
DOI:10.1587/transinf.2024FCL0001

Publicized:2024/05/30

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

LETTER
The Least Core of Routing Game Without Triangle Inequality

Tomohiro KOBAYASHI†, Nonmember and Tomomi MATSUI†a), Member

SUMMARY We address the problem of calculating the least core value
of the routing game (the traveling salesman game with a fixed route) without
the assumption of triangle inequalities. We propose a polynomial size LP
formulation for finding a payoff vector in the least core.
key words: cooperative game, least core, routing game, traveling salesman
game

1. Introduction

Given a depot and a set of cities, the traveling salesman
problem (TSP) finds a shortest Hamilton tour that starts at the
depot, visits each city exactly once, and finishes at the depot.
This problem has many practical applications [1]. When a
set of cities corresponds to a set of jobs and the distance
coincides with the changeover cost, the TSP becomes the
single-machine scheduling problem.

In this study, we address the problem of Hamilton tour
cost allocation problem among cities. A pioneering work on
this subject was conducted by Fishburn and Pollak [2]. Pot-
ters et al. [3] formally introduced the cost allocation issue in
the form of “traveling salesman games,” defining problems
with and without fixed routes. They associate a character-
istic function game defined on a set of cities (players) 𝑁
and a characteristic function 𝑣 : 2𝑁 → R that assigns to
each coalition 𝑆, the cost 𝑣(𝑆) of the tour wherein only the
members of 𝑆 and the depot are visited by the salesman.

In a fixed-route traveling salesman game, also known
as a routing game, 𝑣(𝑆) is defined as the cost of the original
Hamiltonian tour restricted to 𝑆, where the salesman starts at
the depot, visits the members of 𝑆 in the order of the original
Hamiltonian tour over 𝑁 while skipping any agents in 𝑁 \ 𝑆,
and finishes at the depot. Potters et al. [3] demonstrated that
routing games have a nonempty core if triangle inequalities
hold and the original Hamiltonian tour over 𝑁 is optimal
to the related TSP. Derks and Kuipers [4] proposed a 　
polynomial-time 　 algorithm that calculates the core ele-
ments of routing games with triangle inequalities. Solymosi
et al. [5], proposed a polynomial-time algorithm that calcu-
lates the nucleolus of routing games with triangle inequal-
ities. Although triangle inequalities are unnatural assump-
tions in some applications (e.g. the one-machine scheduling
problem), few prior studies have considered the case with-
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out the triangle inequality assumption. In this study, we
examine the problem of calculating the least core value, pro-
posed by Maschler et al. [6], of a routing game assuming nei-
ther the triangle inequality nor non-negativity of arc-lengths.
Based upon similar concepts to those in [7], we propose a
polynomial-size LP formulation for finding a payoff vector in
the least core. Our result is similar to the auxiliary variable
reformulations discussed by Martin [8] for some combina-
torial optimization problems. Our approach is advantageous
in that it allows the user to adopt their favored LP solver to
calculate a payoff vector.

In the version without fixed routes, 𝑣(𝑆) denotes the
optimal value of the TSP defined on the graph induced by the
union of 𝑆 and the depot. Later references include [3,9–12].

2. Notations and Definitions

Let 𝑁 = {1, 2, . . . , 𝑛} be a set of players. A routing game
is defined by an acyclic digraph 𝐺 = (𝑉, 𝐴), where 𝑉 =
{0, 1, 2, . . . , 𝑛 + 1} is a vertex set and 𝐴 = {(𝑖, 𝑗) ∈ 𝑉2 |
𝑖 < 𝑗 and (𝑖, 𝑗) ≠ (0, 𝑛 + 1)} is a set of (directed) arcs. † 　
Figure 1 shows the digraph 𝐺 = (𝑉, 𝐴), when 𝑛 = 5. We
denote the length of arc (𝑖, 𝑗) ∈ 𝐴 by 𝑤𝑖, 𝑗 . Throughout this
study, we assume neither triangle inequalities nor the non-
negativity of arc-lengths. A routing game is a characteristic
function game (𝑁, 𝑣) defined by 𝑣 : 2𝑁 → R and satisfying
𝑣(∅) = 0, where 𝑣(𝑆) denotes the length (w.r.t. 𝑤 : 𝐴 → R)
of the di-path on 𝐺 consisting of vertices in 𝑆 ∪ {0, 𝑛 + 1}
for any non-empty coalition 𝑆 ⊆ 𝑁.

