IEICE

TRANSACTIONS

on Information and Systems

DOI:10. 1587/transinf. 2024FCL0002
Publicized:2024/08/05

This advance publication article will be replaced by
the finalized version after proofreading.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY

° The Institute of Electronics, Information and Communication Engineers
- I Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN



IEICE TRANS. ??, VOL.Exx—??, NO.xx XXXX 200x

[LETTER

(15/14)n Flips are (almost) Sufficient to Sort Heydari and

Sudborough’s Pancake Stack

SUMMARY

We present a flip sequence of length [ (15/14)n + 27 for sorting the
Heydari and Sudborough’s stack of n pancakes, which was introduced to
prove the best-known lower bound of (15/14)n for the pancake number of
n pancakes.
key words: pancake sorting, prefix reversals, upper bound

1. Introduction

The “Pancake sorting”, originally introduced in [4], is a
sorting algorithm that sorts a sequence of elements by prefix
reversals. It is named after the process of sorting a stack of
pancakes on a plate, where the goal is to arrange them in
order by size using a minimum number of flips.

A stack of n pancakes is identified with a permutation on
{1,2,...,n}. Given a stack 4,, of n pancakes (or a permuta-
tionon {1,2,...,n}),let f(41,) be the minimum number of
prefix reversals needed to sort 4,,. Let f(n) be the maximum
value of f(4,) over all permutations on {1,2,...,n}.

In 1979, Gates and Papadimitriou [5] showed
(17/16)n < f(n) for all n = 0 (mod 16) and f(n) <
(51 +5)/3. The same upper bound was independently ob-
tained by Gyorgy and Turdn [6]. The lower bound was
improved to (15/14)n < f(n) for all n = 0 (mod 14) by
Heydari and Sudborough [7], and the upper bound was im-
proved to f(n) < (18/11)n + O(1) by Chitturi et al. [2].
These are the current best upper and lower bounds on f(n).
The exact values of f(n) are known up to n < 19 (see [3] or
[9, A058986]). Bulteau, Fertin and Rusu [1] proved that the
problem of finding the shortest sequence of flips for a given
stack of pancakes is NP-hard. Recently, Komano and Mizuki
[8] proposed a card-based zero-knowledge proof protocol for
pancake sorting.

This note focuses on the (15/14)n lower bound estab-
lished by Heydari and Sudborough [7]. In their work, they
introduced a specific stack of n pancakes, denoted by ¢,,, and
showed that sorting ¢,, requires (15/14)n flips for all n = 0
(mod 14).

For an integer k > 0, let & denote the list of seven
integers (1x 7 Sk 3k 6x 4x 2x) where £ = €+ 7k. The
Heydari and Sudborough’s sequence ¢,, is defined as ¢,, =
&oé1 - Em—1 forn = Tm. Atthe same time, they conjectured
that ¢, actually requires (8/7)n — 1 flips to sort, which, if
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proven true, would improve the lower bound on f(n). In this
note, we disprove this conjecture by showing that ¢,, can be
sorted with [(15/14)n + 2] flips for all n = 0 (mod 7) and
n > 28, i.e., their lower bound on f(¢g;) is essentially tight.

2. Flip sequence for ¢,

The main purpose of this note is to show the following the-
orem.

Theorem 1. Foralln =0 (mod 14) and n > 28, f(¢,) <
(15/14)n +2.

For a quick check, we provide a computer code for
generating and verifying our flip sequence for ¢, at https:
//gitlab.com/KazAmano/pancake.

Below, we present a formal proof of Theorem 1. For a
list of integers &, ™ denotes the reverse of . For example, if
m=(1423),7=(3241). For readability, we use paren-
theses to describe a stack of pancakes and square brackets
to describe a flip sequence. When applying a flip sequence

. . F
F to a stack S results in a stack 7, we write S — T. For
example, we write

(35214) 5 (53214)> (41235)
2 (3214535 (12345),

or

(35214222, (12345),

We will use several intermediate patterns defined as
follows:

1=(1234567),
160 =(7123456),
62 =(3456712).

