
DOI:10.1587/transinf.2024FCP0001

Publicized:2024/05/30

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Enumerating floorplans with Aligned Columns

Shin-ichi NAKANO†, Member

SUMMARY A floorplan is a partition of an axis-aligned rectangle into
a set of smaller rectangles. Given an axis-aligned rectangle 𝑅 and a set 𝑃
of points in 𝑅 we wish to partition 𝑅 into a set 𝑆 of rectangles so that each
point in 𝑃 is on a boundary of a rectangle in 𝑆. We call such a partition
of 𝑅 a floorplan covering 𝑃. Intuitively 𝑃 is the locations of columns and
a floorplan covering 𝑃 is a floorplan in which no column is in the proper
inside of a room and each column is on a wall.

In this paper we design an algorithm to generate all floorplans cover-
ing 𝑃 when 𝑃 is the set of given grid points. The algorithm generates each
floorplan in 𝑂 (|𝑃 |) time.
key words: Algorithm, Enumeration, Floorplan

1. Introduction

Given an axis-aligned rectangle 𝑅 and a set 𝑃 of points in
𝑅 we wish to partition 𝑅 into a set 𝑆 of smaller rectangles
so that each point in 𝑃 is on a boundary of a rectangle in 𝑆.
We call such a partition of 𝑅 a floorplan covering 𝑃. See an
example in Fig.1. Intuitively, 𝑃 is the locations of columns
and a floorplan covering 𝑃 is a floorplan in which no column
is in the proper inside of a room, i.e., each column is located
on a wall between rooms.

(a) (b)

Fig. 1 (a) An example of the set of given grid points 𝑃 and (b) a floorplan
covering 𝑃.

Some efficient algorithms to enumerate all floorplans
covering 𝑃 is known [1], [2], [11], [13]. Let 𝑆𝑃 be the set of
the floorplans covering 𝑃. The fastest algorithm is based on
the reverse search method [3], [4], and enumerates all floor-
plans covering 𝑃 in 𝑂 (|𝑆𝑃 |) time [11], [13]. In those papers
𝑃 is in a general position, that is, no two points in 𝑃 have
the same 𝑥-coordinate, and no two points in 𝑃 have the same
𝑦-coordinate.

In this paper we design an enumeration algorithm when
𝑃 is the set of given grid points in 𝑅, as shorn in Fig. 1(a).

†The author is with Gunma University, Maebashi-Shi, 371-
8510

Now 𝑃 is not in a general position so we need more cases.
However this is more practical situation in modern architec-
ture. See an example in Fig. 1(a). We assume that the bound-
ary of 𝑅 also has the grid points. Our algorithm generates
all floorplans covering 𝑃 in 𝑂 (|𝑃 |) time for each.

Ackerman et al. [1], [2] gave an algorithm to enumer-
ate all floorplans covering 𝑃 in a general position. The al-
gorithm is based on the reverse search method [3], [4] and
enumerates all such floorplans in either𝑂 (𝑛|𝑆𝑃 |) time using
𝑂 (𝑛) space or 𝑂 (log 𝑛|𝑆𝑃 |) time using 𝑂 (𝑛3) space, where
𝑛 = |𝑃 |. Yamanaka et al. [11], [13] gave a faster algorithm,
which is also based on the reverse search method. The algo-
rithm uses 𝑂 (𝑛) space, and enumerates all such floorplans
in (|𝑆𝑃 |) time.

Several variants of floorplan enumeration algorithms
are also known [5]–[7], [10], [12]. See the brief survey in
Section 1 of [5].

The rest of the paper is organized as follows. Section
2 gives some definitions. Section 3 defines a tree structure
among the floorplans covering 𝑃. Section 4 gives our enu-
meration algorithm using the tree structure. Finally Section
5 is a conclusion.