Fig. 1 Digraph 𝐺, when 𝑛 = 5.

Given a characteristic function game (𝑁, 𝑣), a pre-
imputation of (𝑁, 𝑣) is a payoff vector 𝒙 = (𝑥𝑖 | 𝑖 ∈
𝑁) ∈ R𝑁 satisfying

∑
𝑖∈𝑁 𝑥𝑖 = 𝑣(𝑁). The core†† of (𝑁, 𝑣)

†In this paper, we represent the depot by a pair of the source-
node 0 and the sink-node 𝑛 + 1.

††We discuss “the core of a cost sharing game,” which is called
anti-core in [4].
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is the set of pre-imputations satisfying
∑

𝑖∈𝑆 𝑥𝑖 ≤ 𝑣(𝑆)
(∀𝑆 ∈ 2𝑁 \ {∅, 𝑁}). The 𝜀-core of (𝑁, 𝑣) is the set of pre-
imputations satisfying

∑
𝑖∈𝑆 𝑥𝑖 ≤ 𝑣(𝑆)+𝜀 (∀𝑆 ∈ 2𝑁 \{∅, 𝑁}).

The least core of (𝑁, 𝑣) is its 𝜀∗-core where

𝜀∗ = min{𝜀 | 𝜀-core of (𝑁, 𝑣) is non-empty}

and 𝜀∗ is called the least core value. It is evident that the
least core is a set of payoff vectors 𝒙∗ ∈ R𝑁 satisfying the
optimality of (𝜀∗, 𝒙∗) to the following problem;

P1: min. 𝜀

s.t.
∑

𝑖∈𝑆 𝑥𝑖 ≤ 𝑣(𝑆) + 𝜀 (∀𝑆 ∈ 2𝑁 \ {∅, 𝑁}),∑
𝑖∈𝑁 𝑥𝑖 = 𝑣(𝑁).

Because the number of constraints of P1 may be exponential
in 𝑛, it is not easy to solve P1 directly.

We therefore propose a new formulation for calculating
a payoff vector in the least core of a routing game. Given a
payoff vector 𝒙 ∈ R𝑁 , we introduce an arc-length function
𝑤𝒙 : 𝐴 → R defined by

𝑤𝒙𝑖, 𝑗 =

{
𝑤𝑖, 𝑗 − 𝑥𝑖 (1 ≤ ∀𝑖 < ∀ 𝑗 ≤ 𝑛 + 1),
𝑤0, 𝑗 (𝑖 = 0 and 1 ≤ 𝑗 ≤ 𝑛).

Figure 1 shows some examples of the above arc-length func-
tion. The above definition directly implies that for any non-
empty coalition 𝑆, the length (w.r.t. 𝑤𝒙) of the di-path
uniquely defined by 𝑆 ∪ {0, 𝑛 + 1} becomes 𝑣(𝑆) −∑

𝑖∈𝑆 𝑥𝑖 .
Then, it is apparent that a pair (𝜀, 𝒙) satisfies

∑
𝑖∈𝑆 𝑥𝑖 ≤

𝑣(𝑆) +𝜀 (∀𝑆 ∈ 2𝑁 \ {∅, 𝑁}) if and only if the length (defined
by 𝑤𝒙) of a shortest path (on 𝐺) from 0 to 𝑛 + 1 including
𝑠 ∈ [3, 𝑛 + 1] vertices is greater than or equal to −𝜀. In the
following, we discuss a technique for handling the constraint
“𝑠 ∈ [3, 𝑛 + 1]” on the number of vertices 𝑠 of a path.

We introduce an acyclic digraph 𝐺 = (𝑉, 𝐴) with a
vertex set𝑉 = {0, 𝑛 + 1} ∪ ({1, 2, . . . , 𝑛− 1} ×𝑁) and an arc
set 𝐴 = 𝐴0 ∪ (∪𝑖∈𝑁 𝐴𝑖) defined by

𝐴0 = {(0, (1, 𝑖)) | 𝑖 ∈ 𝑁},

𝐴𝑖 =

{
((𝑠, 𝑖), (𝑠 + 1, 𝑗))

���� 𝑠 ∈ {1, 2, . . . , 𝑛 − 2},
𝑗 ∈ 𝑁, 𝑖 < 𝑗

}
∪ {((𝑠, 𝑖), 𝑛 + 1) | 𝑠 ∈ {1, 2, . . . , 𝑛 − 1}} (∀𝑖 ∈ 𝑁).

