

on Information and Systems

DOI:10.1587/transinf.2024FCL0002

Publicized:2024/08/05

This advance publication article will be replaced by the finalized version after proofreading.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY The Institute of Electronics, Information and Communication Engineers Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN

(**15**/**14**) **Flips are (almost) Sufficient to Sort Heydari and Sudborough's Pancake Stack**

Kazuyuki AMANO†a) **,** *Member*

SUMMARY

LETTER

We present a flip sequence of length $\lceil (15/14)n + 2 \rceil$ for sorting the Heydari and Sudborough's stack of n pancakes, which was introduced to prove the best-known lower bound of $(15/14)n$ for the pancake number of n pancakes.

key words: pancake sorting, prefix reversals, upper bound

1. Introduction

The "Pancake sorting", originally introduced in [4], is a sorting algorithm that sorts a sequence of elements by prefix reversals. It is named after the process of sorting a stack of pancakes on a plate, where the goal is to arrange them in order by size using a minimum number of flips.

A stack of n pancakes is identified with a permutation on $\{1, 2, \ldots, n\}$. Given a stack λ_n of *n* pancakes (or a permutation on $\{1, 2, \ldots, n\}$, let $f(\lambda_n)$ be the minimum number of prefix reversals needed to sort λ_n . Let $f(n)$ be the maximum value of $f(\lambda_n)$ over all permutations on $\{1, 2, \ldots, n\}.$

In 1979, Gates and Papadimitriou [5] showed $(17/16)n \le f(n)$ for all $n \equiv 0 \pmod{16}$ and $f(n) \le$ $(5n + 5)/3$. The same upper bound was independently obtained by György and Turán [6]. The lower bound was improved to $(15/14)n \le f(n)$ for all $n \equiv 0 \pmod{14}$ by Heydari and Sudborough [7], and the upper bound was improved to $f(n) \leq (18/11)n + O(1)$ by Chitturi et al. [2]. These are the current best upper and lower bounds on $f(n)$. The exact values of $f(n)$ are known up to $n \leq 19$ (see [3] or [9, A058986]). Bulteau, Fertin and Rusu [1] proved that the problem of finding the shortest sequence of flips for a given stack of pancakes is NP-hard. Recently, Komano and Mizuki [8] proposed a card-based zero-knowledge proof protocol for pancake sorting.

This note focuses on the $(15/14)n$ lower bound established by Heydari and Sudborough [7]. In their work, they introduced a specific stack of *n* pancakes, denoted by φ_n , and showed that sorting φ_n requires (15/14)*n* flips for all $n \equiv 0$ (mod 14).

For an integer $k \geq 0$, let ξ_k denote the list of seven integers $(1_k 7_k 5_k 3_k 6_k 4_k 2_k)$ where $\ell_k = \ell + 7k$. The Heydari and Sudborough's sequence φ_n is defined as $\varphi_n =$ $\xi_0 \xi_1 \cdots \xi_{m-1}$ for $n = 7m$. At the same time, they conjectured that φ_n actually requires $(8/7)n - 1$ flips to sort, which, if

a) E-mail: amano@gunma-u.ac.jp

proven true, would improve the lower bound on $f(n)$. In this note, we disprove this conjecture by showing that φ_n can be sorted with $\lceil (15/14)n + 2 \rceil$ flips for all $n \equiv 0 \pmod{7}$ and $n \ge 28$, i.e., their lower bound on $f(\varphi_n)$ is essentially tight.

2. Flip sequence for φ_n

The main purpose of this note is to show the following theorem.

Theorem 1. *For all* $n \equiv 0 \pmod{14}$ *and* $n \ge 28$, $f(\varphi_n) \le$ $(15/14)n + 2.$

For a quick check, we provide a computer code for generating and verifying our flip sequence for φ_n at https: //gitlab.com/KazAmano/pancake.