For a list of integers A = (v' v? ... v*) and an integer
k > 0, the list Ay is defined analogously to the definition
of fk, ie., Ax = ((vl)k (1)2)k ...(Ut)k) where (Ui)k =
v+ 7k fori=1,2,...,¢t For example, I, represents the list
(122232425,6,72) = (151617 18 19 20 21).

Proof of Theorem 1. Let n = 7m for an even integer
m > 4. We give a flip sequence F for ¢,. The sequence F
is a concatenation of two sub-sequences, denoted by F; and
F.

The first sub-sequence F; is given by F; =
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(S S} 8% 8y 8% .- 8! 8?], where S° = [624 3 2],
S = [4k 6k 5k 4k 3k Tk 5k] and $* = [354326]. The
length of Fj is
m-2 13 13

Fi| = —— =—m-8=—n-38. 1

|F1]=5+(7+6) > 8 " 8 (1)

We can prove the following proposition.
Proposition. Let m > 2 be an even integer. Given ¢, for
n = Tm, the following holds.

(i) If m = 4k + 2 for an integer k > 0,

Fy

On — Am—3Am—4 - A3A2d0d1A445 -

: /lm—Z/lm—ls

2
(5 2) _
where 1o =&y, Am—1 = &m-1 and for € € {1,...,m =2},

+(1,6)

&, ift=0 (mod4),

Ip, ift=1 (mod4),
A=y .16 o,

&7 ift=2 (mod4),

Ip, ift=3 (mod4).

F
Equivalently, Eq. (2) is written as ¢y(o) =5 Aol

F
andfork > 1, ¢, x) kN Aag_1 A4k —2@n (k1) Ask Ask+1 Where
n(k) =28k + 14 for k > 0.
(ii) If m = 4k for an integer k > 1,

©@n N Am=-3Am—4 -+ - A5A4A1 0243 - - - L2 A1,
3)
=(5.2)
where Ao =&, Am—1 = Em-1 and for € € {1,...,m -2},
M9 ife=0 (mod 4),
1Ip, ift=1 (mod4),
de=9 206
&0, ift=2 (mod 4),
Ip, ift=3 (mod4).

F
Equivalently, Eq. (3) is written as for k > 1, ¢ (k) =

Ak-3A4k-2@n(k-1)Aak—24k—1, wheren(k) := 28k fork > 0
and ¢ represents the empty list.

The proof proceeds by induction on

S
oé1 — 555’2)51,

Proof of Proposition.

even m. One can easily verify that ¢4 =
which establishes the base case, m = 2.

For the induction step, suppose that the proposition
holds for m. Let 7 be an arbitrary sequence of length 7(m—1).
We will verify that

Smo =z —z(1,6)
TEm-1Em&m1 — &1 & Emet
sz - _—(1,6)
— L7y Emats “)
which implies the proposition for m + 2.
The first part of Eq. (4) holds since

Tém-1Em = mEM-1(1753642),
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A (357 Dy T(64 2)m

o (4 6)mrEm1 (1753 2
20 (57 Doy F(643 2)m
o () mrtEm1 (17543 2)
2 (T Vg T(6543 2)m
L (23 456)mmEm1(1 Tm

2 (654321 ) =&, TEn”
— 52 -
The second part of Eq. (4) is obvious since & 5, 1. O

Proof of Theorem 1 (continued). The sub-sequence F;
depends on whether m = 4k or m = 4k + 2.

First, we consider the case m = 4k+2. Given a sequence
in the right-hand side of Eq. (2), we can sort this sequence
by applying |F,| = m + 10 flips as follows:

The first twelve flips, which will be given below, act on
Ao = 5(5 2 and Am-1 = Em—1. We write the sequence in the
right-hand side of Eq. (2) as ﬂafés’z)nbfm_l, where each of
4 and 7 is a sequence of length 7(m/2 — 1).

