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LETTER
(15/14)𝒏 Flips are (almost) Sufficient to Sort Heydari and
Sudborough’s Pancake Stack

Kazuyuki AMANO†a), Member

SUMMARY
We present a flip sequence of length ⌈ (15/14)𝑛 + 2⌉ for sorting the

Heydari and Sudborough’s stack of 𝑛 pancakes, which was introduced to
prove the best-known lower bound of (15/14)𝑛 for the pancake number of
𝑛 pancakes.
key words: pancake sorting, prefix reversals, upper bound

1. Introduction

The “Pancake sorting”, originally introduced in [4], is a
sorting algorithm that sorts a sequence of elements by prefix
reversals. It is named after the process of sorting a stack of
pancakes on a plate, where the goal is to arrange them in
order by size using a minimum number of flips.

A stack of 𝑛 pancakes is identified with a permutation on
{1, 2, . . . , 𝑛}. Given a stack 𝜆𝑛 of 𝑛 pancakes (or a permuta-
tion on {1, 2, . . . , 𝑛}), let 𝑓 (𝜆𝑛) be the minimum number of
prefix reversals needed to sort 𝜆𝑛. Let 𝑓 (𝑛) be the maximum
value of 𝑓 (𝜆𝑛) over all permutations on {1, 2, . . . , 𝑛}.

In 1979, Gates and Papadimitriou [5] showed
(17/16)𝑛 ≤ 𝑓 (𝑛) for all 𝑛 ≡ 0 (mod 16) and 𝑓 (𝑛) ≤
(5𝑛 + 5)/3. The same upper bound was independently ob-
tained by György and Turán [6]. The lower bound was
improved to (15/14)𝑛 ≤ 𝑓 (𝑛) for all 𝑛 ≡ 0 (mod 14) by
Heydari and Sudborough [7], and the upper bound was im-
proved to 𝑓 (𝑛) ≤ (18/11)𝑛 + 𝑂 (1) by Chitturi et al. [2].
These are the current best upper and lower bounds on 𝑓 (𝑛).
The exact values of 𝑓 (𝑛) are known up to 𝑛 ≤ 19 (see [3] or
[9, A058986]). Bulteau, Fertin and Rusu [1] proved that the
problem of finding the shortest sequence of flips for a given
stack of pancakes is NP-hard. Recently, Komano and Mizuki
[8] proposed a card-based zero-knowledge proof protocol for
pancake sorting.

This note focuses on the (15/14)𝑛 lower bound estab-
lished by Heydari and Sudborough [7]. In their work, they
introduced a specific stack of 𝑛 pancakes, denoted by 𝜑𝑛, and
showed that sorting 𝜑𝑛 requires (15/14)𝑛 flips for all 𝑛 ≡ 0
(mod 14).

For an integer 𝑘 ≥ 0, let 𝜉𝑘 denote the list of seven
integers (1𝑘 7𝑘 5𝑘 3𝑘 6𝑘 4𝑘 2𝑘) where ℓ𝑘 = ℓ + 7𝑘 . The
Heydari and Sudborough’s sequence 𝜑𝑛 is defined as 𝜑𝑛 =

𝜉0𝜉1 · · · 𝜉𝑚−1 for 𝑛 = 7𝑚. At the same time, they conjectured
that 𝜑𝑛 actually requires (8/7)𝑛 − 1 flips to sort, which, if
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proven true, would improve the lower bound on 𝑓 (𝑛). In this
note, we disprove this conjecture by showing that 𝜑𝑛 can be
sorted with ⌈(15/14)𝑛 + 2⌉ flips for all 𝑛 ≡ 0 (mod 7) and
𝑛 ≥ 28, i.e., their lower bound on 𝑓 (𝜑𝑛) is essentially tight.

2. Flip sequence for 𝝋𝒏

The main purpose of this note is to show the following the-
orem.

Theorem 1. For all 𝑛 ≡ 0 (mod 14) and 𝑛 ≥ 28, 𝑓 (𝜑𝑛) ≤
(15/14)𝑛 + 2.

For a quick check, we provide a computer code for
generating and verifying our flip sequence for 𝜑𝑛 at https:
//gitlab.com/KazAmano/pancake.