Below, we present a formal proof of Theorem 1. For a list of integers π , $\overline{\pi}$ denotes the reverse of π . For example, if $\pi = (1 4 2 3), \overline{\pi} = (3 2 4 1).$ For readability, we use parentheses to describe a stack of pancakes and square brackets to describe a flip sequence. When applying a flip sequence F to a stack S results in a stack T, we write $S \xrightarrow{F} T$. For example, we write

$$
(3\ 5\ 2\ 1\ 4) \stackrel{2}{\rightarrow} (5\ 3\ 2\ 1\ 4) \stackrel{5}{\rightarrow} (4\ 1\ 2\ 3\ 5)
$$

$$
\stackrel{4}{\rightarrow} (3\ 2\ 1\ 4\ 5) \stackrel{3}{\rightarrow} (1\ 2\ 3\ 4\ 5),
$$

or

$$
(3\ 5\ 2\ 1\ 4)\xrightarrow{[2\ 5\ 4\ 3]} (1\ 2\ 3\ 4\ 5).
$$

We will use several intermediate patterns defined as follows:

$$
I = (1 2 3 4 5 6 7),
$$

\n
$$
\xi^{(1,6)} = (7 1 2 3 4 5 6),
$$

\n
$$
\xi^{(5,2)} = (3 4 5 6 7 1 2).
$$

For a list of integers $\lambda = (v^1 v^2 \dots v^t)$ and an integer $k \geq 0$, the list λ_k is defined analogously to the definition of ξ_k , i.e., $\lambda_k = ((v^1)_k (v^2)_k ... (v^t)_k)$ where $(v^i)_k :=$ v^{i} + 7k for $i = 1, 2, ..., t$. For example, I_2 represents the list $(1_2 2_2 3_2 4_2 5_2 6_2 7_2) = (15 16 17 18 19 20 21).$

Proof of Theorem 1. Let $n = 7m$ for an even integer $m \geq 4$. We give a flip sequence F for φ_n . The sequence F is a concatenation of two sub-sequences, denoted by F_1 and F_2 .

The first sub-sequence F_1 is given by F_1 =

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

[†]The author is with the Gunma University.

 $[S^0 S_2^1 S^2 S_4^1 S^2 \cdots S_{m-2}^1 S^2],$ where $S^0 = [6 \ 2 \ 4 \ 3 \ 2],$ $S_k^1 = [4_k \ 6_k \ 5_k \ 4_k \ 3_k \ 7_k \ 5_k]$ and $S^2 = [3 \ 5 \ 4 \ 3 \ 2 \ 6]$. The length of F_1 is

$$
|F_1| = 5 + (7 + 6)\frac{m-2}{2} = \frac{13}{2}m - 8 = \frac{13}{14}n - 8. \tag{1}
$$

We can prove the following proposition.

Proposition. Let $m \geq 2$ be an even integer. Given φ_n for $n = 7m$, the following holds.

(i) If $m = 4k + 2$ *for an integer* $k \geq 0$ *,*

$$
\varphi_n \xrightarrow{F_1} \lambda_{m-3} \lambda_{m-4} \cdots \lambda_3 \lambda_2 \lambda_0 \lambda_1 \lambda_4 \lambda_5 \cdots \lambda_{m-2} \lambda_{m-1},
$$
\n(2)

where $\lambda_0 = \xi_0^{(5,2)}$ $\lambda_{0}^{(5,2)}$, $\lambda_{m-1} = \xi_{m-1}$ and for $\ell \in \{1, \ldots, m-2\}$,

$$
\lambda_{\ell} = \begin{cases}\n\overline{\xi}_{\ell}^{(1,6)}, & \text{if } \ell \equiv 0 \pmod{4}, \\
I_{\ell}, & \text{if } \ell \equiv 1 \pmod{4}, \\
\frac{\xi_{\ell}^{(1,6)}}{I_{\ell}}, & \text{if } \ell \equiv 2 \pmod{4}, \\
\overline{I_{\ell}}, & \text{if } \ell \equiv 3 \pmod{4}.\n\end{cases}
$$

Equivalently, Eq. (2) is written as $\varphi_{n(0)} \stackrel{F_1}{\longrightarrow} \lambda_0 \lambda_1$, and for $k \geq 1$, $\varphi_{n(k)} \stackrel{F_1}{\longrightarrow} \lambda_{4k-1} \lambda_{4k-2} \varphi_{n(k-1)} \lambda_{4k} \lambda_{4k+1}$ where $n(k) := 28k + 14$ *for* $k \ge 0$ *.*

