the node (0, 1, 1, 0, 1), and forwards the
message to it. Next, the message is forwarded to the node
(0, 0, 1, 0, 1)(∈ Fwd((0, 1, 1, 0, 1), t) \ F), and then to the
node (0, 0, 1, 0, 0)(∈ Fwd(0, 0, 1, 0, 1), t) \ F). Because
(1, 1, 0, 1, 1)(= t) ∈ (Fwd((0, 0, 1, 0, 0), t) \ F), the mes-
sage is forwarded to t, and the delivery is finished success-
fully.

3.3 Method3

Because the improvements introduced in Method1 and
Method2 are compatible, we have devised another method,
Method3, which includes these improvements simultane-
ously. In Method3, the node that has the message never
selects the previous node to forward the message as in
Method2. In addition, if the destination node is 3 hops from
the node, the routing is switched to the depth-first search
as in Method1. The routing process is repeated until the
message is delivered to the target node.

Figure 10 shows the pseudo code of Method3 in Bn.
For a source node s and a destination node t, it is invoked
by Method3(s, t). In the pseudo code, p represents the
previous node, and it is initialized by s as a dummy node
because there is not any previous node when the message is
initially injected from the source node.

4. Computer Experiment

To evaluate the proposed methods, we conducted a computer
experiment by the following steps. As a baseline algorithm,
we adopted a method, Simple, which is described in Fig. 5.

(1) In Bn (n = 11, 12, 13), for each of the ratio of faulty
nodes, α = 0.1, 0.2, . . . , 0.5, conduct the following
Steps (2) to (5) 10,000 times.

(2) Select bα2nc faulty nodes randomly.
(3) Select the source node s and the destination node t

randomly among the non-faulty nodes.
(4) If there is no fault-free path between s and t, go back

to Step (2) and start over the trial.
(5) Apply Method1, Method2, Method3, and Simple, and

measure the number of successful routings and the path
lengths in the successful routings.

Because the connectivity between the source node and the
destination node is guaranteed in Step (4), the least upper
bound of the ratio of successful routings is 1.

Figures 11, 12, and 13 show the ratios of the successful
routings inB11,B12, andB13, respectively. As shown in the
figures, our proposed methods outperform Simple in any di-
mension and in any proportion of faulty nodes. In addition,
Method2 and Method3 have a greater performance improve-
ment than Method1. Moreover, Method3 is slightly better
than Method2. Method1 showed better ratios of successful
routings than Simple by at most 0.0612 in B11, 0.0623 in
B12, and 0.0615 in B13, respectively. Method2 showed bet-
ter ratios than a baseline method Simple by at most 0.347
in B11, 0.3342 in B12, and 0.3755 in B13, respectively.
Method3 showed better ratios than Simple by at most 0.3637
in B11, 0.3769 in B12, and 0.3965 in B13, respectively. Es-
pecially, for Method3, when the ratio of faulty nodes is less
than 0.2, the minimum ratio of the successful routings can
reach 0.9989 in B11, 0.9990 in B12, and 0.9998 in B13.

Figures 14, 15, and 16 show the average path lengths in
the successful routings in B11, B12, and B13, respectively.
As shown in the figures, if the ratio of faulty nodes is less than
or equal to 0.3, the performance of our proposed methods is
almost same as Simple. However, if the ratio of faulty nodes
is greater than 0.3, the average path lengths of Method2 and
Method3 are longer than those of Simple. This is because
Method2 and Method3 can find a fault-free path even if the
ratio of faulty nodes becomes higher. Hence, these methods
find longer paths on average. In addition, Method3 can con-
struct a slightly shorter fault-free path thanMethod2 because
Method3 incorporates the depth-first search. Compared to
Method2, Method3 finds shorter paths on average by at most
0.214 in B11, 0.141 in B12, and 0.235 in B13, respectively.

procedure Method3(s, t)
/*
** s: node that has the message
** t: destination node
*/
p := s; /* p: previous node */
while s <> t do

Fwd := (Pre(s, t) \ {p}) \ F;
Bwd := ((N(s) \ Pre(s, t)) \ {p}) \ F;
p := s;
if d(s, t) = 3 then begin
execute DFS to find w ∈ Fwd
that ensures message delivery;

if w exists then s := w
else if Bwd <> ∅ then select s from Bwd
else error (’message delivery failed’) end

else if Fwd <> ∅ then select s from Fwd
else if Bwd <> ∅ then select s from Bwd
else error (’message delivery failed’)

end

Fig. 10 Fault-tolerant routing algorithm Method3.