Below, we present a formal proof of Theorem 1. For a
list of integers 𝜋, 𝜋 denotes the reverse of 𝜋. For example, if
𝜋 = (1 4 2 3), 𝜋 = (3 2 4 1). For readability, we use paren-
theses to describe a stack of pancakes and square brackets
to describe a flip sequence. When applying a flip sequence
𝐹 to a stack 𝑆 results in a stack 𝑇 , we write 𝑆

𝐹−→ 𝑇 . For
example, we write

(3 5 2 1 4) 2−→ (5 3 2 1 4) 5−→ (4 1 2 3 5)
4−→ (3 2 1 4 5) 3−→ (1 2 3 4 5),

or

(3 5 2 1 4)
[2 5 4 3]
−−−−−−−→ (1 2 3 4 5).

We will use several intermediate patterns defined as
follows:

𝐼 = (1 2 3 4 5 6 7),
𝜉 (1,6) = (7 1 2 3 4 5 6),
𝜉 (5,2) = (3 4 5 6 7 1 2).

For a list of integers 𝜆 = (𝑣1 𝑣2 . . . 𝑣𝑡 ) and an integer
𝑘 ≥ 0, the list 𝜆𝑘 is defined analogously to the definition
of 𝜉𝑘 , i.e., 𝜆𝑘 = ((𝑣1)𝑘 (𝑣2)𝑘 . . . (𝑣𝑡 )𝑘) where (𝑣𝑖)𝑘 :=
𝑣𝑖 + 7𝑘 for 𝑖 = 1, 2, . . . , 𝑡. For example, 𝐼2 represents the list
(12 22 32 42 52 62 72) = (15 16 17 18 19 20 21).
Proof of Theorem 1. Let 𝑛 = 7𝑚 for an even integer
𝑚 ≥ 4. We give a flip sequence 𝐹 for 𝜑𝑛. The sequence 𝐹

is a concatenation of two sub-sequences, denoted by 𝐹1 and
𝐹2.

The first sub-sequence 𝐹1 is given by 𝐹1 =
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[𝑆0 𝑆1
2 𝑆2 𝑆1

4 𝑆2 · · · 𝑆1
𝑚−2 𝑆2], where 𝑆0 = [6 2 4 3 2],

𝑆1
𝑘
= [4𝑘 6𝑘 5𝑘 4𝑘 3𝑘 7𝑘 5𝑘] and 𝑆2 = [3 5 4 3 2 6]. The

length of 𝐹1 is

|𝐹1 | = 5 + (7 + 6)𝑚 − 2
2

=
13
2
𝑚 − 8 =

13
14

𝑛 − 8. (1)

We can prove the following proposition.

Proposition. Let 𝑚 ≥ 2 be an even integer. Given 𝜑𝑛 for
𝑛 = 7𝑚, the following holds.

(i) If 𝑚 = 4𝑘 + 2 for an integer 𝑘 ≥ 0,

𝜑𝑛

𝐹1−−→ 𝜆𝑚−3𝜆𝑚−4 · · · 𝜆3𝜆2𝜆0𝜆1𝜆4𝜆5 · · · 𝜆𝑚−2𝜆𝑚−1,

(2)

where 𝜆0 = 𝜉
(5,2)
0 , 𝜆𝑚−1 = 𝜉𝑚−1 and for ℓ ∈ {1, . . . , 𝑚 − 2},

𝜆ℓ =


𝜉
(1,6)
ℓ , if ℓ ≡ 0 (mod 4),
𝐼ℓ , if ℓ ≡ 1 (mod 4),
𝜉
(1,6)
ℓ

, if ℓ ≡ 2 (mod 4),
𝐼ℓ , if ℓ ≡ 3 (mod 4).

Equivalently, Eq. (2) is written as 𝜑𝑛(0)
𝐹1−−→ 𝜆0𝜆1,

and for 𝑘 ≥ 1, 𝜑𝑛(𝑘 )
𝐹1−−→ 𝜆4𝑘−1𝜆4𝑘−2𝜑𝑛(𝑘−1)𝜆4𝑘𝜆4𝑘+1 where

𝑛(𝑘) := 28𝑘 + 14 for 𝑘 ≥ 0.
(ii) If 𝑚 = 4𝑘 for an integer 𝑘 ≥ 1,

𝜑𝑛

𝐹1−−→ 𝜆𝑚−3𝜆𝑚−4 · · · 𝜆5𝜆4𝜆1𝜆0𝜆2𝜆3 · · · 𝜆𝑚−2𝜆𝑚−1,

(3)

where 𝜆0 = 𝜉
(5,2)
0 , 𝜆𝑚−1 = 𝜉𝑚−1 and for ℓ ∈ {1, . . . , 𝑚 − 2},

𝜆ℓ =


𝜉
(1,6)
ℓ

, if ℓ ≡ 0 (mod 4),
𝐼ℓ , if ℓ ≡ 1 (mod 4),
𝜉
(1,6)
ℓ , if ℓ ≡ 2 (mod 4),
𝐼ℓ , if ℓ ≡ 3 (mod 4).