(ii) If $m = 4k$ for an integer $k \geq 1$,

$$
\varphi_n \xrightarrow{F_1} \lambda_{m-3} \lambda_{m-4} \cdots \lambda_5 \lambda_4 \lambda_1 \lambda_0 \lambda_2 \lambda_3 \cdots \lambda_{m-2} \lambda_{m-1},
$$
\n(3)

where $\lambda_0 = \overline{\xi}_0^{(5,2)}$ $\lambda_{0}^{(5,2)}$, $\lambda_{m-1} = \xi_{m-1}$ and for $\ell \in \{1, \ldots, m-2\}$,

$$
\lambda_{\ell} = \begin{cases}\n\xi_{\ell}^{(1,6)}, & \text{if } \ell \equiv 0 \pmod{4}, \\
\overline{I}_{\ell}, & \text{if } \ell \equiv 1 \pmod{4}, \\
\overline{\xi}_{\ell}^{(1,6)}, & \text{if } \ell \equiv 2 \pmod{4}, \\
I_{\ell}, & \text{if } \ell \equiv 3 \pmod{4}.\n\end{cases}
$$

J.

Equivalently, Eq. (3) is written as for $k \geq 1$, $\varphi_{n(k)} \stackrel{F_1}{\longrightarrow}$ $\lambda_{4k-3}\lambda_{4k-4}\varphi_{n(k-1)}\lambda_{4k-2}\lambda_{4k-1}$, where $n(k) := 28k$ for $k \ge 0$ *and* φ_0 *represents the empty list.*

Proof of Proposition. The proof proceeds by induction on even *m*. One can easily verify that $\varphi_{14} = \xi_0 \xi_1 \xrightarrow{S_0} \xi_0^{(5,2)}$ $\zeta_0^{(5,2)} \xi_1,$ which establishes the base case, $m = 2$.

For the induction step, suppose that the proposition holds for m. Let π be an arbitrary sequence of length $7(m-1)$. We will verify that

$$
\pi \xi_{m-1} \xi_m \xi_{m+1} \xrightarrow{S_m^1} \overline{\xi}_{m-1} \overline{\pi} \overline{\xi}_m^{(1,6)} \xi_{m+1}
$$

$$
\xrightarrow{S^2} \overline{I}_{m-1} \overline{\pi} \overline{\xi}_m^{(1,6)} \xi_{m+1},
$$
 (4)

which implies the proposition for $m + 2$.

The first part of Eq. (4) holds since

$$
\pi \xi_{m-1} \xi_m = \pi \xi_{m-1} (1753642)_m
$$

$$
\stackrel{4_m}{\longrightarrow} (3\ 5\ 7\ 1)_m \overline{\xi}_{m-1} \overline{\pi} (6\ 4\ 2)_m
$$
\n
$$
\stackrel{6_m}{\longrightarrow} (4\ 6)_m \pi \xi_{m-1} (1\ 7\ 5\ 3\ 2)_m
$$
\n
$$
\stackrel{5_m}{\longrightarrow} (5\ 7\ 1)_m \overline{\xi}_{m-1} \overline{\pi} (6\ 4\ 3\ 2)_m
$$
\n
$$
\stackrel{4_m}{\longrightarrow} (6)_m \pi \xi_{m-1} (1\ 7\ 5\ 4\ 3\ 2)_m
$$
\n
$$
\stackrel{3_m}{\longrightarrow} (7\ 1)_m \overline{\xi}_{m-1} \overline{\pi} (6\ 5\ 4\ 3\ 2)_m
$$
\n
$$
\stackrel{7_m}{\longrightarrow} (2\ 3\ 4\ 5\ 6)_m \pi \xi_{m-1} (1\ 7)_m
$$
\n
$$
\stackrel{5_m}{\longrightarrow} \overline{\xi}_{m-1} \overline{\pi} (6\ 5\ 4\ 3\ 2\ 1\ 7)_m = \overline{\xi}_{m-1} \overline{\pi} \overline{\xi}_m^{(1,6)}.
$$

The second part of Eq. (4) is obvious since $\overline{\xi} \xrightarrow{S^2} \overline{I}$.