2. Preliminaries

In this section we give some definitions.
A floorplan is a partition of an axis-aligned rectangle

𝑅 into a set of smaller rectangles. Each line segment of the
boundary of 𝑅 is called the outer wall, each smaller rectan-
gle in the set is called a room, and each line segment in a
floorplan is called a wall. A wall is either horizontal or ver-
tical.

Let 𝑃 be the set of given grid points located in 𝑅. See an
example in Fig. 1(a). We assume that the boundary of 𝑅 also
has the grid points. A floorplan covers 𝑃 if every point in 𝑃
is in a wall. A wall containing exactly two points of 𝑃 (on
its two end points) is called a basic wall. A basic wall 𝑠 in a
floorplan covering 𝑃 is redundant if removing 𝑠 results in a
floorplan covering 𝑃. We assume that a floorplan covering 𝑃
has no redundant wall. (Because otherwise we need to treat
a huge number of almost similar floorplans.) In a floorplan
covering 𝑃, each room has either the width one or the height
one, since otherwise the room has a point in 𝑃 in the proper
inside of the room, a contradiction.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

3. Family Tree

In this sectionwe define a tree structure among the floorplans
covering 𝑃, where 𝑃 is the set of given grid points.

Let 𝑓𝑟 be the floorplan covering 𝑃 by only horizontal
walls except the outer walls. See an example in Fig.5, where
the top floorplan is 𝑓𝑟 .

c

c
D

c

c c

U

L R

cR

cR

D

U

s

Fig. 2 Illustration for 𝑐, 𝑐𝐷 , etc.

Given a floorplan 𝑓 ≠ 𝑓𝑟 covering 𝑃, we define the
parent floorplan 𝑝(𝑓) of 𝑓 , which also covers 𝑃, so that the
number of horizontal basic walls of 𝑝(𝑓) is alwaysmore than
that of 𝑓 . We need some definitions.

Let 𝑠 be the lowest maximal vertical wall among the
leftmost maximal vertical walls in 𝑓 except the (left) outer
wall. We call such 𝑠 the critical wall of 𝑓 . Let 𝑐𝐷 be the
lower end point of 𝑠, 𝑐 be the upper neighbor point of 𝑐𝐷 ,
𝑐𝑅 be the right neighbor point of 𝑐, 𝑐𝑈𝑅 be the upper neighbor
point of 𝑐𝑅, 𝑐𝐷𝑅 be the lower neighbor point of 𝑐𝑅, 𝑐𝑈 be the
upper neighbor point of 𝑐, and 𝑐𝐿 be the left neighbor point
of 𝑐. (See Fig. 2.) Note that, since the face below 𝑐𝐷 is also
a rectangle room or the outer face, 𝑐𝐷 has horizontal walls
on the both sides. Also note that, 𝑠 contains two or more
basic walls. (Otherwise if 𝑠 contains exactly one basic wall
then it is redundant so it has been removed, a contradiction.)

We have the following two cases depending the number
of basic walls in 𝑠 for the definition of the parent floorplan
𝑝(𝑓) of 𝑓 . Recall that 𝑠 is the critical wall of a floorplan
𝑓 ≠ 𝑓𝑟 .

Case 1: 𝑠 contains three or more basic walls.
In this case 𝑝(𝑓) is derived from 𝑓 by removing the

lowest basic vertical wall from 𝑠 with some modification.
After the removal of the basic vertical wall between 𝑐 and
𝑐𝐷 , we need horizontal walls on the both sides of 𝑐, since
the face below 𝑐 is a rectangle room. When we append a
basic horizontal wall on the right of 𝑐 if each basic vertical
wall of 𝑐𝑅 becomes redundant then we remove it. On the
other hand when we append a basic horizontal wall on the
left of 𝑐 no redundant vertical wall occurs around 𝑐𝐿 since 𝑠
is the leftmost vertical wall.