Equivalently, Eq. (3) is written as for 𝑘 ≥ 1, 𝜑𝑛(𝑘 )
𝐹1−−→

𝜆4𝑘−3𝜆4𝑘−4𝜑𝑛(𝑘−1)𝜆4𝑘−2𝜆4𝑘−1, where 𝑛(𝑘) := 28𝑘 for 𝑘 ≥ 0
and 𝜑0 represents the empty list.

Proof of Proposition. The proof proceeds by induction on
even 𝑚. One can easily verify that 𝜑14 = 𝜉0𝜉1

𝑆0−−→ 𝜉
(5,2)
0 𝜉1,

which establishes the base case, 𝑚 = 2.
For the induction step, suppose that the proposition

holds for𝑚. Let 𝜋 be an arbitrary sequence of length 7(𝑚−1).
We will verify that

𝜋𝜉𝑚−1𝜉𝑚𝜉𝑚+1
𝑆1
𝑚−−→ 𝜉𝑚−1𝜋𝜉

(1,6)
𝑚 𝜉𝑚+1

𝑆2

−−→ 𝐼𝑚−1𝜋𝜉
(1,6)
𝑚 𝜉𝑚+1, (4)

which implies the proposition for 𝑚 + 2.
The first part of Eq. (4) holds since

𝜋𝜉𝑚−1𝜉𝑚 = 𝜋𝜉𝑚−1 (1 7 5 3 6 4 2)𝑚

4𝑚−−→ (3 5 7 1)𝑚𝜉𝑚−1𝜋(6 4 2)𝑚
6𝑚−−→ (4 6)𝑚𝜋𝜉𝑚−1 (1 7 5 3 2)𝑚
5𝑚−−→ (5 7 1)𝑚𝜉𝑚−1𝜋(6 4 3 2)𝑚
4𝑚−−→ (6)𝑚𝜋𝜉𝑚−1 (1 7 5 4 3 2)𝑚
3𝑚−−→ (7 1)𝑚𝜉𝑚−1𝜋(6 5 4 3 2)𝑚
7𝑚−−→ (2 3 4 5 6)𝑚𝜋𝜉𝑚−1 (1 7)𝑚
5𝑚−−→ 𝜉𝑚−1𝜋(6 5 4 3 2 1 7)𝑚 = 𝜉𝑚−1𝜋𝜉

(1,6)
𝑚 .

The second part of Eq. (4) is obvious since 𝜉
𝑆2

−−→ 𝐼. □

Proof of Theorem 1 (continued). The sub-sequence 𝐹2
depends on whether 𝑚 = 4𝑘 or 𝑚 = 4𝑘 + 2.

First, we consider the case𝑚 = 4𝑘+2. Given a sequence
in the right-hand side of Eq. (2), we can sort this sequence
by applying |𝐹2 | = 𝑚 + 10 flips as follows:

The first twelve flips, which will be given below, act on
𝜆0 = 𝜉

(5,2)
0 and 𝜆𝑚−1 = 𝜉𝑚−1. We write the sequence in the

right-hand side of Eq. (2) as 𝜋𝑎𝜉 (5,2)0 𝜋𝑏𝜉𝑚−1, where each of
𝜋𝑎 and 𝜋𝑏 is a sequence of length 7(𝑚/2 − 1).