Proof of Theorem 1 (continued). The sub-sequence F_2 depends on whether $m = 4k$ or $m = 4k + 2$.

First, we consider the case $m = 4k+2$. Given a sequence in the right-hand side of Eq. (2), we can sort this sequence by applying $|F_2| = m + 10$ flips as follows:

The first twelve flips, which will be given below, act on $\lambda_0 = \xi_0^{(5,2)}$ λ_{m-1} = ξ_{m-1} . We write the sequence in the right-hand side of Eq. (2) as $\pi_a \xi_0^{(5,2)}$ $\int_{0}^{(5,2)} \pi_b \xi_{m-1}$, where each of π_a and π_b is a sequence of length $7(m/2 - 1)$.

By applying the flip sequence $[2_{m-1} 7_{m-1} 3_0 3_{m/2} 5_{m/2}]$ $0_{m/2}$, we have

$$
\pi_a(3\ 4\ 5\ 6\ 7\ 1\ 2)_0\pi_b(1\ 7\ 5\ 3\ 6\ 4\ 2)_{m-1}
$$
\n
$$
\xrightarrow{2_{m-1}} (7\ 1)_{m-1}\overline{\pi_b}(2\ 1\ 7\ 6\ 5\ 4\ 3)_0\overline{\pi_a}(5\ 3\ 6\ 4\ 2)_{m-1}
$$
\n
$$
\xrightarrow{7_{m-1}} (2\ 4\ 6\ 3\ 5)_m - 1\pi_a(3\ 4\ 5\ 6\ 7\ 1\ 2)_0\pi_b(1\ 7)_{m-1}
$$
\n
$$
\xrightarrow{3_0} (6\ 4\ 2\ 3\ 5)_m - 1\pi_a(3\ 4\ 5\ 6\ 7\ 1\ 2)_0\pi_b(1\ 7)_{m-1}
$$
\n
$$
\xrightarrow{3_{m/2}} (7\ 6\ 5\ 4\ 3)_0\overline{\pi_a}(5\ 3\ 2\ 4\ 6)_{m-1}(1\ 2)_0\pi_b(1\ 7)_{m-1}
$$
\n
$$
\xrightarrow{5_{m/2}} (2\ 1)_0(6\ 4\ 2\ 3\ 5)_{m-1}\pi_a(3\ 4\ 5\ 6\ 7)_0\pi_b(1\ 7)_{m-1}
$$
\n
$$
\xrightarrow{0_{m/2}} \overline{\pi_a}(5\ 3\ 2\ 4\ 6)_{m-1}(1\ 2\ 3\ 4\ 5\ 6\ 7)_0\pi_b(1\ 7)_{m-1}
$$
\n
$$
= \overline{\pi_a}(5\ 3\ 2\ 4\ 6)_{m-1}I_0\pi_b(1\ 7)_{m-1}
$$
\n
$$
(5)
$$

Recall that the last block of π_a is $\xi_2^{(1,6)}$ $\tau_a^{(1,6)}$. Let π'_a be the subsequence of π_a so that $\pi_a = \pi'_a \xi_2^{(1,6)}$ $2^{(1,0)}$. By applying the flip sequence $[6_0 \overline{6_{m-1}} 3_{m/2} 5_{m/2} 4_{m/2} 6_{m-1}]$, we have

$$
(5) = \overline{\xi}_{2}^{(1,6)} \overline{\pi}_{a}^{'} (5 \ 3 \ 2 \ 4 \ 6)_{m-1} I_{0} \pi_{b} (1 \ 7)_{m-1}
$$

\n
$$
\xrightarrow{6_{0}} I_{2} \overline{\pi}_{a}^{'} (5 \ 3 \ 2 \ 4 \ 6)_{m-1} I_{0} \pi_{b} (1 \ 7)_{m-1}
$$

\n
$$
\xrightarrow{6_{m-1}} (1)_{m-1} \overline{\pi}_{b} \overline{I}_{0} (6 \ 4 \ 2 \ 3 \ 5)_{m-1} \pi_{a}^{'} \overline{I}_{2} (7)_{m-1}
$$