By applying the flip sequence [2,-1 7m—1 30 3m/2 Sm/2
0n/2], we have

7a(3456712)075(1753 64 2)m_1
2 T D T5(2 17654 3)072(53 6421
I (24635), 1734567 12)075 (1 T
30

2 (64235)m 17434567 12)0mp(1 Tmer

3m
2 (76543)072(53246),-1(1 2)0mp(1 Ty

5m
(2 1)0(64235)mo17a(3456T)omp (1 et

O,
S 77 (53246)m-1(1234567)0mp(1 Vs

= 7a(53246)m-1lomp(1 T)m-1 (&)

Recall that the last block of r, is §§1’6). Let 7, be the sub-
sequence of 7, so that 7, = m,&, (1.6), By applying the flip
sequence [69 6,1-1 3m/2 Sm/2 4m/2 6m_1], we have

+(1,6)—
5) = &

o L5324 6)m1Iomy(1 Tt

7q(53246)n-1lomp(17)m-1

= (D1 710 (6423 5) 17, I (1)1
2 (4 6) 1T (123 S 17y T (T
—5 (32 Dm-17p10(6 4 5)mo1 7l 1o (T)m-1
=5 (O)m-11omp(12345) 17, 12 (T)m-1
=5 Ly (5432 D) plo(6 Tm-t
= DLl (5432 1),,809
TsE T T0(6 Ty ©)
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Then, by applying (m/2) — 2 pairs of flips [5,-3 60],
[51-5 60], ..., [53 60], we have

[Sm-3 60] =(1.6) 7
©) 220 prs e B (12345), 1T, 5609

o I T (6 T)pei

S5im_s 6 —(1,
Lo Bl oty B (5432 1,008
e A5yl 11 1o (6 7)o
556 — —
B, (1234 5) i TrsTms

- T11o(6 Tt (7

Finally, two more flips [5; 5,,,—1] complete sorting as follows:

1

7 25 (5432 DeiTmeslmes -+ T1T0(6 Dy
2 Tody - Dy

The total number of flips in the second sub-sequence is | F>| =
12+42(m/2-2)+2 = m+10 as was described, and the theorem
follows since |Fi| + |F>| = (13/14)n — 8 + (1/T)n + 10 =
(15/14)n + 2.

The flip sequence F; for the case m = 4k is consisting of
(i) the first eleven flips [2,,—1 0n/2 2im/2 4myj2-1 60 Tm—-1 30 40
20 6mj2 Tm-1], (i) (m/2) — 2 pairs of flips
[6/:-3 60], [6m—5 60],...,[63 60] and (iii) the final three
flips [61 29 6,,—1]. The length of F> is 11 +2(m/2-2)+3 =
m + 10 as to the case m = 4k + 2. Verifying the correctness
of this flip sequence is left to the readers. O

When the number of blocks m is odd, the following
bound applies.

Corollary 1. Foralln =0 (mod 7) and n > 28, f(¢,) <
(15/14)n+5/2.

Proof By Theorem 1, it is sufficient to show that
f(ons7) < f(pn) + 8 for every even integer m > 2 and
n = 7m. This can be verified by seeing

F
Ioly - In-1&m — Iody - - Iy,

for F = [3;1-1 Sm-13m-1 6m-1 40 20 Tm-1 2m-1]. m

Before closing this note, we briefly explain how we
found our flip sequence. The known lower bound proofs
([5]1, [7]) rely on the analysis of the number of wastes of a
flip sequence. For a sequence S = (¢, ¢; ... {,) the number
of adjacencies, denoted by adj(S), is defined as the number
of indexes i € {1,2,...,n — 1} such that |[{; — €;+1| = 1.
A key fact is that, for every sequence S and a flip z, if
S 5 T then adj(T) < adj(S) + 1. A flip z applied to S
is called a waste if adj(T) < adj(S) when S = T. Since
adj(¢,) = 0 and adj(I,,) = n — 1, a lower bound w on the
number of wastes for any flip sequences for ¢,, gives a lower
bound f(¢,) > n— 1+ w. From this perspective, a good

flip sequence is the one with a small number of wastes. We
found our flip sequence during the process of searching, with
the aid of computers, for a flip sequence for ¢,, such that the
first several wastes come as late as possible.
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