Figure 2 shows the digraph 𝐺 = (𝑉, 𝐴), when 𝑛 = 5.

Fig. 2 Digraph 𝐺 = (𝑉, 𝐴) , when 𝑛 = 5. The dotted lines are arcs in 𝐴2.

Clearly, there exists a bijection between “the set of 0-(𝑛 + 1)

paths on 𝐺” and “the set of paths on 𝐺 from 0 to 𝑛 + 1
including 𝑠 ∈ [3, 𝑛 + 1] vertices.” For any payoff vector
𝒙 ∈ R𝑁 , we introduce an arc-length function 𝑤𝒙 : 𝐴 → R
defined by

𝑤𝒙 (𝑒) =


𝑤0,𝑖 (if 𝑒 ∈ 𝐴0 and 𝑒 = (0, (1, 𝑖))),
𝑤𝒙𝑖, 𝑗 (if 𝑒 ∈ 𝐴𝑖 and 𝑒 = ((𝑠, 𝑖), (𝑠 + 1, 𝑗)),
𝑤𝒙𝑖,𝑛+1 (if 𝑒 ∈ 𝐴𝑖 and 𝑒 = ((𝑠, 𝑖), 𝑛 + 1)).

Given a pre-imputation 𝒙 ∈ R𝑁 , the length, denoted by
−𝜀(𝒙), of the shortest path on 𝐺 from 0 to 𝑛 + 1 w.r.t. 𝑤𝒙

satisfies 𝜀(𝒙) = min{𝜀 | 𝜀-core of (𝑁, 𝑣) includes 𝒙}. We
introduce variables (𝑦(𝑝) | 𝑝 ∈ 𝑉) and employ the dual of
an ordinary linear programming formulation for the shortest
path problem, on the acyclic graph 𝐺, defined by

D(𝒙) : max{𝑦(𝑛+1)−𝑦(0) | 𝑦(𝑞)−𝑦(𝑝) ≤ 𝑤𝒙𝑝,𝑞 (∀(𝑝, 𝑞) ∈ 𝐴)}.

Because D(𝒙) is a maximization problem, the length of the
shortest path w.r.t. 𝑤𝒙 from 0 to 𝑛+1 is greater than or equal
to −𝜀 if and only if there exists a feasible solution to D(𝒙)
satisfying 𝑦(𝑛+1) − 𝑦(0) ≥ −𝜀. Thus, 𝒙 ∈ R𝑁 is in the least
core if and only if 𝒙 is a subvector of an optimal solution to
the following problem;

P2: min. 𝜀
s.t. 𝑦(𝑛 + 1) − 𝑦(0) ≥ −𝜀,

𝑦(𝑞) − 𝑦(0) ≤ 𝑤0, 𝑗

(
if (0, 𝑞) ∈ 𝐴0
and 𝑞 = (1, 𝑗)

)
,

𝑦(𝑞) − 𝑦(𝑝) ≤ 𝑤𝑖, 𝑗 − 𝑥𝑖

(
if (𝑝, 𝑞) ∈ 𝐴𝑖

and 𝑞 = (𝑠 + 1, 𝑗)

)
,

𝑦(𝑛 + 1) − 𝑦(𝑝) ≤ 𝑤𝑖,𝑛+1 − 𝑥𝑖 (if (𝑝, 𝑛 + 1) ∈ 𝐴𝑖),∑
𝑖∈𝑁 𝑥𝑖 =

∑𝑛
𝑖=0 𝑤𝑖,𝑖+1 (= 𝑣(𝑁)),

where 𝜀, {𝑦(𝑝) | 𝑝 ∈ 𝑉} and {𝑥𝑖 | 𝑖 ∈ 𝑁} are continuous
variables. Here we note that 𝒙 is a fixed vector in D(𝒙)
and a vector of variables in P2. The number of variables
and number of constraints of P2 are bounded by O(𝑛2) and
O(𝑛3), respectively. Thus, a polynomial time algorithm for
general linear programming problems solves P2 and finds
a payoff vector in the least core in polynomial time. Our
result also gives a polynomial time algorithm for verifying
the emptiness of the core of the routing game without the
triangle inequality assumption.

3. Conclusion

In this paper, we discussed the routing game without the as-
sumptions of triangle inequality and non-negativity of arc-
lengths. We proposed a polynomial size linear programming
formulation for calculating a payoff vector in the least core.
Using our formulation, a commercial solver also easily de-
termines the emptiness of the core of the routing game.
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