\n
$$
\xrightarrow{3_{m/2}} (4 \ 6)_{m-1} I_{0} \pi_{b} (1 \ 2 \ 3 \ 5)_{m-1} \pi_{a}^{'} \overline{I}_{2} (7)_{m-1}
$$

\n
$$
\xrightarrow{5_{m/2}} (3 \ 2 \ 1)_{m-1} \overline{\pi}_{b} \overline{I}_{0} (6 \ 4 \ 5)_{m-1} \pi_{a}^{'} \overline{I}_{2} (7)_{m-1}
$$

\n
$$
\xrightarrow{4_{m/2}} (6)_{m-1} I_{0} \pi_{b} (1 \ 2 \ 3 \ 4 \ 5)_{m-1} \pi_{a}^{'} \overline{I}_{2} (7)_{m-1}
$$

\n
$$
\xrightarrow{6_{m-1}} I_{2} \overline{\pi}_{a}^{'} (5 \ 4 \ 3 \ 2 \ 1)_{m-1} \overline{\pi}_{b} \overline{I}_{0} (6 \ 7)_{m-1}
$$

\n
$$
= I_{2} I_{3} \cdots \overline{\xi}_{m-4}^{(1,6)} I_{m-3} (5 \ 4 \ 3 \ 2 \ 1)_{m-1} \xi_{m-2}^{(1,6)}
$$

\n
$$
\cdots \overline{I}_{5} \xi_{4}^{(1,6)} \overline{I}_{1} \overline{I}_{0} (6 \ 7)_{m-1}
$$

\n(6)

Then, by applying $(m/2)$ – 2 pairs of flips $[5_{m-3} 6₀]$, $[5_{m-5} 6_0], \ldots, [5_3 6_0],$ we have

$$
(6) \xrightarrow{\left[5_{m-3}\ 6_{0}\right]} I_4 I_5 \cdots \overline{\xi}_{m-2}^{(1,6)} (1\ 2\ 3\ 4\ 5)_{m-1} \overline{I}_{m-3} \xi_{m-4}^{(1,6)} \n\cdots \overline{I}_3 \overline{I}_2 \overline{I}_1 \overline{I}_0 (6\ 7)_{m-1} \n\xrightarrow{\left[5_{m-5}\ 6_{0}\right]} I_6 I_7 \cdots \overline{\xi}_{m-4}^{(1,6)} I_{m-3} (5\ 4\ 3\ 2\ 1)_{m-1} \xi_{m-2}^{(1,6)} \n\cdots \overline{I}_5 \overline{I}_4 \overline{I}_3 \overline{I}_2 \overline{I}_1 \overline{I}_0 (6\ 7)_{m-1} \n\cdots \n\xrightarrow{\left[5_3\ 6_{0}\right]} I_{m-2} (1\ 2\ 3\ 4\ 5)_{m-1} \overline{I}_{m-3} \overline{I}_{m-4} \n\cdots \overline{I}_1 \overline{I}_0 (6\ 7)_{m-1} (7)
$$

Finally, two more flips $[5, 5_{m-1}]$ complete sorting as follows:

(7)
$$
\xrightarrow{5_1} (5\ 4\ 3\ 2\ 1)_{m-1} \bar{I}_{m-2} \bar{I}_{m-3} \cdots \bar{I}_1 \bar{I}_0 (6\ 7)_{m-1}
$$

$$
\xrightarrow{5_{m-1}} I_0 I_1 \cdots I_{m-1}.
$$

The total number of flips in the second sub-sequence is $|F_2|$ = $12+2(m/2-2)+2 = m+10$ as was described, and the theorem follows since $|F_1| + |F_2| = (13/14)n - 8 + (1/7)n + 10 =$ $(15/14)n + 2$.