By applying the flip sequence [2𝑚−1 7𝑚−1 30 3𝑚/2 5𝑚/2
0𝑚/2], we have

𝜋𝑎 (3 4 5 6 7 1 2)0𝜋𝑏 (1 7 5 3 6 4 2)𝑚−1
2𝑚−1−−−−→ (7 1)𝑚−1𝜋𝑏 (2 1 7 6 5 4 3)0𝜋𝑎 (5 3 6 4 2)𝑚−1
7𝑚−1−−−−→ (2 4 6 3 5)𝑚−1𝜋𝑎 (3 4 5 6 7 1 2)0𝜋𝑏 (1 7)𝑚−1

30−→ (6 4 2 3 5)𝑚−1𝜋𝑎 (3 4 5 6 7 1 2)0𝜋𝑏 (1 7)𝑚−1
3𝑚/2−−−→ (7 6 5 4 3)0𝜋𝑎 (5 3 2 4 6)𝑚−1 (1 2)0𝜋𝑏 (1 7)𝑚−1
5𝑚/2−−−→ (2 1)0 (6 4 2 3 5)𝑚−1𝜋𝑎 (3 4 5 6 7)0𝜋𝑏 (1 7)𝑚−1
0𝑚/2−−−→ 𝜋𝑎 (5 3 2 4 6)𝑚−1 (1 2 3 4 5 6 7)0𝜋𝑏 (1 7)𝑚−1

= 𝜋𝑎 (5 3 2 4 6)𝑚−1𝐼0𝜋𝑏 (1 7)𝑚−1 (5)

Recall that the last block of 𝜋𝑎 is 𝜉 (1,6)2 . Let 𝜋′𝑎 be the sub-
sequence of 𝜋𝑎 so that 𝜋𝑎 = 𝜋′𝑎𝜉

(1,6)
2 . By applying the flip

sequence [60 6𝑚−1 3𝑚/2 5𝑚/2 4𝑚/2 6𝑚−1], we have

(5) = 𝜉
(1,6)
2 𝜋′𝑎 (5 3 2 4 6)𝑚−1𝐼0𝜋𝑏 (1 7)𝑚−1

60−→ 𝐼2𝜋
′
𝑎 (5 3 2 4 6)𝑚−1𝐼0𝜋𝑏 (1 7)𝑚−1

6𝑚−1−−−−→ (1)𝑚−1𝜋𝑏 𝐼0 (6 4 2 3 5)𝑚−1𝜋
′
𝑎 𝐼2 (7)𝑚−1

3𝑚/2−−−→ (4 6)𝑚−1𝐼0𝜋𝑏 (1 2 3 5)𝑚−1𝜋
′
𝑎 𝐼2 (7)𝑚−1

5𝑚/2−−−→ (3 2 1)𝑚−1𝜋𝑏 𝐼0 (6 4 5)𝑚−1𝜋
′
𝑎 𝐼2 (7)𝑚−1

4𝑚/2−−−→ (6)𝑚−1𝐼0𝜋𝑏 (1 2 3 4 5)𝑚−1𝜋
′
𝑎 𝐼2 (7)𝑚−1

6𝑚−1−−−−→ 𝐼2𝜋
′
𝑎 (5 4 3 2 1)𝑚−1𝜋𝑏 𝐼0 (6 7)𝑚−1

= 𝐼2𝐼3 · · · 𝜉
(1,6)
𝑚−4 𝐼𝑚−3 (5 4 3 2 1)𝑚−1𝜉

(1,6)
𝑚−2

· · · 𝐼5𝜉
(1,6)
4 𝐼1𝐼0 (6 7)𝑚−1 (6)
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Then, by applying (𝑚/2) − 2 pairs of flips [5𝑚−3 60],
[5𝑚−5 60], . . . , [53 60], we have

(6)
[5𝑚−3 60 ]−−−−−−−−→ 𝐼4𝐼5 · · · 𝜉

(1,6)
𝑚−2 (1 2 3 4 5)𝑚−1𝐼𝑚−3𝜉

(1,6)
𝑚−4

· · · 𝐼3𝐼2𝐼1𝐼0 (6 7)𝑚−1
[5𝑚−5 60 ]−−−−−−−−→ 𝐼6𝐼7 · · · 𝜉

(1,6)
𝑚−4 𝐼𝑚−3 (5 4 3 2 1)𝑚−1𝜉

(1,6)
𝑚−2

· · · 𝐼5𝐼4𝐼3𝐼2𝐼1𝐼0 (6 7)𝑚−1

· · ·
[53 60 ]−−−−−→ 𝐼𝑚−2 (1 2 3 4 5)𝑚−1𝐼𝑚−3𝐼𝑚−4

· · · 𝐼1𝐼0 (6 7)𝑚−1 (7)

Finally, two more flips [51 5𝑚−1] complete sorting as follows:

(7) 51−→ (5 4 3 2 1)𝑚−1𝐼𝑚−2𝐼𝑚−3 · · · 𝐼1𝐼0 (6 7)𝑚−1
5𝑚−1−−−−→ 𝐼0𝐼1 · · · 𝐼𝑚−1.