When we append a basic horizontal wall on the right of
𝑐 if 𝑓 has basic vertical walls on the both sides of 𝑐𝑅 then
either 𝑐𝑅 has no horizontal basic wall on the right or the right
neighbor of 𝑐𝑅 is not on the right outer wall, since otherwise

(1-1-1)

c

(1-1-2)

c

(1-1-3)

c

(1-1-4)

c

(1-1-5)

c

ccc c

c

ｆｆｆ ｆ

ｆ

(1-2)

c

c

ｆ

(1-3-1)

c

c

(1-3-2)

c

c

(1-3-3)

c

(1-3-4)

c

(1-3-5)

c

c

c c

(1-4)

c

p(f) p(f) p(f) p(f)

p(f) p(f) p(f) p(f)

p(f) p(f) p(f)

ｆ

ｆｆ

ｆ ｆ ｆ

Fig. 3 Illustration for the parent floorplan in Case 1.

NAKANO: ENUMERATING FLOORPLANS WITH ALIGNED COLUMNS
3

in 𝑓 the horizontal basic wall on the right of 𝑐𝑅 is redundant.
We have the following four subcases depending the hor-

izontal walls at 𝑐.
Case 1-1: 𝑐 has horizontal wall on neither side.

Note that, since the face on the right of 𝑐 is also a rectan-
gle room, 𝑐𝑅 has vertical walls on the both sides. Also note
that, since the face on the left of 𝑐 is also a rectangle room,
𝑐𝐿 has vertical walls on the both sides, and by the choice of
𝑠, 𝑐𝐿 is on the left outer wall.

We have the following five subsubcases.
Case 1-1-1: 𝑐𝑈𝑅 has horizontal walls on the both sides, 𝑐𝐷𝑅
has horizontal walls on the both sides, and 𝑐𝑅 has a horizon-
tal wall on the right (and it is not redundant). (See Fig. 3
(1-1-1).)

Let 𝑝(𝑓) be the floorplan derived from 𝑓 by (1) remov-
ing the lowest basic vertical wall from 𝑠, (2) appending basic
horizontal walls on the both sides of 𝑐, (3) removing the basic
vertical wall above 𝑐𝑅 since it is redundant, and (4) removing
the basic vertical wall below 𝑐𝑅 since it is redundant.
Case 1-1-2: Otherwise, 𝑐𝐷𝑅 has horizontal walls on the both
sides, and 𝑐𝑅 has horizontal wall on the right (and it is not
redundant). (See Fig. 3 (1-1-2).)

Now 𝑐𝑈𝑅 has at most one horizontal wall since Case (1-
1-1) does not occur.

Let 𝑝(𝑓) be the floorplan derived from 𝑓 by (1) remov-
ing the lowest basic vertical wall from 𝑠, (2) appending basic
horizontal walls on the both sides of 𝑐, and (3) removing the
basic vertical wall below 𝑐𝑅 since it is redundant.
Case 1-1-3: Otherwise, 𝑐𝑈𝑅 has horizontal walls on the both
sides, and 𝑐𝑅 has horizontal wall on the right (and it is not
redundant).

Now 𝑐𝐷𝑅 has no horizontal wall on the right since Case
(1-1-1) does not occur. (See Fig. 3 (1-1-3).)

Let 𝑝(𝑓) be the floorplan derived from 𝑓 by (1) remov-
ing the lowest basic vertical wall from 𝑠, (2) appending basic
horizontal walls on the both sides of 𝑐, and (3) removing the
basic vertical wall above 𝑐𝑅 since it is redundant.
Case 1-1-4: Otherwise, 𝑐𝑅 has a horizontal wall on the right
(and it is not redundant). (See Fig. 3 (1-1-4).)

Now 𝑐𝑈𝑅 has at most one horizontal wall (since other-
wise Case (1-1-3) occurs) and 𝑐𝐷𝑅 has no horizontal wall on
the right (since otherwise Case (1-1-2) occurs).

Let 𝑝(𝑓) be the floorplan derived from 𝑓 by (1) remov-
ing the lowest basic vertical wall from 𝑠 and (2) appending
basic horizontal walls on the both sides of 𝑐.
Case 1-1-5: Otherwise. (𝑐𝑅 has no horizontal wall on the
right.) (See Fig. 3 (1-1-5).)