WANG et al.: FAULT-TOLERANT ROUTING IN BICUBES
7

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Ratio of Faulty Nodes

Ra
tio

of
Su

cc
es
sf
ul

Ro
ut
in
gs

Method3
Method2
Method1
simple

Fig. 11 Ratio of successful routings in BQ11.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Ratio of Faulty Nodes

Ra
tio

of
Su

cc
es
sf
ul

Ro
ut
in
gs

Method3
Method2
Method1
simple

Fig. 12 Ratio of successful routings in BQ12.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Ratio of Faulty Nodes

Ra
tio

of
Su

cc
es
sf
ul

Ro
ut
in
gs

Method3
Method2
Method1
simple

Fig. 13 Ratio of successful routings in BQ13.

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

Ratio of Faulty Nodes

Av
er
ag
e
Pa
th

Le
ng

th

Method3
Method2
Method1
simple

Fig. 14 Average path lengths in BQ11.

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

Ratio of Faulty Nodes

Av
er
ag
e
Pa
th

Le
ng

th

Method3
Method2
Method1
simple

Fig. 15 Average path lengths in BQ12.

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

Ratio of Faulty Nodes

Av
er
ag
e
Pa
th

Le
ng

th

Method3
Method2
Method1
simple

Fig. 16 Average path lengths in BQ13.

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

5. Conclusions

In this paper, we proposed three methods for fault-tolerant
routing in the bicube.

The first method, Method1, performs the depth-first
search when the message is stored in the node that is 3
hops away from the destination node. The second method,
Method2, refrains from forwarding the message stored in a
node to its previous node. The third method, Method3, is
obtained by combining Method1 and Method2.

Also, we have adopted the simple fault-tolerant routing
method, Simple, as the baseline and carried out a computer
experiment in B11, B12, and B13 with the ratios of faulty
nodes α = 0.1, 0.2, . . . , 0.5.

As a result, Method1 showed better ratios of successful
routings than the baseline method, Simple, by at most 0.0612
in B11, 0.0623 in B12, and 0.0615 in B13, respectively.
Method2 showed better ratios than Simple by at most 0.347
inB11, 0.3342 inB12, and 0.3755 inB13, respectively. Also,
Method3 showed better ratios than Simple by at most 0.3637
in B11, 0.3769 in B12, and 0.3965 in B13, respectively.
Among the three methods, Method2 and Method3 showed
almost the same performances, which are rather better than
that of Method1.

As a future work, we should investigate the cases in
which the message deliveries fail even if Method3 is used,
and propose another method by which they can be avoided.

Acknowledgment

The authors appreciate the reviewers for their proceleusmatic
comments and hortative suggestions. This study was partly
supported by a Grant-in-Aid for Scientific Research (C) of
the Japan Society for the Promotion of Science under Grant
No. 23K11029.

References

[1] Y. Wang, H. H. S. Kyaw, and K. Kaneko, “Fault-tolerant routing
methods in bicubes,” in Proceedings of the 2023 International Con-
ference on Parallel and Distributed Processing Techniques and Ap-
plications, pp. 2093–2100, July 2023.

[2] H.-S. Lim, J.-H. Park, and H.-C. Kim, “The bicube: An interconnec-
tion of two hypercubes,” International Journal of Computer Mathe-
matics, vol. 92, pp. 29–40, Jan. 2015.

[3] C. L. Seitz, “The cosmic cube,”Communications of the ACM, vol. 28,
pp. 22–33, Jan. 1985.