The total number of flips in the second sub-sequence is |𝐹2 | =
12+2(𝑚/2−2)+2 = 𝑚+10 as was described, and the theorem
follows since |𝐹1 | + |𝐹2 | = (13/14)𝑛 − 8 + (1/7)𝑛 + 10 =

(15/14)𝑛 + 2.
The flip sequence 𝐹2 for the case𝑚 = 4𝑘 is consisting of

(i) the first eleven flips [2𝑚−1 0𝑚/2 2𝑚/2 4𝑚/2−1 60 7𝑚−1 30 40
20 6𝑚/2 7𝑚−1], (ii) (𝑚/2) − 2 pairs of flips
[6𝑚−3 60], [6𝑚−5 60], . . . , [63 60] and (iii) the final three
flips [61 20 6𝑚−1]. The length of 𝐹2 is 11+2(𝑚/2−2) +3 =

𝑚 + 10 as to the case 𝑚 = 4𝑘 + 2. Verifying the correctness
of this flip sequence is left to the readers. □

When the number of blocks 𝑚 is odd, the following
bound applies.

Corollary 1. For all 𝑛 ≡ 0 (mod 7) and 𝑛 ≥ 28, 𝑓 (𝜑𝑛) ≤
(15/14)𝑛 + 5/2.

Proof By Theorem 1, it is sufficient to show that
𝑓 (𝜑𝑛+7) ≤ 𝑓 (𝜑𝑛) + 8 for every even integer 𝑚 ≥ 2 and
𝑛 = 7𝑚. This can be verified by seeing

𝐼0𝐼1 · · · 𝐼𝑚−1𝜉𝑚
𝐹−→ 𝐼0𝐼1 · · · 𝐼𝑚,

for 𝐹 = [3𝑚−1 5𝑚−1 3𝑚−1 6𝑚−1 40 20 7𝑚−1 2𝑚−1]. □

Before closing this note, we briefly explain how we
found our flip sequence. The known lower bound proofs
([5], [7]) rely on the analysis of the number of wastes of a
flip sequence. For a sequence 𝑆 = (ℓ1 ℓ2 . . . ℓ𝑛) the number
of adjacencies, denoted by adj(𝑆), is defined as the number
of indexes 𝑖 ∈ {1, 2, . . . , 𝑛 − 1} such that |ℓ𝑖 − ℓ𝑖+1 | = 1.
A key fact is that, for every sequence 𝑆 and a flip 𝑧, if
𝑆

𝑧−→ 𝑇 then adj(𝑇) ≤ adj(𝑆) + 1. A flip 𝑧 applied to 𝑆

is called a waste if adj(𝑇) ≤ adj(𝑆) when 𝑆
𝑧−→ 𝑇 . Since

adj(𝜑𝑛) = 0 and adj(𝐼𝑛) = 𝑛 − 1, a lower bound 𝑤 on the
number of wastes for any flip sequences for 𝜑𝑛 gives a lower
bound 𝑓 (𝜑𝑛) ≥ 𝑛 − 1 + 𝑤. From this perspective, a good

flip sequence is the one with a small number of wastes. We
found our flip sequence during the process of searching, with
the aid of computers, for a flip sequence for 𝜑𝑛 such that the
first several wastes come as late as possible.
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[6] Ervin Györi and György Turán. Stack of pancakes. Studia Scientiarum
Mathematicarum Hungarica, 13:133–137, 1978.

[7] Mohammad Hossain Heydari and Ivan Hal Sudborough. On the di-
ameter of the pancake network. J. Algorithms, 25(1):67–94, 1997.

[8] Yuichi Komano and Takaaki Mizuki. Card-based zero-knowledge
proof protocol for pancake sorting. In Innovative Security Solutions
for Information Technology and Communications - 15th International
Conference, SecITC 2022, volume 13809 of Lecture Notes in Computer
Science, pages 222–239. Springer, 2022.

[9] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Se-
quences, 2024. Published electronically at http://oeis.org.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