Let 𝑝(𝑓) be the floorplan derived from 𝑓 by (1) remov-
ing the lowest basic vertical wall from 𝑠 and (2) appending
basic horizontal walls on the both sides of 𝑐. Now each basic
vertical wall containing 𝑐𝑅 is not redundant.
Case 1-2: 𝑐 has a horizontal wall on the right only. (See Fig.
3 (1-2).)

Note that, since the face on the left of 𝑐 is also a rect-
angle room, 𝑐𝐿 has vertical walls on the both sides, and by
the choice of 𝑠, 𝑐𝐿 is on the left outer wall. Since 𝑐 has a

basic horizontal wall on the right 𝑐𝑅 has at most one vertical
wall. (Otherwise the basic horizontal wall on the right of 𝑐
is redundant.)

Let 𝑝(𝑓) be the floorplan derived from 𝑓 by (1) remov-
ing the lowest basic vertical wall from 𝑠 and (2) appending a
basic horizontal wall on the left of 𝑐.
Case 1-3: 𝑐 has a horizontal wall on the left only. (See Fig.
3 (1-3-1)–(1-3-5).)

Note that, since the face on the right of 𝑐 is also a rect-
angle room, 𝑐𝑅 has vertical walls on the both sides. Also 𝑐𝐿
is not on the left outer wall since otherwise the basic hori-
zontal wall on the left of 𝑐 is redundant, so it has removed, a
contradiction.

Let 𝑝(𝑓) be the floorplan derived from 𝑓 by (1) remov-
ing the lowest basic vertical wall from 𝑠 and (2) appending a
basic horizontal wall on the right of 𝑐.

We have five subsubcases, similar to Case 1-1. (See
Fig. 3 (1-3-1)–(1-3-5).)
Case 1-4: 𝑐 has horizontal walls on the both sides. (See Fig.
3 (1-4).)

Then the basic vertical wall below 𝑐 is redundant so it
has been removed, a contradiction. Thus this case never oc-
curs.

Case 2: 𝑠 contains exactly two basic wall.
In Case 2, 𝑐𝑈 has horizontal walls on the both sides.

In this case 𝑝(𝑓) is derived from 𝑓 by removing the lowest
basic vertical wall from 𝑠 with some modification. After the
removal of the basic vertical wall between 𝑐 and 𝑐𝐷 , we need
horizontal walls on the both sides of 𝑐, since the face below 𝑐
is a rectangle room. Additionally, in 𝑝(𝑓) we always need to
remove the basic vertical wall above 𝑐, since it is redundant.
Also, when we append a basic horizontal wall on the right of
𝑐 if each basic vertical wall of 𝑐𝑅 becomes redundant then
we remove it.

When we append a basic horizontal wall on the right of
𝑐 if 𝑓 has basic vertical walls on the both sides of 𝑐𝑅 then
either 𝑐𝑅 has no horizontal basic wall on the right or the right
neighbor of 𝑐𝑅 is not on the right outer wall, since otherwise
in 𝑓 the horizontal basic wall on the right of 𝑐𝑅 is redundant.

We have the following four subcases depending the hor-
izontal walls at 𝑐.
Case 2-1: 𝑐 has horizontal wall on neither side.

We have five subsubcases, similar to Case 1-1. (See
Fig. 4 (2-1-1)–(2-1-5).)
Case 2-2: 𝑐 has a horizontal wall on the right only. (See Fig.
4 (2-2).)

Similar to Case 1-2.
Case 2-3: 𝑐 has a horizontal wall on the left only.

We have five subsubcases, similar to Case 1-3. (See
Fig. 4 (2-3-1)–(2-3-5).)
Case 2-4: 𝑐 has horizontal walls on the both sides. (See Fig.
4 (2-4).)

This case never occurs. Similar to Case 1-4.