The flip sequence F_2 for the case $m = 4k$ is consisting of (i) the first eleven flips $[2_{m-1} 0_{m/2} 2_{m/2} 4_{m/2-1} 6_0 7_{m-1} 3_0 4_0]$ 2_0 6_{m/2} 7_{m-1}], (ii) $(m/2)$ – 2 pairs of flips $[6_{m-3}, 6_0], [6_{m-5}, 6_0], \ldots, [6_3, 6_0]$ and (iii) the final three flips $[6_1 2_0 6_{m-1}]$. The length of F_2 is $11 + 2(m/2-2) + 3 =$ $m + 10$ as to the case $m = 4k + 2$. Verifying the correctness of this flip sequence is left to the readers.

When the number of blocks m is odd, the following bound applies.

Corollary 1. *For all* $n \equiv 0 \pmod{7}$ *and* $n \ge 28$, $f(\varphi_n) \le$ $(15/14)n + 5/2.$

Proof By Theorem 1, it is sufficient to show that $f(\varphi_{n+7}) \leq f(\varphi_n) + 8$ for every even integer $m \geq 2$ and $n = 7m$. This can be verified by seeing

$$
I_0I_1 \cdots I_{m-1} \xi_m \xrightarrow{F} I_0I_1 \cdots I_m,
$$

for $F = [3_{m-1} 5_{m-1} 3_{m-1} 6_{m-1} 4_0 2_0 7_{m-1} 2_{m-1}]. \square$

Before closing this note, we briefly explain how we found our flip sequence. The known lower bound proofs ([5], [7]) rely on the analysis of the number of *wastes* of a flip sequence. For a sequence $S = (\ell_1 \ell_2 \ldots \ell_n)$ the number of *adjacencies*, denoted by $adj(S)$, is defined as the number of indexes $i \in \{1, 2, ..., n-1\}$ such that $|\ell_i - \ell_{i+1}| = 1$. A key fact is that, for every sequence S and a flip z , if $S \stackrel{z}{\rightarrow} T$ then $adj(T) \leq adj(S) + 1$. A flip z applied to S is called a *waste* if $adj(T) \leq adj(S)$ when $S \stackrel{?}{\rightarrow} T$. Since $adj(\varphi_n) = 0$ and $adj(I_n) = n - 1$, a lower bound w on the number of wastes for any flip sequences for φ_n gives a lower bound $f(\varphi_n) \geq n - 1 + w$. From this perspective, a good

flip sequence is the one with a small number of wastes. We found our flip sequence during the process of searching, with the aid of computers, for a flip sequence for φ_n such that the first several wastes come as late as possible.

Acknowledgement

This work was supported in part by JSPS Kakenhi Grant Numbers 21K19758 and 18K11152.

References

- [1] Laurent Bulteau, Guillaume Fertin, and Irena Rusu. Pancake flipping is hard. *J. Comput. Syst. Sci.*, 81(8):1556–1574, 2015.
- [2] Bhadrachalam Chitturi, William Fahle, Z. Meng, Linda Morales, Charles O. Shields Jr., Ivan Hal Sudborough, and Walter Voit. An (18/11)n upper bound for sorting by prefix reversals. *Theor. Comput. Sci.*, 410(36):3372–3390, 2009.
- [3] Josef Cibulka. On average and highest number of flips in pancake sorting. *Theor. Comput. Sci.*, 412(8-10):822–834, 2011.
- [4] Harry Dweighter. Problem E2569. *Amer. Math. Monthly*, 82(10):1010, 1975.
- [5] William H. Gates and Christos H. Papadimitriou. Bounds for sorting by prefix reversal. *Discret. Math.*, 27(1):47–57, 1979.
- [6] Ervin Györi and György Turán. Stack of pancakes. Studia Scientiarum *Mathematicarum Hungarica*, 13:133–137, 1978.
- [7] Mohammad Hossain Heydari and Ivan Hal Sudborough. On the diameter of the pancake network. *J. Algorithms*, 25(1):67–94, 1997.
- [8] Yuichi Komano and Takaaki Mizuki. Card-based zero-knowledge proof protocol for pancake sorting. In *Innovative Security Solutions for Information Technology and Communications - 15th International Conference, SecITC 2022*, volume 13809 of *Lecture Notes in Computer Science*, pages 222–239. Springer, 2022.
- [9] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2024. Published electronically at http://oeis.org.