[4] Y.-H. Chen, S.-M. Tang, K.-J. Pai, and J.-M. Chang, “Constructing
dual-cists with short diameters using a generic adjustment scheme on
bicubes,” Theoretical Computer Science, vol. 878-879, pp. 102–112,
2021.

[5] J. Liu, S. Zhou, Z. Gu, Q. Zhou, and D. Wang, “Fault diagnosability
of bicube networks under the PMC diagnostic model,” Theoretical
Computer Science, vol. 851, pp. 14–23, 2021.

[6] H. Zhuang,W. Guo, X.-Y. Li, X. Liu, and C.-K. Lin, “The component
connectivity, component diagnosability, and t/k-diagnosability of
bicube networks,” Theoretical Computer Science, vol. 896, pp. 145–
157, 2021.

[7] J. Liu, S. Zhou, E. Cheng, G. Chen, andM. Li, “Reliability evaluation

of bicube-based multiprocessor system under the g-good-neighbor
restriction,” Parallel Processing Letters, vol. 31, no. 04, p. 2150018,
2021.

[8] M. Okada and K. Kaneko, “Minimal paths in a bicube,” IEICE
Transactions on Information and Systems, vol. E105-D, pp. 1383–
1392, Aug. 2022.

[9] P. Cull and S. M. Larson, “The Möbius cubes,” IEEE Transactions
on Computers, vol. 44, pp. 647–659, May 1995.

[10] K. Efe, “A variation on the hypercube with lower diameter,” IEEE
Transactions on Computers, vol. 40, pp. 1312–1316, Nov. 1991.

[11] P.A. J. Hilbers,M.R.Koopman, and J. L.A. van de Snepscheut, “The
twisted cube,” inVolume I: Parallel Architectures on PARLE: Parallel
Architectures and Languages Europe, (London, UK), pp. 152–159,
Springer-Verlag, 1987.

[12] X. Wang, J. Liang, D. Qi, and W. Lin, “The twisted crossed cube,”
Concurrency and Computation: Practice and Experience, vol. 28,
pp. 1507–1526, 2016.

[13] X. Yang, D. J. Evans, and G. M. Megson, “The locally twisted
cubes,” International Journal of Computer Mathematics, vol. 82,
pp. 401–413, Apr. 2005.

[14] W. J. Zhou, J. X. Fan, X. H. Jia, and S. K. Zhang, “The spined
cube: a new hypercube variant with smaller diameter,” Information
Processing Letters, vol. 111, pp. 561–567, June 2011.

Yitong Wang is a Ph.D. program student
at Tokyo University of Agriculture and Tech-
nology in Japan. Her main research areas are
interconnection networks and fault-tolerant sys-
tems based on graph theory and network theory.
She received the B.E. degree from Dalian Uni-
versity of Foreign Languages in China in 2019
and the M.E. degree from Tokyo University of
Agriculture and Technology in 2023.

Htoo Htoo Sandi Kyaw is an Assistant Pro-
fessor at Tokyo University of Agriculture and
Technology in Japan. Her main research ar-
eas are educational technology, web application
systems, and graph theory. She received the
B.E. and M.E. degrees from University of Tech-
nology (Yatanarpon Cyber City) in Myanmar in
2015 and 2018, respectively, and the Ph.D. de-
gree from Okayama University in Japan in 2021.

Kunihiro Fujiyoshi is an Associate Pro-
fessor at Tokyo University of Agriculture and
Technology in Japan. His main research inter-
ests are in combinatorial algorithms and VLSI
layout design. He received the B.E., M.E., and
D.E. degrees fromTokyo Institute of Technology
in 1987, 1989, and 1994, respectively. He is a
member of IEEE and IPSJ.

WANG et al.: FAULT-TOLERANT ROUTING IN BICUBES
9

Keiichi Kaneko is a Professor at Tokyo Uni-
versity of Agriculture and Technology in Japan.
His main research areas are functional program-
ming, parallel and distributed computation, par-
tial evaluation and fault-tolerant systems. He
received the B.E., M.E., and Ph.D. degrees from
the University of Tokyo in 1985, 1987, and 1994,
respectively. He is a member of ACM, IEEE CS,
IPSJ and JSSST.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