We have defined the parent floorplan. In those cases
the number of horizontal basic walls of 𝑝(𝑓) is always

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

(2-1-1)

c

(2-1-2)

c

(2-1-3)

c

(2-1-4)

c

(2-1-5)

c

ccc c

c

ｆｆｆ ｆ

ｆ

(2-2)

c

c

ｆ

(2-3-1)

c

c

(2-3-2)

c

c

(2-3-3)

c

(2-3-4)

c

(2-3-5)

c

c

c c

(2-4)

c

p(f) p(f) p(f) p(f)

p(f) p(f) p(f) p(f)

p(f) p(f) p(f) p(f)

ｆ

ｆｆ

ｆ ｆ ｆ

Fig. 4 Illustration for the parent floorplan in Case 2.

more than that of 𝑓 . Given a floorplan covering 𝑃, by re-
peatedly computing the parent of the derived floorplan, say
𝑓 , 𝑝(𝑓), 𝑝(𝑝(𝑓)), · · · , we have the unique sequence of floor-
plans, called the removing sequence of 𝑓 , and it always ends
with 𝑓𝑟 , which is the floorplan covering 𝑃 with only horizon-
tal walls.

Given the set 𝑆𝑃 of floorplans covering 𝑃, by merging
the removing sequences of the floorplans in 𝑆𝑃 , we have the
tree structure 𝑇𝑃 of floorplans in 𝑆𝑃 , in which the root cor-
responds to 𝑓𝑟 , each vertex corresponds to a floorplan in 𝑆𝑃 ,
each edge corresponds to each parent-child relation among
the floorplans. See an example in Fig.5. The tree structure
is called the family tree [9] of 𝑆𝑃 .

If 𝑝(𝑓) is the parent of 𝑓 then we say 𝑓 is a child of
𝑝(𝑓). If 𝑝(𝑓) is derived from 𝑓 by Case x above then we
say 𝑓 is a child floorplan of 𝑝(𝑓) with Case x.

We have the following lemma.

Lemma 1. In Case 1, the critical wall 𝑠 of 𝑓 remains the

Fig. 5 An example of the family tree.

NAKANO: ENUMERATING FLOORPLANS WITH ALIGNED COLUMNS
5

critical wall of 𝑝(𝑓) after losing the lowest basic vertical
wall.

In Case 2, the critical wall 𝑠 of 𝑓 is completely removed
in 𝑝(𝑓) and the critical wall of 𝑝(𝑓) is located either on the
right of (removed) 𝑠 of 𝑓 or on the vertical line containing
(removed) 𝑠 but above 𝑠. Especially, in Case 2-1-2, 2-1-3,
2-1-4, 2-1-5, 2-3-2, 2-3-3, 2-3-4, 2-3-5, the critical wall of
𝑝(𝑓) is located on the vertical line containing either 𝑐𝑅, or
(removed) 𝑠 but above 𝑠.

Proof. By case analysis. See Fig.3 and Fig.4. □

4. Algorithm

In this section we design an algorithm to generate all floor-
plans covering 𝑃, where 𝑃 is the set of given grid points in
𝑅.

Given a floorplan 𝑓 covering 𝑃, we design an algorithm
to generate all child floorplans of 𝑓 . Then, by recursively
executing the all child floorplan generation algorithm, we
generate all floorplans covering 𝑃. We construct the fam-
ily tree in the depth first order and generate each floorplan
corresponding to each vertex of the family tree.

The algorithm consists of the following three steps. For
a point 𝑐 ∈ 𝑃 we again define 𝑐𝑅, 𝑐𝐿 , 𝑐𝑈 , 𝑐𝐷 , 𝑐𝐷𝑅 and 𝑐𝑈𝑅
around 𝑐 as in Fig. 2, but this time 𝑐may not be in the critical
wall.

(STEP 0) A floorplan 𝑓 covering 𝑃 with 𝑓 ≠ 𝑓𝑟 and the
critical wall 𝑠 of 𝑓 is given. If 𝑓 = 𝑓𝑟 holds then we regard
the right vertical outer wall of 𝑅 as 𝑠.

(STEP 1)(Case 1 child floorplan generation) Let 𝑐 be the
lower end point of 𝑠. Now 𝑐 has horizontal walls on the both
sides. If 𝑐 is not on the outer wall then 𝑐𝐷 also has horizontal
walls on the both sides.

If 𝑐 is not on the outer wall then we generate all possible
child floorplans of 𝑓 with Case 1 using the reverse operation
of Case 1. Each of which is a floorplan derived from 𝑓 by
extending 𝑠 to down by one basic vertical wall with some
modification around 𝑐 and 𝑐𝑅. Otherwise (𝑐 is on the outer
wall), 𝑓 has no child floorplan with Case 1.

For each subcase x in Case 1, if the child floorplan 𝑓𝑐
with Case x exists (if 𝑝(𝑓𝑐) = 𝑓 occurs) we perform the
algorithm recursively for 𝑓𝑐.

The number of possible child floorplans is a constant
and given 𝑠 we can check the existence of each possible child
floorplan in𝑂 (1) time. Thus we can generate all child floor-
plans of 𝑓 with Case 1 from 𝑓 in 𝑂 (1) time in total.

(STEP 2)(Case 2 child floorplan generation) For each
point 𝑐 in 𝑃 located either on the left of 𝑠 and not on the
outer wall, or on the line containing 𝑠 but below 𝑠 with 𝑐𝑈 is
not on 𝑠, we generate all possible child floorplans of 𝑓 with
Case 2 using the reverse operation of Case 2. Each of those
is a floorplan derived from 𝑓 by appending the basic vertical
walls on the both sides of 𝑐 with some modification around

𝑐 and 𝑐𝑅. By the choice of 𝑐, 𝑐 has horizontal walls on the
both sides, 𝑐𝑈 has horizontal walls on the both sides, 𝑐𝐷 has
horizontal walls on the both sides and 𝑐 has no vertical walls.
For other 𝑐, 𝑓 has no child floorplan with Case 2.

For each 𝑐 located either (1) on the left of 𝑠 or (2) on the
line containing 𝑠 but below 𝑠 with 𝑐𝑈 is not on 𝑠, for each
subcase x in Case 2, if the child floorplan 𝑓𝑐 with Case x
with respect to 𝑐 exists (if 𝑝(𝑓𝑐) = 𝑓 occurs) we perform the
algorithm recursively for 𝑓𝑐.

The number of possible child floorplans is a constant
and given 𝑠 and 𝑐we can check the existence of each possible
child floorplan in 𝑂 (1) time. Thus we can generate all child
floorplans of 𝑓 with Case 2 from 𝑓 in 𝑂 (|𝑃 |) time in total.

In this way after generating 𝑓𝑟 in 𝑂 (|𝑃 |) time we can
generate all floorplans covering 𝑃 in 𝑂 (|𝑆𝑃 | |𝑃 |) time in to-
tal.

If we generate each floorplan in the depth first order in
the family tree we may need much time to generate the next
floorplan of the last floorplan in a large subtree. However, by
the prepost order method [8], which generates each floorplan
(Case ODD) before its child floorplans if the level of recur-
sive call is odd and (Case EVEN) after its child floorplans
otherwise, one can generate each floorplan in 𝑂 (|𝑃 |) time,
as the difference from the preceding floorplan. Note that by
tracing at most three edges of the family tree we can output
the next floorplan.

Algorithm 1 Enumerate-All-Child-Floorplans(𝑓 ,𝑠,𝑃)
1: if The level of recursive call is odd then
2: Output 𝑓
3: end if
4: /* (STEP 1) */
5: /* Let 𝑐 be the lower end point of the critical wall 𝑠 of 𝑓 */
6: if 𝑐 is not on the outer wall then
7: for each subcase x in Case 1 do
8: if The child floorplan 𝑓𝑐 with Case x exits then
9: Enumerate-All-Child-Floorplans(𝑓𝑐 ,𝑠,𝑃)
10: /* 𝑠 remains the critical wall of 𝑓𝑐 */
11: end if
12: end for
13: end if
14: /* (STEP 2) */
15: for each 𝑐 located either (1) on the left of 𝑠 or (2) on the line containing

𝑠 but below 𝑠 and 𝑐𝑈 not on 𝑠 do
16: for each subcase x in Case 2 do
17: if The child floorplan 𝑓𝑐 with Case x with respect to 𝑐 exists

then
18: Enumerate-All-Child-Floorplans(𝑓𝑐 ,𝑠′,𝑃)
19: /* 𝑠′ is the critical wall of 𝑓𝑐 consisting of the two vertical

basic walls containing 𝑐 */
20: end if
21: end for
22: end for
23: if The level of recursive call is even then
24: Output 𝑓
25: end if

We have the following theorem.

Theorem 1. One can generate all floorplans covering 𝑃 in
𝑂 (|𝑃 |) time for each, where 𝑃 is the set of given grid points.

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

5. Conclusion

In this paper we have designed an algorithm to generate all
floorplans covering 𝑃 when 𝑃 is the set of given grid points.
The algorithm generates each floorplan covering 𝑃 in𝑂 (|𝑃 |)
time for each.

Can we design more efficient algorithms?
Can we efficiently generate all floorplans covering 𝑃,

when 𝑃 is any set of points in 𝑅?

References

[1] E. Ackerman, G. Barequet and R. Y. Pinter, On the number of rectan-
gulations, Proc. of SODA 2004, pp.729–738 (2004).

[2] E. Ackerman, G. Barequet and R. Y. Pinter, On the number of rect-
angulations of a planar point set, Journal of Combinatorial Theory,
Series A, 113, pp.1072-1091 (2006).

[3] D. Avis, Generating rooted triangulations without repetitions, Algo-
rithmica, 16, pp.618-632 (1996).

[4] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Ap-
plied Mathematics, 65, pp.21-46 (1996).

[5] A. I. Merino and T. Mütze: Efficient Generation of Rectangulations
via permutation languages, Proc. of SoCG 2021, 54:1-18 (2021).

[6] S. Nakano, Enumerating floorplans with n rooms, Proc. of ISAAC
2001, LNCS 2223, pp.107-115 (2001).

[7] S. Nakano, Enumerating Floorplans with n Rooms. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. E85-A, pp.1746-1750 (2002).

[8] S. Nakano and T. Uno, Constant time generation of trees with specified
diameter, Proc. of WG04, LNCS 3353, pp.33-45 (2004).

[9] S. Nakano, Family trees for enumeration, International Journal of
Foundations of Computer Science Accepted 2023.5.16

[10] M. Takagi and S. Nakano, Listing all rectangular drawings with cer-
tain properties, Systems and Computers in Japan, 35, pp.1–8 (2004).

[11] K. Yamanaka, Md. S. Rahman and S. Nakano, Floorplans with
columns, Proc. of COCOA 2017, LNCS 10627, pp.33-40 (2017).

[12] K. Yamanaka and S. Nakano, Floorplans with walls, Proc. of TAMC
2020, LNCS 12337, pp. 50-59 (2020).

[13] K. Yamanaka, Md. S. Rahman and S. Nakano, Enumerating floor-
plans with columns, IEICE Trans. Fundam. Electron. Commun. Com-
put. Sci. E101-A, pp.1392-1397 (2018).

Shin-ichi Nakano received his B.E. and
M.E. degrees from Tohoku University, Sendai,
Japan, in 1985 and 1987, respectively. In 1987
he joined Seiko Epson Corp. and in 1990 he
joined Tohoku University. In 1992, he received
Dr. Eng. degree from Tohoku University.
Since 1999 he has been a faculty member of
Gunma University. His research interests are al-
gorithms. He is a member of IPSJ and ACM.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

